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Abstract: X-ray reflectivity (XRR) is a powerfull tool for investigations on surface and interface structures of multilayered 

thin film materials. In the conventional XRR analysis, the X-ray reflectivity has been calculated based on the Parratt formalism, 

accounting for the effect of roughness by the theory of Nevot-Croce conventionally. However, the calculated results have shown 

often strange behaviour where interference effects would increase at a rough surface. The strange result had its origin in a serious 

mistake that the diffuse scattering at the rough interface was not taken into account in the equation. Then we developed new 

improved formalism to correct this mistake. However, the estimated surface and interface roughnesses from the x-ray reflectivity 

measurements did not correspond to the TEM image observation results. For deriving more accurate formalism of XRR, we tried 

to compare the measurements of the surface roughness of the same sample by atomic force microscopy (AFM), high-resolution 

Rutherford backscattering spectroscopy (HRBS) and XRR. The results of analysis showed that the effective roughness measured 

by XRR might depend on the angle of incidence. Then we introduced the effective roughness with depending on the incidence 

angle of X-ray. The new improved XRR formalism derived more accurate surface and interface roughness with depending on 

the size of coherent X-rays probing area, and derived the roughness correlation function and the lateral correlation length. In 

this review, an improved XRR formalism, considering the diffuse scattering and the effective roughness, is presented. The 

formalism derives an accurate analysis of the x-ray reflectivity from a multilayer surface of thin film materials. 
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1. Introduction 

X-ray scattering spectroscopy is a powerful tool for 

investigations on rough surface and interface structures of 

multilayered thin film materials, [1-41] and X-ray 

reflectometry is used for such investigations of various 

materials in many fields. [15, 16, 20-41] In many previous 

studies in X-ray reflectometry, the X-ray reflectivity was 

calculated based on the Parratt formalism, [1] coupled with 

the use of the theory of Nevot and Croce to include roughness. 

[2] However, the calculated results of the X-ray reflectivity 

done in this way often showed strange results where the 

amplitude of the oscillation due to the interference effects 

would increase for a rougher surface. 

Because the x-ray scattering vector in a specular reflectivity 

measurement is normal to the surface, it provides the density 

profile solely in the direction perpendicular to surface. 

Specular reflectivity measurements can yield the magnitude of 

the average roughness perpendicular to surface and interfaces, 

but cannot give information about the lateral extent of the 

roughness. In previous studies, the effect of roughness on the 

calculation of the x-ray reflectivity only took into account the 

effect of the density changes of the medium in a direction 

normal to the surface and interface. On the other hand, diffuse 

scattering can provide information about the lateral extent of 

the roughness. In contrast to previous calculations of the x-ray 

reflectivity, in the present analysis we consider the effect of a 

decrease in the intensity of penetrated x-rays due to diffuse 

scattering at a rough surface and rough interface. 

In this review, we show that the strange result has its origin 

in a currently used equation due to a serious mistake in which 

the Fresnel transmission coefficient in the reflectivity equation 

is increased at a rough interface, and the increase in the 

transmission coefficient completely overpowers any decrease 

in the value of the reflection coefficient because of a lack of 

consideration of diffuse scattering. The mistake in Nevot and 
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Croce’s treatment originates in the fact that the modified 

Fresnel coefficients were calculated based on the theory which 

contains the x-ray energy conservation rule at surface and 

interface. In their discussion, the transmission coefficients 

were replaced approximately by the reflection coefficients by 

the ignoring diffuse scattering term at the rough interface, and 

according to the principle of conservation energy at the rough 

interface also. The errors of transmittance without the 

modification cannot be ignored. It is meaningless to try to 

precisely match the numerical result based on a wrong 

calculating formula even to details of the reflectivity profile of 

the experimental result. Thus, because Nevot and Croce’s 

treatment of the Parratt formalism contains a fundamental 

mistake regardless of the size of roughness, this approach 

needs to be corrected. Then we developed new improved 

formalism to correct this mistake. The calculated reflectivity 

obtained by the use of this accurate reflectivity equation gives 

a physically reasonable result, and should enable the structure 

of buried interfaces to be analyzed more accurately. However, 

the estimated surface and interface roughnesses from the x-ray 

reflectivity measurements did not correspond to the TEM 

image observation results. Then for deriving more accurate 

formalism of XRR, we tried to compare the measurements of 

the surface roughness of the same sample by atomic force 

microscopy (AFM), high-resolution Rutherford 

backscattering spectroscopy (HRBS) and XRR. The results of 

analysis showed that the effective roughness measured by 

XRR might depend on the angle of incidence. Then we 

introduced the effective roughness with depending on the 

incidence angle of X-ray. The new improved XRR formalism 

derived more accurate surface and interface roughness with 

depending on the size of coherent X-rays probing area, and 

derived the roughness correlation function and the lateral 

correlation length. In this review, an improved XRR 

formalism, considering the diffuse scattering and the effective 

roughness, is presented. The formalism derives an accurate 

analysis of the x-ray reflectivity from a multilayer surface of 

thin film materials. This article is the review article that 

summarized the research articles [33-41] and the later study. 

2. X-ray Reflectivity Analysis 

In the first subsection, we consider the calculation of the 

x-ray reflectivity from a multilayer material by the Parratt 

formalism, [1] and in the next subsection, the calculation of 

the x-ray reflectivity when roughness exists in the surface 

and the interface is considered. 

2.1. X-ray Reflectivity from a Multilayer Material with a 

Flat Surface and Flat Interface 

The intensity of x-rays propagating in the surface layers of 

a material, i.e., the electric and magnetic fields, can be 

obtained from Maxwell’s equations. [19] The effects of the 

material on the x-ray intensity are characterized by a 

complex refractive index n, which varies with depth. We 

divide a material in which the density changes continuously 

with depth into N layers with an index j. The complex 

refractive index of the j-th layer is nj. The vacuum is denoted 

as j = 0 and n0 = 1. The thickness of the j-th layer is hj, the 

thickness of the bottom layer being assumed to be infinite. 

The reflectance of an N-layer multilayer system can be 

calculated using the recursive formalism given by Parratt. [1] 

In the following, we show in detail the process of obtaining 

Parratt's expression and, further, show that this expression 

requires conservation of energy at the interface. We go on to 

show that the dispersion of the energy by interface roughness 

cannot be correctly accounted for Parratt's expression. 

Following that approach, let nj be the refractive index of 

the j-th layer, defined as 

nj = 1 – δj – iβj,               (1) 

where δj and βj are the real and imaginary parts of the 

refractive index. These optical constants are related to the 

atomic scattering factor and electron density of the j-th layer 

material. 

For x-rays of wavelength λ, the optical constants of the j-th 

layer material consisting of Nij atoms per unit volume can be 

expressed as 

∑=
i
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where re is the classical electron radius and f1i and f2i are the 

real and imaginary parts of the atomic scattering factor of the 

i-th element atom, respectively. 

We take the vertical direction to the surface as the z axis, 

with the positive direction pointing towards the bulk. The 

scattering plane is made the x-z plane. The wave vector kj of 

the j-th layer is related to the refractive index nj of the j-th 

layer by 

const
cn j

jj ==
2

2

2

ωkk ･
,              (3) 

and, as this necessitates that the x, y-direction components of 

the wave vector are constant, then the z-direction component 

of the wave vector of the j-th layer is 

2

0,00

2

, xjzj knk ‐kk ⋅= .              (4) 

In the 0-th layer, i.e., in vacuum, 

10 =n , 
2

00 k=⋅ kk , 
c

k
ω

λ
π == 2

.       (5) 

In the j-th layer, the components of the wave vector are 

θcosx, kk j = , 0, =yjk , θ22

, cos‐jzj nkk =    (6) 

The electric field of x-ray radiation at a glancing angle of 

incidence θ is expressed as 

])(exp[)( 000 tiz ω‐rkAE ⋅= .         (7) 

The incident radiation is usually decomposed into two 
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geometries to simplify the analysis, one with the incident 

electric field E parallel to the plane of incidence 

(p-polarization) and one with E perpendicular to that plane 

(s-polarization). An arbitrary incident wave can be 

represented in terms of these two polarizations. Thus, E0x and 

E0z correspond to p-polarization, and E0y to s-polarization; 

those components of the amplitude’s electric vector are 

expressed as 

θsin00 px AA −= , sy AA 00 = , θcos00 pz AA =     (8) 

The components of the wave vector of the incident x-rays 

are 

θcos0 kk x = , 00 =yk , θsin0 kk z =         (9) 

The electric field of reflected x-ray radiation of exit angle 

θ is expressed as 

])'(exp[')(' 000 tiz ω‐rkAE ⋅= .          (10) 

where  

xx kk 00' = , 0'0 =yk , zz kk 00' −= .        (11) 

Because an x-ray is a transverse wave, the amplitude and 

the wave vector are orthogonal as follows, 

0'',0 =⋅=⋅ jjjj kAkA .            (12) 

 

Figure 1. Reflected and transmitted x-rays. 

We consider the relation of the electric field E0 of x-rays 

incident at a flat surface from vacuum, the electric field E1 of 

x-rays propagating in the first layer material, the electric field 

E’0 of x-rays reflected from the surface exit to vacuum, and 

the electric field E’1 of x-rays propagating toward to the 

surface in the first layer material, as shown in Figure 1. 

The electric fields E1, E’1 in the first layer material below 

the surface are expressed as 

])(exp[)( 111 tiz ω‐rkAE ⋅=  

])'(exp[')(' 111 tiz ω‐rkAE ⋅= ,       (13) 

where 

xx kk 11' = , 0'1 =yk , zz kk 11' −= ,       (14) 

θcosx,1 kk = , 01 =yk , θ22

1,1 cos‐nkk z = .   (15) 

The relation of the amplitudes A0, A’0, A1, and A’1 can be 

found from the continuity equations of the electric fields for 

the interface between the 0-th and 1-th layers as follows 

xxxx AAAA ,1,1,0,0 '' +=+ , yyyy AAAA ,1,1,0,0 '' +=+ ,  (16) 

xxxxxxxx AkAkAkAk ,1,1,1,1,0,0,0,0 '''' +=+ ,        (17) 

yyyyyyyy AkAkAkAk ,1,1,1,1,0,0,0,0 '''' +=+ ,       (18) 

Another relation of the amplitudes A0, A’0, A1, and A’1 can 

be found from the continuity equations of the magnetic fields 

for the interface between the 0-th and 1-th layers are shown 

below 
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From the above equations, these amplitudes are related by 

the Fresnel coefficient tensor Φ Φ Φ Φ  for refraction and the 

Fresnel coefficient tensor Ψ Ψ Ψ Ψ  for reflection as follows 
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Here, the Fresnel coefficient tensor Φ Φ Φ Φ  for refraction at the 

interface between the 0-th and 1-th layers is given by 
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The Fresnel coefficient tensor ΨΨΨΨ  for reflection from the 

interface between the 0-th and 1-th layers is given by 
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Here, we consider the reflection from a flat surface of a 

single layer. The reflection coefficient is defined as the ratio 

R0,1 of the reflected electric field to the incident electric field 

at the surface of the material. The reflection coefficient R0, 1 

from a single-layer flat surface is equal to the Fresnel 

coefficient Ψ 01 for reflection, as the following shows 

01,001,00 AΨARA' ==                (24) 

In general, when x-rays that are linearly polarized at an 

angle χ impinge on the surface at an angle of incidence θ, the 

components of the amplitude’s electric vector are expressed 

as 
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the amplitudes of reflected x-ray radiation are expressed as 
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The x-ray reflectivity R is, 
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then, 

χχ 2
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2

,1,0,1,0 sin*cos* zzzzyyyy ΨΨΨΨR += ,   (32) 

Taking an average for χ, 

χ
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then 
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For the reflectivity in the case of s-polarized x-rays 

incident, 

yyyyΨΨR ,1,0,1,0 *= .                (35) 

Next, we consider the reflection from a flat surface of a 

multilayer with flat interfaces. We consider the electric field 

Ej-1 of x-rays propagating in the j-1-th layer material, the 

electric field Ej of x-rays propagating in the j-th layer 

material, and the electric field E’j-1 of x-rays reflected from 

the j-th layer material at z=zj-1,j of the interface between the 

j-1-th layer and j-th layers as shown in Figure 2. 

 

Figure 2. Reflection and transmission of x-rays in the j-1-th, j-th, and j+1-th layers of a multilayer material. 
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The electric fields Ej-1, E’j-1 at the interface between the 

j-1-th layer and j-th layer and the electric fields Ej, E’j below 

the interface between the j-1-th layer and j-th layer are 

expressed as 

])(exp[)( 1,1,1,11,11 thkykxkiz jzjyjxjjjjj ω−++= −−−−−−− AE , 

])(exp[')(' 1,1,1,11,11 thkykxkiz jzjyjxjjjjj ω−−+= −−−−−−− AE , 

])(exp[)( ,,,1 tykxkiz yjxjjjjj ω−+=− AE , 

])(exp[')(' ,,,1 tykxkiz yjxjjjjj ω−+=− AE .     (36) 

The electric fields of x-rays at the interface between the 

j-1-th layer and j-th layer can be formally expressed as 

follows 
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where ΨΨΨΨ j-1,j is the Fresnel coefficient tensor for reflection 

from the interface between the j-1 and j layers, and Φ Φ Φ Φ j-1,j is 

the Fresnel coefficient tensor for refraction at the interface 

between the j-1 and j layers. In addition, the electric field 

within the j-th layer varies with depth hj as follows 
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The amplitudes Aj and A’j at the j-th layer are derived from 

the above equations for the interface between the j-1 and j 

layers as follows 
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This relation is expressed by the following matrix 
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Here, the Fresnel coefficient tensor Φ Φ Φ Φ  for refraction at the 

interface between the j-1-th and j-th layers is given by 
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 (44) 

The Fresnel coefficient tensor ΨΨΨΨ  for reflection from the 

interface between the j-1 and j layers is given by 
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The amplitudes Aj-1 and A’j-1 of the electric fields Ej-1, E’j-1 

at the j-th layer and the amplitudes Aj and A’j of the electric 

fields Ej, E’j at the j+1-th layer are related by the following 

equations; 
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For s-polarization, the Fresnel coefficients are, 
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Then, the relations between the amplitudes Aj-1, A’j-1, Aj, 

and A’j at the interface of the j-1-th and j-th layers are 

expressed as follows, 
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 (49) 

The reflection coefficient is defined as the ratio Ro,1 of the 

reflected electric field to the incident electric field at the 

surface of the material and is given by, 

01,00 ARA' = .              (50) 

The reflection coefficient Rj-1,j of the electric field E’j-1 to 

the electric field Ej-1 at the interface of j-1-th layer and j-th 

layer is, 

1-,11-' jjjj ARA −= ,              (51) 

and the ratio Rj-1,j is related to the ratio Rj,j+1 as follows, 
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Here, from the relation between the Fresnel coefficient for 

reflection and the Fresnel coefficient for refraction, 



 American Journal of Physics and Applications 2016; 4(2): 27-49 32 

 

11,,11,,1 =− −−−− jjjjjjjj ΨΨΦΦ ,           (53) 

1,,1 −− −= jjjj ΨΨ                      (54) 

we can formulate the following relationship 
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It is reasonable to assume that no wave will be reflected 

back from the substrate, so that, 

01, =+NNR                      (56) 

Then, the x-ray reflectivity is simply, 

2

1,0RR =                      (57) 

2.2. Previous Calculations of X-ray Reflectivity When 

Roughness Exists at the Surface and Interface 

When the surface and interface have roughness, the 

Fresnel coefficient for reflection is reduced by the roughness. 

[15-18, 20-23] The effect of the roughness was previously 

put into the calculation based on the theory of Nevot and 

Croce. [2] The effect of such roughness was taken into 

account only through the effect of the changes in density of 

the medium in a vertical direction to the surface and interface. 

With the use of relevant roughness parameters like the 

root-mean-square (rms) roughness σj-1,j of the j-th layer, the 

reduced Fresnel reflection coefficient Ψ’ for s-polarization is 

transformed as shown below, 
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and the x-ray reflectivity is calculated using the following 

equation, 
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Figure 3 shows the reflectivity from a GaAs-covered silicon 

wafer, solid line shows the calculated result in the case of flat 

surface and flat interface, dashed line shows the calculated 

result in the case that the surface has an rms roughness of 4 nm, 

and dotted line shows the equivalent result when the surface 

and interface both have an rms roughness of 4 nm. In the latter 

case, the reflectivity curve (dots) decreases more quickly than 

that in Figure 3. However, the ratio of the oscillation amplitude 

to the value of the reflectivity does not decrease. It seems 

unnatural that the effect of interference does not also decrease 

at a rough surface and interface, because the amount of 

coherent x-rays should reduce due to diffuse scattering at a 

rough surface and interface. 

 

Figure 3. Calculated reflectivity from a GaAs layer with a thickness of 48 

nm on a Si substrate. The solid curve is for a flat surface and a flat interface. 

The dashed curve is for a surface roughness σ1 of 4 nm and a flat interface, 

while the dotted curve is for a surface roughness σ1 of 4 nm and interface 

roughness σ2 of 4 nm. 

In the reflectivity curve (dashed line) for a surface 

roughness of 4 nm and with a flat interface, the ratio of the 

oscillation amplitude to the size of the reflectivity near an 

angle of incidence of 0.36° is much larger than the 

reflectivity of the flat surface in Figure 1. It seems very 

strange that the interference effects would increase so much 

at a rough surface. 

 

Figure 4. Calculated reflectivity from a GaAs layer with a thickness of 48 

nm on a Si substrate. In the calculation, the interface roughness σ2 is 0 nm. 

Three calculated results are shown for a GaAs surface with an rms 

roughness σ1 of 3.5 nm, 4 nm, and 4.5 nm. 

To probe these effects further, we then recalculated the 

reflectivity for surface roughness of 3.5 nm, 4 nm, and 4.5 

nm, and with a flat interface. Those calculated reflectivity 

results are shown in Figure 4. The ratio of the oscillation 

amplitude to the reflectivity near an angle of incidence of 

0.36° in calculated reflectivity is larger in all cases than that 

of the reflectivity in the case of a flat surface in Figure 1.  

For most angles of incidence within this range, the 

reflectivity of the surface with a roughness of 4 nm is near 

the mean value of the reflectivity of surfaces with 

roughnesses of 3.5 nm and 4.5 nm. However, near an angle 

of incidence of 0.36°, the reflectivity of the surface with a 
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roughness of 4 nm is very much attenuated compared to that 

same average. It seems very strange that the reflectivity of 

the average roughness has a value quite different from the 

mean value of the reflectivity of each roughness, because the 

value of the roughness is not the value of the amplitude of a 

rough surface but the standard deviation value of various 

amplitudes of rough surface. 

 

Figure 5. X-ray reflectivity from a silicon wafer covered with a thin (10 nm) 

tungsten film calculated by the theory in use prior to this work. Solid line 

shows the case of a flat surface. Dashed line shows the case of a surface 

with an rms surface roughness of 0.3 nm. 

Figure 5 shows the reflectivity from a tungsten-covered 

silicon wafer calculated by the theory in use prior to this 

work. The ratio of the oscillation amplitude to the value of 

the reflectivity from a surface with a rms surface roughness 

of 0.3 nm (dashed line) does not decrease near an angle of 

incidence of 1.8° but increase. This result is strange and not 

reasonable. 

2.3. Effect of Roughness on X-ray Reflectivity of Multilayer 

Surface 

We now consider the above strange result of the x-ray 

reflectivity which was calculated based on the Parratt 

formalism [1] with the use of the Nevot and Croce approach 

to account for roughness. [2] In that calculation, the x-ray 

reflectivity is derived using the relation of the reflection 

coefficient Rj-1,j and Rj,j+1 as follows, 
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where the reduced Fresnel reflection coefficient Ψ’ that takes 

into account the effect of the roughness is as shown below, 
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However, the relationship between the reflection 

coefficients Rj-1,j and Rj,j+1 was originally derived as the 

following equation, 
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Here, the following conditional relations between the Fresnel coefficient for reflection and refraction are relevant to the 

above equation, 

1'''' 1,,11,,1 =− −−−− jjjjjjjj ΨΨΦΦ ,                                     (63) 

and, 
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then, 
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The Fresnel coefficients for refraction at the rough interface are derived using the Fresnel reflection coefficient Ψ as follows, 
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Therefore, the Fresnel coefficients for refraction at the 

rough interface are necessarily larger than the Fresnel 

coefficient for refraction at the flat interface. The resulting 

increase in the transmission coefficient completely 

overpowers any decrease in the value of the reflection 

coefficient. These coefficients for refraction obviously 

contain a mistake because the penetration of x-rays should 

decrease at a rough interface because of diffuse scattering. 
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We propose that the unnatural results in the previous 

calculation of the x-ray reflectivity originate from the fact 

that diffuse scattering was not considered. In fact equation 

(63) contains the x-ray energy conservation rule at the 

interface as the following identity equation for the Fresnel 

coefficient, 

1
2

,11,,11,,11,,1 =+=− −−−−−−− jjjjjjjjjjjjjj ΨΦΦΨΨΦΦ .  (69) 

Here, we consider the energy flow of the x-ray. In 

electromagnetic radiation, E, H, the energy flow is equal to 

the Poynting vector 
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and ε  and µ are the dielectric and magnetic permeability. 

The Poynting vector is therefore 

2
*

*
*

*

*

*

22

1

4

1

4

1
E

kk
EE

k
EE

k
E

k
EE

k
Ep

+=







⋅+⋅=





















 ××+






 ××=
ϖµµ

ε
µ
ε

kkkk
.          (72) 

Then, the Poynting vector that crosses the interface is 
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The amplitudes Aj-1 and A’j-1 of the electric fields Ej-1, E’j-1 at the j-th layer and amplitudes Aj and A’j of the electric fields Ej, 

E’j at the j+1-th layer are related by the following equations; 
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When 

11,,11,,1 =− −−−− jjjjjjjj ΨΨΦΦ , 1,,1 −− −= jjjj ΨΨ ,                             (75) 

we can describe the above equation as, 
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From the determinant of the refraction matrix, 
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then 
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i.e., the x-ray energy flow is conserved at the interface. When 

the Fresnel coefficients at the rough interface obeys the 

following equations, 

1'''' 1,,11,,1 =− −−−− jjjjjjjj ΨΨΦΦ , 1,,1 '' −− −= jjjj ΨΨ ,    (82) 

these coefficients fulfil x-ray energy flow conservation at the 

interface, and so diffuse scattering was not considered at the 

rough interface. 

This conservation expression should not apply any longer 

when the Fresnel reflection coefficient is replaced by the 

reduced coefficient Ψ’ when there is roughening at the 

interface. Therefore, calculating the reflectivity using this 

reduced Fresnel reflection coefficient Ψ’ in equation (61) 

will incorrectly increase the Fresnel transmission coefficient 

Φ’, i.e., Φ Φ'< . 

The penetration of x-rays should decrease at a rough 

interface because of diffuse scattering. Therefore, the identity 

equation for the Fresnel coefficients become, 
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11'''''''
22

,11,,11,,11,,1 <−=+=− −−−−−−− DΨΦΦΨΨΦΦ jjjjjjjjjjjjjj .                     (83) 

where D
2
 is a decrease due to diffuse scattering. Then, in 

the calculation of x-ray reflectivity when there is 

roughening at the surface or the interface, the Fresnel 

transmission coefficient Φ’ should be used for the reduced 

coefficient. Several theories exist to describe the influence 

of roughness on x-ray scattering. [15-18, 20-23] When the 

surface and interface are both rough, the Fresnel 

coefficient for refraction has been derived in several 

theories. [15-18, 20-23] 

 

2.4. The Refractive Fresnel Coefficient of a Rough 

Interface Used in Previous Reflectivity Calculations 

Initially, we consider the reduced Fresnel coefficient, 

which is known as the Croce-Nevot factor. When the z 

position of the interface of 0-th layer and 1-th layer zo,1 

fluctuates vertically as a function of the lateral position 

because of the interface roughness, the relations between the 

amplitudes A0, A’0, A1, and A’1 are derived by the use of the 

Fresnel coefficient tensor Φ Φ Φ Φ  for refraction and the Fresnel 

coefficient tensor Ψ Ψ Ψ Ψ  for reflection as follows 
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then 
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We take the average value of the matrix over the whole area coherently illuminated by the incident x-ray beam. This leads to 
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For Gaussian statistics of standard deviation value, 
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Therefore 
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Then the Fresnel reflection coefficients Ψ’ are reduced as follows 
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However, the Fresnel refraction coefficients Φ’ increase as follows 
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The modified Fresnel refraction coefficients Φ’0,1 

corresponds to equation (10.29) in p.200 of Holy[14], 

equation (8.24) in p.242 of Daillant [15] and equation (1.117) 

in p.29 of Sakurai [20]. However, no one obtained the 

expression corresponding to Φ’1,0. It is peculiar that Φ’1,0 and 

Φ’0,1 are asymmetrical. It comes to cause a different result if 

1-th layer and 0-th layers are replaced and calculated. 

Therefore this derived Φ’ should not be used to calculate the 

reflectivity from rough surfaces and interfaces. 

The derived Fresnel refraction coefficients Φ’ increase. 

This increase in the transmission coefficient completely 

overpowers any decrease in the value of the reflection 

coefficient as the following, 

　1'''' 0,11,00,11,0 =− ΨΨΦΦ                      (102) 

( ) 0)2exp(1'' 2

1,,1,1,
2

1,,11,,1 >−−=− −−−−−−− jjzjzjjjjjjjjjjj σkkΨΦΦΦΦ ,                (103) 

Moreover, if the deformation modulus of Φ’1,0 is assumed 

to be Φ’0,1, the left side of equation (102) exceeds unity, and 

therefore equation (100) is obviously wrong. 

In Nevot and Croce’s treatment of the Parratt formalism 

for the reflectivity calculation including surface and interface 

roughness, [2] the relations of the Fresnel coefficients 

between reflection and transmission as Equations (63), (82) 

and (102) were not shown. Furthermore, the modification of 

the Fresnel coefficients according to Nevot and Croce has 

been used for only surface and interface reflection. However, 

the modification of the transmission coefficients has an 

important role when the roughness of the surface or interface 

is high, and the effect of diffuse scattering due to that 

roughness should not be ignored, as shown in equation (83). 

The error in Nevot and Croce’s treatment [2] originates in the 

fact that the modified Fresnel coefficients was calculated 

based on the Parratt formalism which contains the x-ray 

energy conservation rule at the surface and interface. In the 

discussion on pp.767-768 of Nevot and Croce’s [2], their 

Fresnel coefficients at the rough interface fulfil x-ray energy 

flow conservation at the interface, and so diffuse scattering 

was ignored at the rough interface. In their discussion, the 

transmission coefficients tR and tI were replaced 

approximately by the reflection coefficients rR and rI by the 

ignoring diffuse scattering term, and according to the 

principle of conservation energy. The reflection coefficient rR 

at the rough interface should be expressed as a function of 

the reflection coefficient rI and transmission coefficient tI. 

However, the reflection coefficient rR at the rough interface 

was expressed only by the reflection coefficient rI, while the 

transmission coefficient tI had already been replaced by the 

reflection coefficient rI by the ignoring diffuse scattering 

term in the relationship based on the principle of the 

conservation of energy. Thus, the reflection coefficient rR at 
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the rough interface as equation (11) of p.771 in Nevot and 

Croce [2] had been expressed with the reflection coefficient 

rI only, and this results in the equation was also sure to 

include the conservation of energy. 

The resulting increase in the transmission coefficient 

completely overpowers any decrease in the value of the 

reflection coefficient at the rough interface. Thus, because 

Nevot and Croce’s treatment of the Parratt formalism 

contains a fundamental mistake regardless of the size of the 

roughness, results using this approach cannot be correct. The 

size of the modification of the transmission coefficient is 

one-order smaller than that of reflection coefficient, but, the 

size of transmission coefficient is one-order larger than the 

reflection coefficient at angles larger than critical angle. Thus, 

the errors of transmittance without the modification cannot 

be ignored.  

Of course, there are cases where that Nevot and Croce’s 

treatment can be applied. However, their method can be 

applied only to the case where there is no density distribution 

change at all in the direction parallel to the surface on the 

surface field side, and only when the scattering vector is 

normal to the surface. A typical example of surface medium 

to which this model can be applied is one where only the 

density distribution change in the vertical direction to the 

surface exists, as caused by diffusion etc. In such a special 

case, Nevot and Croce’s treatment can be applied without 

any problem. However, because a general multilayer film 

always has structure in a direction parallel to the surface field 

side, Nevot and Croce’s expression fails even when the 

roughness is extremely small. The use of only Fresnel 

reflection coefficients by Nevot and Croce is a fundamental 

mistake that does not depend on the size of the roughness. 

2.5. The Refractive Fresnel Coefficient of a Rough Interface 

Used in New Reflectivity Calculations 

To proceed, we therefore reconsider the derivation of the 

average value of the matrix as the same derivation of Eqs. (84), 

(85) when we consider the reduced Fresnel coefficient, which 

is known as the Croce-Nevot factor. 

When the z position of the interface of the 0-th layer and 

1-th layer zo,1 fluctuates vertically as a function of the lateral 

position because of the interface roughness, the relations 

between the electric fields are derived by the use of the 

Fresnel coefficient tensor Φ for refraction and the Fresnel 

coefficient tensor Ψ for reflection as follows 
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where 
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]exp[(0))( 1,0,111,01 zikz zEE = , ]exp[)(z'(0)' 1,0,10,111 zik zEE = ,                        (105) 

then 
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]exp[(0)']exp[(0)]exp[)0( 1,0,110,11,0,001,01,0,00 zikzikzik zzz −+=− EΦEΨE' .                    (106) 

Then the amplitudes A0, A’0, A1, and A’1 are derived as follows 
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)exp()exp()exp( 1,0,110,11,0,001,01,0,00 zikzikzik zzz −+=− A'ΦAΨA' .                       (107) 

Matrix description of the relations is as follows, 
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then 
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We take the average value of this matrix. 
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For Gaussian statistics of standard deviation value σ, 
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then the Fresnel reflection coefficients Ψ’ are found as follows 
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and the Fresnel refraction coefficients Φ’ are also produced similarly 
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The modified Fresnel refraction coefficients Φ’0,1 and Φ’1,0 

of (114) corresponds to equation (1.115) on p.29 of 

Sakurai[20]. The Fresnel refraction coefficients Φ’ derived by 

this method are reduced, and could be used to calculate the 

reflectivity from rough surface and interfaces. Accordingly, we 

calculated the reflectivity using these derived Fresnel 

refraction coefficients. However, the numerical results of this 

calculation did not agree with the experimental results when 

the angle of incidence smaller than the total reflection critical 

angle. In trying to account for the reason for this disagreement, 

it should be noticed that our present approach to constructing 

the reduced reflection coefficient Ψ’0,1 term does not include 

any reference to the refractive index of the medium. Further, 

x-rays that penetrate an interface reflect from the interface 

below, and penetrate the former interface again without fail. 

Therefore, the refraction coefficient Φ’0,1 and Φ’1,0 should not 

be separately treated. 

2.6. A New Formula for the Reflectivity for Rough 

Multilayer Surface 

Once again we consider process by which we derive the 

average value of the matrix. When the z position of the 

interface of 0-th layer and 1-th layer zo,1 fluctuates vertically 

as a function of the lateral position because of the interface 

roughness, the relations between the amplitudes A0, A’0, A1, 

and A’1 are shown by the use of the Fresnel coefficient tensor 

Φ Φ Φ Φ  for refraction and the Fresnel coefficient tensor Ψ Ψ Ψ Ψ  for 

reflection as follows 
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Again, we take the average value of this matrix, 
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For Gaussian statistics of standard deviation value σ, the Fresnel reflection coefficient Ψ’ are as follows 
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Because x-rays that penetrate an interface reflect from the interface below, and penetrate former interface again without fail, 

it is necessary to treat the refraction coefficients Φ’0,1 and Φ’1,0 collectively. 
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Then the Fresnel coefficients Ψ’ and Φ’ are reduced as follows 
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Then 
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and 
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The Fresnel refraction coefficients Φ’ derived by this method are reduced, and can be used to calculate the reflectivity from 

rough surface and interface. Therefore, we calculate the reflectivity using these newly-derived Fresnel coefficients in an 

accurate reflectivity equation of Rj-1,j and Rj,j+1 as follows, 
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Figure 6. New calculated reflectivities from a GaAs layer with a thickness of 

48 nm on a Si substrate. The line is for a flat surface and a flat interface. 

The dashed curve is for a surface roughness σ1 of 4 nm and with a flat 

interface, while the dotted curve is for a surface roughness σ1 of 4 nm and 

interface roughness σ2 of 4 nm. 

Based on the above considerations, we again calculated the 

x-ray reflectivity for the GaAs/Si system, but now considered 

the effect of attenuation in the refracted x-rays by diffuse 

scattering resulting from surface roughness. The results are 

shown as the dashed line in Figure 6 for a surface roughness 

of 4 nm and flat interface, and the dotted line shows the 

calculated result in the case that the surface and interface 

both have a rms roughness of 4 nm. 

The ratio of the oscillation amplitude to the size of the 

reflectivity in the reflectivity curve (dot) in Figure 6 is 

smaller than that of the reflectivity curve Figure 3. In the 

reflectivity curve (dashed line), the very large amplitude of 

the oscillation near an angle of incidence of 0.36° in Figure 3 

has disappeared in Figure 6. These results are now physically 

reasonable. All the strange results seen in Figure 3 have 

disappeared in Figure 6. It seems natural that the effect of 

interference does decrease at a rough surface and interface, 

because the amount of coherent x-rays should reduce due to 

diffuse scattering. 

Figure 7 shows the new calculated reflectivity for surface 

roughnesses of 3.5 nm, 4 nm, and 4.5 nm, and with a flat 

interface. At all angles of incidence, the reflectivity of the 

surface roughness of 4 nm is near the mean value of the 

reflectivity of the surface roughness of 3.5 nm and the 

reflectivity of the surface roughness of 4.5 nm. This result is 

physically reasonable, because the value of the roughness is 

the standard deviation value of various amplitudes of rough 

surface. However, it was difficult to match the numerical 

result of x-ray reflectivity to the results of TEM observation.  

 

Figure 7. New calculated reflectivity from a GaAs layer with a thickness of 

48 nm on a Si substrate. In the calculation, the interface roughness σ2 is 0 

nm. Three calculated results for a GaAs surface with roughness σ1 of 3.5 nm, 

4 nm, and 4.5 nm are shown. 

 

Figure 8. X-ray reflectivity from a silicon wafer covered with a thin (10 nm) 

tungsten film calculated by the new calculation that considered diffuse 

scattering. Solid line shows the case of a flat surface. Dashed line shows the 

case of a surface with a rms surface roughness of 0.3 nm. 

Next, we again calculated the X-ray reflectivity for the 

W/Si system, but now considered the effect of attenuation in 

the refracted X rays by diffuse scattering resulting from 

surface roughness. However, the reduced refraction 

coefficient in prior work varies. [14-18, 20-23] Then about the 

reduced refraction coefficient, reduction as same as reflection 

coefficient was applied now. Figure 8 shows the calculated 

results with the use of improved X-ray reflectivity formalism. 

In the reflectivity curve from a surface with an rms surface 

roughness of 0.3 nm (dashed line), the amplitude of the 
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oscillation in Figure 5 has reduced in Figure 8. These results 

are now physically reasonable. The strange results seen in 

Figure 5 have disappeared in Figure 8. It seems natural that the 

effect of interference does decrease at a rough surface and 

interface, because the amount of coherent X rays should 

reduce due to diffuse scattering. 

3. TEM Observation and X-ray 

Reflectivity Measurement for Surfaces 

and Interfaces of Multilayered Thin 

Film Materials 

The surface and interfacial roughness of the same sample 

of multilayered thin film material was measured by 

transmission electron microscopy (TEM) and compared them 

with those from x-ray reflectivity measurements. The surface 

sample for examination was prepared as follows; a GaAs 

layer was grown on Si(110) by molecular beam epitaxy 

(MBE). From TEM observations, the thickness of the GaAs 

layer was 48 nm, the root-mean-square (rms) roughness of 

the GaAs surface was about 2.8 nm, the rms roughness of the 

interface between GaAs and Si was about 0.7 nm. Figure 9 

shows a cross section image of this GaAs / Si(110) sample 

observed by TEM. 

X-ray reflectivity measurements were performed using a 

Cu-Kα x-ray beam from an 18 kW rotating-anode source. 

Figure 10 shows the measured reflectivity of x-rays (wave 

length 0.154 nm) from a GaAs layer with a thickness of 48 

nm on a silicon wafer. The decrease in signal for angles 

larger than the total reflection critical angle shows 

oscillations. These oscillations are caused by interference 

between x-rays that reflect from the surface of GaAs layer 

and those that reflect from the interface of the GaAs layer 

and Si substrate. The characteristics of these oscillations 

reflect the surface roughness and the interface roughness. The 

angular resolution in the measurement was 0.002 degree. 

This resolution is adequately smaller than oscillation period 

(about 0.04°) of XRR. Then we compared the measurement 

data with calculation without fitting correction. 

 

Figure 9. Cross section image of GaAs / Si(110) by TEM observation. 

At the first, we simulated the XRR data by conventional 

XRR formalism shown as, 
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Figure 11 shows the result (dots) of a calculation based on 

these expressions of the reflectivity of x-rays from a GaAs 

layer with a thickness of 48 nm on Si substrate. The rms 

roughness of the interface of GaAs and Si was set to 0.7 nm, 

the value derived from the TEM observations. The rms 

roughness of the GaAs surface was set to 2.8 nm, the value 

derived from the AFM measurements. The agreement of the 

calculated and experimental results in Figure 2 is not good. 

 

Figure 10. Measured x-ray reflectivity from a silicon wafer covered with a 

thin (48 nm) GaAs layer. 

 
Figure 11. Calculated (dots) and measured (line) reflectivity from a GaAs 

layer with a thickness of 48 nm on a Si substrate. The surface roughness σ1 

is 2.8 nm and the interfacial roughness σ2 is 0.7 nm. 

The calculated result suggests the following: if the value of 

the surface roughness and the interfacial roughness in the 

calculation would be made larger, the calculated result will 

more closely approach the experimental result. In the TEM 

observation and AFM measurements, one half of the peak to 

peak value of the interface roughness equates to 1 nm, and 

that of the GaAs surface is 4 nm. We then recalculated the 

reflectivity values of this order for the surface roughness and 

the interface roughness in the calculation. Three calculated 
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results for a roughness of GaAs surface of 3.5 nm, 4 nm, and 

4.5 nm, with an interface roughness of 1 nm are shown in 

Figure 12. 

Although the calculated results did more closely approach 

those from experiment, they still showed poor agreement. 

The ratio of the oscillation amplitude to the value of the 

reflectivity near an angle of incidence of 0.36° in the 

calculated reflectivity for the GaAs surface of 4 nm 

roughness in Figure 12 is larger than that of the reflectivity 

for a small roughness of 2.8 nm in Figure 11, i. e., near an 

angle of incidence of 0.36° interference effects appear to 

increase the reflectivity in the case of large roughness. It 

seems very strange that interference effects would operate in 

this way. 

 

Figure 12. Calculated (dotted, dashed and thin lines) and measured (thick 

line) reflectivity from a GaAs layer with a thickness of 48 nm on a Si 

substrate. In the calculation, the interface roughness σ2 is 1.0 nm. Three 

calculated results with the roughness σ1 of GaAs surface set at 3.5 nm, 4 nm, 

and 4.5 nm, are shown. 

This disagreement was mainly caused by the fact that the 

diffuse scattering at the rough interface was not correctly 

taken into account by Nevot and Croce [2]. For reproducing 

the result of measurement XRR, the calculated interfacial 

roughness σ2 should not be 0.7 nm in conventional XRR 

formalism of Eq. 58. The result of interfacial roughness by 

the conventional XRR formulae showed large difference with 

the TEM result, and derived wrong structure of surface. 

Next, we show applying of new improved formalism for 

this result of XRR measurement with a TEM observation. 

Then, in the calculation of XRR when there is roughening at 

the surface or the interface, the Fresnel transmission 

coefficient Φ’j-1, j should be used for the reduced coefficient. 

Although formula for Ψj-1, j is well known  
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an accurate analytical formula for Φj-1, j including the effect 

of the interface roughness is not available. Several theories 

exist to describe the influence of roughness on X-ray 

scattering, and the Fresnel coefficient for transmission has 

been derived in several theories. [14-18, 20-23] There are 

several approximations proposed so far and all these results 

can be written by including any parameters depend on the 

proposed approximations as 
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where parameters C1, C2 depend on the proposed 

approximation. [14-18, 20-23] With the use of the reduced 

Fresnel reflection coefficient Ψ' j-1, j of Eq. (3) and the reduced 

Fresnel transmission coefficientΦ’j-1, j of Eq. (10), new 

accurate reflectivity R from a multilayer consisting of N layers 

with rough surface and interfaces is shown as 
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In the previous analysis, the reduction of transmission 

coefficient has not be examined by the other experiment. 

Then in this study, we tried to determine the parameters C1, C2 

in Eq. (11) experimentally by comparing the measurements of 

TEM observation results and XRR. The XRR from a GaAs 

layer with a thickness of 48 nm on Si substrate, where surface 

roughness σs was set to 5.5 nm and interface roughness σi was 

set to 0.7 nm, was calculated with various C1 and C2. After 

choosing the parameters C1, C2 so that the calculation result of 

XRR accorded with the experimental result in this GaAs layer 

structure, C1 = 0 and C2 = 0.2 were provided. In Fig. 13, the 

dashed line shows the calculation result of XRR. The 

calculation results reproduce the experimental results almost 

well. As such, we could examine the physically reasonable 

reduction of transmission coefficient. 

In the previous analysis, when it was supposed that σ1 was 

4.3 nm and σ2 was 0.7 nm in this XRR measurement data [37], 

different parameters C1 = 0.5 and C2 = 0.5 were provided 

although the agreement of the calculation result and the 

experimental result was not more good than this time result. 

This suggests that the experimental XRR result can be 

reproduced almost well if appropriate parameters are chosen 

for different structure, like as even using conventional XRR 

formalism. Now we have got the parameters C1 = 0 and C2 = 

0.2, but do not get physical grounds of the value of the 

parameters. It is thought that the value of the parameter C1, C2 

depends on the structure of a parallel direction on the surface 

in the surface roughness and the interface roughness. 

Therefore, the investigation about many samples will be 

necessary in future. 

The result of interfacial roughness by using the 

conventional XRR formulae showed large difference with the 

TEM result, and derived wrong structure of surface. While, 

the result by new improved formalism reproduce the TEM 

result, but need appropriate parameters in transmission 

coefficient. It shows that new improved XRR formalism 

derives more accurate analysis of the XRR from a multilayer 
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surface, but the reduced Fresnel coefficients with physical 

grounds in the reflectivity equation are need in further 

research and we continue to discuss the refining this theory in 

next section. 

 

Figure 13. Solid line shows measured XRR from a GaAs layer with a 

thickness of 48 nm on a Si substrate. Dashed line shows calculated 

reflectivity by improved formalism with the parameters C1 = 0, C2 = 0.2 for 

reproducing measurement XRR when σ1 is 5.5 nm and σ2 is 0.7 nm. 

4. Surface and Interface Roughness 

Estimations by X-ray Reflectivity with 

AFM Observation and RBS 

Measurements 

For deriving more accurate formalism of x-ray reflectivity, 

combination of XRR with other analytical techniques could be 

useful. We tried to compare the measurements of the surface 

roughness of the same sample by x-ray reflectivity (XRR) 

with atomic force microscopy (AFM) and high-resolution 

Rutherford backscattering spectroscopy (HRBS). XRR is 

generally less sensitive to the interface roughness σi compared 

with the surface roughness σs. AFM is widely used to measure 

the surface structures, and HRBS is widely used to measure 

the interface structures [42]. Although HRBS cannot directly 

measure the interface roughness it can measure the film 

thickness and its dispersion σt. With the help of the HRBS 

measurement, XRR can provide more accurate estimate of the 

interface roughness σi. 

4.1. Sample Preparation 

Two samples of silicon wafers having a thin SiO2 layer were 

prepared by the following methods. The sample A was prepared 

by thermal oxidizing of a Si(001) wafer. The thickness of the 

prepared SiO2 layer is about 5 nm. The other sample B was 

prepared by vacuum deposition of an additional SiO2 layer of 

about 2 nm on the sample A at room temperature. The roughness 

of the SiO2/Si interface is expected to be the same as the sample 

A although the surface roughness should be increased after the 

deposition. The surface and interface roughnesses of these 

samples were measured by XRR, AFM and HRBS. 

4.2. AFM Observation 

The surfaces of sample A and sample B were observed by 

atomic force microscopy (AFM). Figure 14 show the AFM 

images and the roughness profiles of sample A and sample B, 

respectively. The r.m.s. roughness σs at the area of 1 × 1 µm
2
 of 

the SiO2 surfaces of sample A and sample B in Figures 14 (a) - 

(b) were about 0.17 nm both, and those at the area of 10 × 10 

µm
2
 in Figures 14 (c) - (d) were about 0.24 nm both. AFM 

observation shows that the surface roughness was hardly a 

change before and after vapor deposition of the SiO2. 

 

Fig. 14(a). The AFM images and the roughness profiles of sample A (in the 

area of 1µm square). 

 

Fig. 14(b). The AFM images and the roughness profiles of sample B (in the 

area of 1µm square). 

 

Fig. 14(c). The AFM images and the roughness profiles of sample A (in the 

area of 10 µm square). 
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Fig. 14(d). The AFM images and the roughness profiles of sample B (in the 

area of 10 µm square). 

4.3. HRBS Measurement 

The details of the HRBS measurement were described 

elsewhere [43, 44]. Briefly, a beam of 400-keV He
+
 ions 

from a Cockcroft Walton type accelerator was collimated to 2 

× 2 mm
2
 and to a divergence angle of less than 0.1° by a 

series of 4-jaw slit systems. The well-collimated beam was 

transported to an ultra-high-vacuum (UHV) scattering 

chamber (base pressure 1 × 10
−8

 Pa) via a differential 

pumping system and impinged on a target mounted on a 

5-axis precision goniometer. The typical beam current was 

about 30 nA. The He
+
 ions scattered from the target at a 

scattering angle θ ≈ 50º were energy analyzed by a 90º sector 

type magnetic spectrometer and detected by a 

one-dimensional position sensitive detector (1D-PSD) of 100 

mm length (the energy window was 25% of the central 

energy). The energy resolution of the spectrometer was ~ 

0.1%. The surface of the sample was cleaned using the 

ultraviolet/ozone cleaning method before the HRBS 

measurement. 

Figure 15 shows the HRBS spectra observed at a scattering 

angle of 50.3º, when 400 keV He
+
 ions were incident on the 

sample A. In addition to a random spectrum (triangles), the 

[111] channeling spectrum (circles) was also measured to 

observe the surface and interface structures more precisely. 

The angle of incidence of He
+
 ions was 54.9° and 50.4° (exit 

angles were θe = 74.8° and 79.3°) for the channeling and the 

random spectra, respectively. In the channeling spectrum, there 

are two trapezoidal structures at ~ 355 keV and ~ 330 keV. 

These structures correspond to the silicon and oxygen signals 

in the SiO2 layer. The width of the oxygen signal is 9.29 keV, 

which corresponds to a SiO2 layer of 5.2 nm. The surface and 

interface edges (seen at ~ 333 and 325 keV, respectively) of the 

oxygen signal were fitted by error functions as is shown by 

solid curves. The standard deviation, Ωs, of the error function 

for the surface edge was determined to be 0.47 keV, which is 

ascribed to the instrumental energy resolution including the 

energy spread of the incident beam. On the other hand, the 

standard deviation, Ωi, for the interface edge was 1.62 keV, 

which includes effects of the energy loss straggling and the 

non-uniformity of the SiO2 layer. 

 

Fig. 15. HRBS spectra of sample A. The [111] channeling and the random 

spectra are shown by circles and triangles, respectively. 

 

Fig. 16. HRBS spectra of sample B. The [111] channeling and the random 

spectra are shown by circles and triangles, respectively. 

Figure 16 shows the [111] channeling and random spectra 

of the sample B. The angles of incidence of He
+
 ions were 

54.4° and 49.9° (exit angles were θe = 75.3° and 79.8°) for 

the [111] channeling and the random spectra, respectively. 

The width of the oxygen signal in the channeling spectrum 

was 12.6 keV, which corresponds to a SiO2 layer of 7.4 nm. 

The leading and trailing edges of the oxygen signal in the 

channeling spectrum were fitted by error functions as is 

shown by solid curves. The standard deviation of the surface 

edge was determined to be 0.47 keV, showing a good 

agreement with the sample A. The standard deviation of the 

interface edge was determined to be 2.01 keV. This is larger 

than that of the sample A, indicating that the non-uniformity 

of the SiO2 layer is increased by the deposition of SiO2.  

The observed Ωi is affected by the instrumental energy 

resolution, which is given by the observed Ωs, and also 

affected by the energy loss straggling. The effect of the 

energy loss straggling, Ωstr, was calculated using the 

empirical formula given by Yang et al [45]. The calculated 

results are 1.05 and 1.25 keV for the sample A and B, 

respectively. The non-uniformity of the SiO2 layer is 

estimated by . The obtained results are 

Ωt = 1.14 keV and 1.5 keV for sample A and B, respectively. 

Using the stopping power of SiO2, the dispersion σt of the 

SiO2 layer thickness was derived as 0.67 nm and 0.88 nm for 
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the sample A and B, respectively. The difference between the 

sample A and B is attributed to the increase of the surface 

roughness due to the deposition of 2-nm SiO2 layer.  

4.4.... X-ray Reflectivity Measurement 

X-ray reflectivity measurements were performed using a 

Cu-Kα x-ray beam from a 3 kW rotating-anode source. The 

beam size of the x-ray was about 2 mm (perpendicular to the 

reflection plane) × 0.05 mm (parallel to the reflection plane). 

The results of the x-ray reflectivity measured for the sample 

A and B are shown as a function of the angle of incidence, θi, 

by dashed curves in Figs. 17 and 18, respectively. At θi 

smaller than the critical angle for total reflection (0.22º), the 

reflectivity is almost unity. With increasing θi over the critical 

angle, the reflectivity decreases and oscillatory structures are 

seen. These oscillations originate from the interference of 

x-rays reflected from the surface and the interface of the 

SiO2/Si. By analysing the θi–dependence of the reflectivity, 

the surface roughness, interface roughness and the thickness 

of the SiO2 layer can be estimated.  

Now, we show applying of the following new improved 

formalism for this result of XRR measurement.  
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where parameters C1, C2 depend on the proposed 

approximation. In the present work, we choose C1 = 2 and C2 

= 0, which, we believe, is the most appropriate 

approximation.  

 

Fig. 17(a). X-ray reflectivity from the sample A. The experimental result 

(thick dashed curve) is compared with the calculated ones for σi = 0.42 nm 

and various σs (thin curves). 

 

Fig. 17(b). X-ray reflectivity from the sample A. The experimental result (thick 

dashed curve) is compared with the calculated ones for σs = 0.52 nm and 

various σi (thin curves). 

 

Fig. 18(a). X-ray reflectivity from the sample B. The experimental result 

(thick dashed curve) is compared with the calculated ones for σs = 0.54 nm 

and various σi (thin curves).  

 

Fig. 18(b). X-ray reflectivity from the sample B. The experimental result 

(thick dashed curve) is compared with the calculated ones for σi = 0.42 nm 

and various σs (thin curves).  

As was mentioned above, the origin of the oscillation is 

the interference between the x-rays reflected from the surface 

and the interface. Thus the thickness of the SiO2 layer can be 

determined from the observed period of the oscillation. The 
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detailed procedure to derive the layer thickness from the 

observed period of the oscillation can be found in literatures 

[1]. The obtained thickness of SiO2 of sample A is 5.3 nm, 

which is in good agreement with the HRBS result (5.2 nm). 

Using Eqs. (131) – (133) and the above determined 

thickness of SiO2 (5.3 nm), the reflectivity was calculated 

with various values of σs and σi, where the sample was 

treated as three layers (vacuum/SiO2/Si). The calculated 

results are compared with the experimental one in Figs. 17a 

and 17b. It is seen that the overall θi–dependence of the 

reflectivity is sensitive to σs (see Fig. 17a, where the results 

for [σs, σi] = [0.26 nm, 0.42 nm], [0.52 nm, 0.42 nm], [1.04 

nm, 0.42 nm] are shown). When σs is increased the calculated 

reflectivity decreases more rapidly with θi. This indicates that 

the surface roughness can be accurately determined by 

comparing the θi–dependence of the calculated results with 

the experimental one. The best fit was obtained when the 

surface roughness is 0.52 nm in the present case.  

On the other hand, accurate determination of σi is rather 

difficult by XRR because the calculated θi–dependence of the 

reflectivity hardly depends on σi (see Fig. 17b, where the 

results for [σs, σi] = [0.52 nm, 0 nm], [0.52 nm, 0.42 nm], 

[0.52 nm, 0.84 nm] are shown). In order to estimate σi, the 

result of HRBS (σt = 0. 67 nm) can be used. Assuming that 

there is no correlation between the surface and interface 

roughnesses, the interface roughness σi can be given by (σt
2
 - 

σs
2
)

1/2
 = 0.42 nm. The calculated reflectivity for σs = 0.52 nm, 

σi = 0.42 nm is shown by a solid line in Figs. 17a and 17b. 

The agreement with the experimental result is reasonably 

good.  

A similar procedure was applied to analyse the XRR data 

of sample B. From the period of the oscillation, the thickness 

of the SiO2 layer was determined to be 7.8 nm, which is 

again in good agreement with the HRBS result (7.4 nm). 

Using Eqs. (131) – (133), the reflectivity was calculated with 

various values of σs and σi. Some examples of the calculated 

results are compared with the experimental one in Fig. 18a. 

Similarly to the sample A, the calculated reflectivity hardly 

changes with σi and the determination of σi is difficult. 

Because the deposition of the additional SiO2 layer of 2 nm 

does not change the interface roughness we used the interface 

roughness determined for the sample A (σi = 0.42 nm) in the 

estimation of the surface roughness of the sample B. Using 

these values (σi = 0.42 nm and the thickness 7.8 nm) the 

reflectivity was calculated with various values of σs. Figure 

18b shows the comparison between the calculated and 

experimental results. Differently from the sample A, none of 

the calculated results can reproduce the experimental one. At 

θi > 1.0° the calculated result for σs = 0.54 nm agrees with the 

experimental one while the calculated result deviates from 

the experimental one at smaller θi. On the other hand, the 

calculated result for σs = 1.08 nm agrees with the 

experimental one at smaller θi but it deviates seriously with 

increasing θi. A possible explanation of the present 

discrepancy may be that the effective surface roughness 

measured by XRR depends on the size of the effective 

probing area on the surface, which is proportional to 1/sinθi. 

In general, the surface roughness increases with increasing 

size of the probing area. As a result, the effective roughness 

observed at smaller θi is larger than that at larger θi in 

accordance with the present result. Such a θi-dependence of 

the effective roughness in XRR has been usually neglected. 

The present result, however, indicates that it should be taken 

into account in the cases like the sample B, of which the 

effective roughness depends on the size of the probing area. 

In passing we note that the probing area of the present HRBS 

measurement was 3.5 × 2 mm
2
. The surface roughness of 

sample B in this probing area can be estimated to be 0.77 nm 

(= [σt
2
 - σi

2
]

1/2
) using σt = 0.88 nm, which was determined by 

HRBS, and the interface roughness σi = 0.42 nm. The 

calculated reflectivity with thus determined σs = 0.77 nm 

agrees with the observed XRR result around θi = 0.8° (see 

Fig. 18b), where the probing area is 3.6 (= 0.05/sin(0.8°)) × 2 

mm
2
. This indicates that both HRBS and XRR give the same 

surface roughness if the probing areas are same.  

The present result shows that the surface roughness of the 

sample B depends on the size of the probing area while the 

sample A does not. The difference between the samples may 

be ascribed to the difference in the preparation method. The 

sample A was prepared by thermal oxidizing of a Si(001) 

wafer, which generally results in a very flat surface. The 

sample B, on the other hand, was prepared by vacuum 

deposition of an additional SiO2 layer on the sample A.  

From AFM observations, the surface roughness σs of the 

SiO2 surfaces of sample A and sample B were showed as 

0.17 nm at the area of 1 × 1 µm
2
 and 0.24 nm at the area of 

10 × 10 µm
2
. Both of these results are different with the XRR 

results. The surface roughness estimated from AFM 

observation show small value with those of x-ray reflectivity 

and smaller at the area of 1 × 1 µm
2
 than at the area of 10 × 

10 µm
2
. This suggests that the value of roughness measured 

by the measurement range may be different in the x-ray 

reflectivity measurements. And in the x-ray reflectivity 

measurement, the measurement range changes by an 

incidence angle, and changes very much at small glancing 

incidence angle. This suggests that size of the different 

roughness depending on an incidence angle in a calculation 

of the x-rays reflectivity should be assume. This is the new 

thought that nobody considered in x-ray reflectivity 

calculation previously. 

5. Analysis of Surface Roughness 

Correlation Function by X-ray 

Reflectivity 

In this section, we show the improved formulae of XRR 

which derives more accurate surface and interface roughness 

with depending on the size of coherent X-rays probing area. 

We show again the Fresnel coefficientΨj-1, j for reflection 

and the Fresnel coefficient Φj-1, j for refraction as, 
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where Qj-1, j and Pj-1, j are the reduce factor due to the 

roughness, and used the following approximations formula 

as, 
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where parameters C1, C2 depend on the proposed 

approximation as above. 

Now we consider about the reduce factor due to the 

roughness again. Previous work [17-23], X-ray scattering 

from rough surface is studied, and the effect of the roughness 

is explained as, 
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where ( ) ( ){ }2

( , ) ' , ' ', 'g x y z x x y y z x y= + + −  is the square 

average of the height of the interface at (x’+x,y’+y) separated 

by (x,y) from (x’,y’).In the reflected X-ray and the refracted 

X-ray, qx=qy=0.The scattering plane, x-z plane, is considered 

in the analysis on X-ray reflectivity. Then the reduce factor 

Qj-1, j and Pj-1, j are shown as, 
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where lx is the length of the probing area of coherent X-ray. 

The square average g(x) of the height of the interfaceis 

related to the roughness correlation function C(x) as, 

2( ) 2 2 ( )= −g x C xσ              (142) 

Following Shinha et al. (Sinha et al., 1988), the roughness 

correlation function C(x) of a fractal surface has the form as, 
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where Hurst parameter H (0 1)H< ≤  is connected to its 

fractal dimension, and the lateral correlation length ξ acts as a 

cutoff length for the fractal behavior of the surface.  

Then the reduce factor shows as the following; 
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when ξ << Lx, g(x) becomes 2σ
2
, and the reduce factor Qj-1, j 

becomes Eq.(136). Now we assumed that the roughness 

include the part without lateral correlation, i.e., σ’ when ξ = 0. 

Then the square average g(x) of the height of the interface 

becomes; 
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Then the reduce factor shows as the following; 
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And we assume more approximation on integral of double 

exponential function that replace a value of the integral 

calculus with the value of the integrand at x=1. Then the 

reduce factor shows as the following; 
























































−−−=

−
−−−−

H

jj

x

jjjjzjzjjj

L
kkQ

2

,1

2

,1

2

,1,,1,1 exp"2exp
ξ

σσ ,   (148) 
























































−−−−=

−
−−−−

H

jj

x

jjjjzjzjjj

L
kkP

2

,1

2

,1

2

,1

2

,,1,1 exp")(
2

1
exp

ξ
σσ    (149) 

Now we show the reduce factor with using the effective 

roughness σ* at the angle θi of incident X-ray as, 

( )2*

,1,,1,1 2exp jjzjzjjj kkQ −−− −= σ ,         (150) 
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where the effective roughness σ* can be defined 

approximately as, 
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Note that we implicitly assumed that ξ is smaller than the 

coherence length Lx of the radiation parallel to the surface. Lx 

depends on the angle θi of incident X-ray as, 

2

2

2

2

2

cossin1

l

i

t

i

x LLL

θθ += ,             (153) 

where Lt is transverse coherence length and Ll is longitudinal 

coherence length of the incident X ray. 

 

Figure 19. X-ray reflectivity from sio2/Si. The experimental result (thick 

dashed curve) is compared with the calculated ones usingthe effective 

roughness depending onthe X-ray incident angle θi. XRR is calculated with 

using the values ( ξs = 2µm, Lt = 10nm, and Ll = 2µm). 

Based on the above considerations, we again calculated the 

X-ray reflectivity for the SiO2/Si surface of sample B, but 

now consideredthe effective roughnessσ * at the X-ray 

incident angle θi. Figure 2 shows the calculated XRR with 

using the values (ξs = 2µm, Lt = 10nm, and Ll= 2µm). The 

calculated reflectivity shows good agreement with the 

experimental one in all range of measured θi. 

6. Summary 

In this review, we investigated the fact that the calculated 

result of the x-ray reflectivity based on Parratt formalism [1] 

with the effect of the roughness incorporated by the theory of 

Nevot-Croce[2] show a strange phenomenon in which the 

amplitude of the oscillation due to the interference effects 

increase in the case of the rougher surface. The strange result 

had its origin in a serious mistake that the diffuse scattering at 

the rough interface was not taken into account in the equation. 

Then we developed new improved formalism to correct this 

mistake. The new, accurate formalism is completely 

described in detail. The x-ray reflectivity R of a multilayer 

thin film material consisting of N layers is derived by the use 

of accurate reflectivity equations for Rj-1, j and Rj,j+1 as 

following, 
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Here, the refractive index of the j-th layer nj = 1 – δj – iβj, 

n0 = 1, the z-direction component of the wave vector of the 

j-th layer θ22

, cos‐jzj nkk = , k=2π/λ, λ; wave length, θ; 

glancing angle of incidence, a N-layer multilayer system with 

a j-th layer of thickness of hj and j-1,j-th interface roughness 

of σj-1,j, kj, z is the z component of the wave vector in the j-th 

layer, and Ψj-1, j and Φj-1, j are the Fresnel coefficients for 

reflection and refraction, respectively, at the interface 

between the (j-1)th layer and the j-th layer. 
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where the reduce factor Q and P are showed with using the 

effective roughness σ* at the angle θi of incident X-ray as, 

( )2*

,1,,1,1 2exp jjzjzjjj kkQ −−− −= σ ,           (153) 








 −−= −−−
2*

,1

2

,,1,1 )(
2

1
exp jjzjzjjj kkP σ ,      (154) 

where the effective roughness σ* can be defined 

approximately as, 
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Lx depends on the angle θi of incident X-ray as, 

2

2

2

2

2

cossin1

l

i

t
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x LLL

θθ
+= ,                 (156) 

where Lt is transverse coherence length and Ll is longitudinal 

coherence length of the incident X ray. Note that we 

implicitly assumed that ξ is smaller than the coherence length 

Lx of the radiation parallel to the surface. 

The reflectivity calculated with this accurate formalism 

gives a physically reasonable result. The use of this equation 

resolves the strange numerical results that occurred in the 

previous calculations that neglected diffuse scattering and is 

expected that buried interface structure can now be analyzed 

more accurately. 

In concerned with the calculation of XRR, we considered 

the effective roughness with depending on the incident angle 

of X-ray. At the result, it is showed the new improved XRR 

formalism which derives more accurate surface and interface 

roughness with depending on the size of coherent X-rays 

probing area, and derives the roughness correlation 

function and the lateral correlation length. 
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