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Abstract: A black hole greybody factor is the quantum quantity of a black hole. It is the fraction of Hawking radiation that can 

reach spatial infinity. The greybody factor may contain the necessary information to support the theory of quantum gravity. An 

understanding of the greybody factor helps us gain insight, not only into the nature of the black hole itself, but also into the theory 

of quantum gravity, which is currently being developed via numerous attempts. In this paper, we calculate the bound on the 

greybody factor for scalar field emitted from black holes in dRGT massive gravity. The bound on the reflection probability is also 

determined. Moreover, the effects of massive gravity on the greybody factors are explored. The results show that the bound on 

the greybody factor for the dRGT black holes is less than the bound for the Schwarzschild-de-Sitter black hole. The Hawking 

temperature is also calculated, both in the dRGT case and in the Schwarzschild-de-Sitter case. It is found that the Hawking 

temperature of the dRGT black hole is higher than that of the Schwarzschild-de-Sitter black hole. The increase in the Hawking 

temperature probably results from the mass of graviton. Finally, the black hole entropy is also determined. We found that the 

entropy of the Schwarzschild-de-Sitter black hole is more than the entropy of the dRGT black hole. 
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1. Introduction 

Black hole greybody factors have been of great interest in 

the field of quantum physics. Studying greybody factors can 

give an understanding of the quantum structure of black holes, 

which can potentially lead to an understanding of quantum 

gravity, and the quantum behavior of gravitational field. 

Quantum gravity is one of the unsolved problems of 

theoretical physics. This is because quantum theory is not in 

consistent with general relativity. A classic example of 

systems that have to be described by both quantum theory 

and general relativity is black hole. 

The existence of black hole has been predicted by general 

relativity. It is a region of spacetime that has such a strong 

gravitational field that nothing can escape, not even light. If 

the quantum effects are taken into account, black holes can 

emit thermal radiation. This radiation became known as 

Hawking radiation [1]. While Hawking radiation propagates 

to an observer away from a black hole, it is modified by the 

curvature of spacetime resulting from the black hole itself. 

Therefore, only a fraction of Hawking radiation can arrive at 

an observer. This fraction is called the greybody factor. 

Derivation of the greybody factor has been conducted in 

various ways. Some use the matching techniques to obtain 

the approximate greybody factor [2-4], while some use the 

WKB approximation [5-7]. Moreover, a new method to 

derive the greybody factor without approximation has also 

been developed. This new method requires the calculation of 

the bound on the greybody factor [8-10]. The bound is 

relatively simple to derive and can provide a qualitative 

understanding of black holes. 

Recently, massive gravity theories have been developed 

[11]. Massive gravity is the modification of general relativity 

by re-interpreting the terms of interaction as graviton mass. 
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This theory can account for the accelerated expansion of the 

universe, invalidating the concept of cosmological constant. 

The de Rham, Gabadadze and Tolley (dRGT) massive 

gravity is constructed in a way that the ghost field disappears 

[12-13]. It is possible for black holes to exist in the dRGT 

massive gravity [14-15]. 

P. Boonserm and M. Visser [16] applied the rigorous 

bounds on the greybody factor to Schwarzschild black holes. 

These bounds can be obtained from the Regge-Wheeler 

equation which governs the motion of any type of particles in 

a non-rotational spacetime. The results show that the bounds 

are valid for all frequencies. At high frequencies, the 

potential from the Schwarzschild black hole is transparent 

regardless of the type of Hawking radiation. 

T. Ngampitipan and P. Boonserm [17] applied the rigorous 

bounds on the greybody factor to non-rotating black holes for 

scalar emission. The results show that the charges of the 

Reissner-Nordstrom black holes and the charged dilatonic 

black holes behave as barriers. A higher number of spacetime 

dimensions can prevent Hawking radiation from reaching 

spatial infinity. Moreover, the cosmological constant can 

increase the bounds on the greybody factor. 

P. Boonserm, T. Ngampitipan, and M. Visser [18] derived a 

general form of the Regge-Wheeler equation for scalar, 

vector, and axial spin 2 perturbations on an arbitrary static 

spherically symmetric spacetime. The black holes in this 

spacetime are called dirty black holes. We applied the 

rigorous bounds on the greybody factor to these dirty black 

holes. We also applied the rigorous bounds on the greybody 

factor for scalar emission to the Kerr-Newman black holes, 

ones with charges and rotation [19]. These bounds can be 

obtained from the Teukolsky equation, which governs the 

motion of any type of particle in a rotational spacetime. We 

obtained the bounds on the greybody factor for the 

zero-angular-momentum modes, the non-super-radiant modes, 

and the super-radiant modes. The results show that the 

bounds increase if the frequencies increase. However, the 

bounds also increase if the angular momentum and the 

electric charge decrease. 

Furthermore, Boonserm et. al [20] obtained the rigorous 

bounds on the greybody factor for the Myers-Perry black 

holes in the case of scalar field excitation. Myers-Perry black 

holes are uncharged rotating black holes in higher dimensions. 

In four dimensions, the Myers-Perry black holes reduce to 

Kerr black holes. The bounds from Myers-Perry black holes 

can also be derived from the Teukolsky equation. We 

calculated these bounds for the zero-angular-momentum 

modes, the non-super-radiant modes, and the super-radiant 

modes. Moreover, we obtained the emission rates for the 

super-radiant modes. The results show that the bounds on the 

greybody factors decrease in higher dimensions. This type of 

black holes may be created in future experiments such as at 

the LHC [21-31]. Then, the bounds derived from the 

Myers-Perry black holes can be useful in describing the 

results of those experiments. 

In this paper, we study the dRGT spacetime in section 2. In 

section 3, we derive the equation of motion of the scalar field 

emitted from the dRGT black holes. In the next section, we 

calculate the bound on the greybody factor for scalar field 

emitted from black holes in dRGT massive gravity. The 

effects of massive gravity on the greybody factors will be 

explored. The comparisons between the angular momentum 

and the potential, as well as the comparisons between the 

reflection and transmission probabilities are also made. In 

section 5, we calculate the Hawking temperature, both in the 

dRGT black hole and in the Schwarzschild-de-Sitter black 

hole. Finally, the conclusions are drawn in section 6. 

2. dRGT Spacetime 

The metric of the static and spherically symmetric 

spacetime in massive gravity is given by 

2
2 2 2 2( )

( )
= − + + Ωdr

ds f r dt r d
f r

,         (1) 

where 
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3

M
f r r r
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We can express the parameters appearing in the above 

equation as 
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3
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α . 

Moreover, 
gm  is the graviton mass. For the special case, 

2 /3β α= ,, the dRGT solution reduces to the 

Schwarzschild-de-Sitter solution [11, 32]. In this case, the 

above parameters are given by 
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4
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12
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3. Massless Scalar Field Emitted from the 

dRGT Black Hole 

When the dRGT black hole emits a scalar wave, its 

equation of motion takes the form 

1
0g g

x xg

µν
µ ν

φ∂∂  − = ∂ ∂−  
          (5) 

To solve the above equation, we use the separation of 

variables 

( )( )
( , , )

t

m

r
t r e Y

r

ω ψφ Ω = Ω
ℓ

          (6) 

The radial equation of motion can be obtained 

2

2

2

*

( )
( ) ( ) 0

d r
V r r

dr

ψ ω ψ + − =           (7) 

The tortoise coordinate 
*

r  is defined by 

* 1

( )

dr

dr f r
=                   (8) 

and the dRGT potential ( )V r  is given by 

2

( 1) ( ) ( ) '( )
( )

f r f r f r
V r

rr

+
= +
ℓ ℓ

         (9) 

The potential is plotted as shown in Figure 1 and Figure 2. 

 

Figure 1. The dRGT potential versus the de Sitter potential. 

 

Figure 2. The dRGT potential for various angular momentum (l = 0, l = 1, l 

= 2, l =3, and l = 4). 

We can see that in the beginning the potential for the 

higher angular momentum is greater than the potential for the 

lower angular momentum. In the intermediate region, the 

relation reverses. That is, when the angular momentum 

increases, the potential decreases. After that, the relation is 

the same as the beginning. The potential for the highest 

angular momentum is the highest. 

4. The Rigorous Bound on the 

Transmission Probability 

In order to calculate the transmission probability, we have 

to solve the Teukolsky equation for the given potential. In the 

dRGT case, it seems that no exact solution exists. To handle 

this problem, we introduce the new method of the rigorous 

bound to find the transmission probability. In [8-10], the 

rigorous bound on the transmission probability is given by 

2

*sechT drϑ
∞

−∞

 
≥   

 
∫ ,             (10) 

where 

2 2 2 2( ') ( )

2
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h

ω
ϑ

+ − −
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and h  is a positive function. For simplicity, we choose 

h ω= . Therefore, 

2
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∞

−∞

 
≥   

 
∫  



67 Tritos Ngampitipan et al.:  Bounding the Greybody Factor, Temperature and Entropy of Black Holes in dRGT Massive Gravity  

 

2

*2

( 1) ( ) ( ) '( )1
=sech

2

f r f r f r
dr

rrω

∞

−∞

 + +     
∫
ℓ ℓ

 

2

2

( 1) '( )1
=sech

2
H

R

r

f r
dr

rrω
 + 
 +    

∫
ℓ ℓ

 

2

2 3

( 1)1 2 2
=sech

2 3
H

R

r

M
dr

rr r

γ
ω

 + Λ 
 + + +    

∫
ℓ ℓ

 

2

2 3

( 1)1 2 2
=sech

2 3
H

R

r

M

rr r

γ
ω

 + Λ + + +     

ℓ ℓ
 

2

2 2

1 1 1 1 1
=sech ( 1)

2
H H

M
R R R Rω

    
 + − + −          

ℓ ℓ  

2
( ) ln

3
H

H

R
R r

r
γ

 Λ + − +  
 

.         (12) 

The effect of massive gravity on the rigorous bound on 

transmission probability is plotted as shown in Figure 3. 

 

Figure 3. The effect of massive gravity on the rigorous bound on 

transmission probability. 

From the law of conservation, the sum of the reflection 

probability and the transmission probability is in unity. 

Therefore, with the rigorous bound on transmission 

probability, we can derive the reflection probability 
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The relationship between the reflection probability and the 

transmission probability for the dRGT case and the 

Schwarzschild-de-Sitter case are plotted as shown in Figure 4 

and Figure 5, respectively. 

 

Figure 4. The relationship between the reflection probability and the 

transmission probability for the dRGT case. 

 

Figure 5. The relationship between the reflection probability and the 

transmission probability for the Schwarzschild-de-Sitter case. 

From these figures, we can see that the decrease in the 

rigorous bound on the greybody factor (corresponding to the 

increase in the rigorous bound on the reflection probability) 

occurs when the wave’s energy increases. 

In summary, the relationship between the reflection and the 

transmission probabilities, and the potential can be shown in 

Table 1. 

Table 1. The potential and the reflection and transmission probabilities for 

various angular momentum. 

Angular 

momentum 
Potential 

Transmission 

probability 

Reflection 

probability 

0=ℓ  -0.05 0.8589 0.1411 

1=ℓ  0.02 0.8585 0.1415 

2=ℓ  0.15 0.8577 0.1423 

3=ℓ  0.34 0.8565 0.1435 

4=ℓ  0.61 0.8548 0.1452 
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We can see that when the angular momentum increases, the 

potential and the reflection probability also increase, while the 

transmission probability decreases. From the table, we notice 

that the potential for 0=ℓ  can be negative. The negative 

value of the potential indicates that the curvature of spacetime 

is different from the positive value of the potential [33]. 

5. Hawking Temperature and Entropy 

5.1. Hawking Temperature 

In this section, we study the thermodynamics of black 

holes in dRGT massive gravity. The black hole 

thermodynamics is associated with the temperature, the 

entropy, the Helmholtz free energy, and the heat capacity. In 

this paper, we pay attention to the temperature of Hawking 

radiation (called Hawking temperature). The Hawking 

temperature can be expressed in terms of surface gravity ( κ ) 

2
T

κ
π

= ,                 (14) 

where the surface gravity is given by 

'( )
H

f rκ =                 (15) 

Therefore, for black holes in dRGT massive gravity, the 

Hawking temperature is given by 

( )21
1 2

4
T r r

r
γ ζ

π + +
+

= + Λ + +          (16) 

For the Schwarzschild-de-Sitter black holes, the Hawking 

temperature is given by 

2
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( )2 2 2 2 2
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      (17) 

 

Figure 6. The Hawking temperature between the dRGT case and the 

Schwarzschild-de-Sitter. 

Comparison of the Hawking temperature between the 

dRGT case and the Schwarzschild-de-Sitter is made as shown 

in Figure 6. 

From Figure 5, we can see that for the specific parameters, 

the Hawking temperature of dRGT black hole is higher than 

that of the Schwarzschild-de-Sitter black hole. This may be 

because when the graviton becomes massive, the temperature 

is raised. However, for other choices of parameters, the 

results may be different. 

5.2. Entropy 

One of the important quantities in thermodynamics is 

entropy. For black hole systems, entropy is also significant 

for black hole thermodynamics. In this section, we will 

calculate the entropy of the dRGT black hole and the 

Schwarzschild-de-Sitter black hole. The entropy is related to 

the Hawking temperature by [11] 

1 1 M
S dM dr

T T r
+

+

∂= =
∂∫ ∫           (18) 

where T is the Hawking temperature, M is the black hole 

mass, and r+ is the horizon radius. The above integral can be 

calculated and we obtain 

2S rπ +=                      (19) 

The horizon radius of dRGT black hole and 

Schwarzschild-de-Sitter black hole can be found from the 

solution of 

( ) 0f r+ =                     (20) 

Solving this equation, we obtain 0.5539280610r+ =  for 

the horizon radius of the dRGT black hole and 

1.594562117r+ =  for the horizon radius of the 

Schwarzschild-de-Sitter black hole. Therefore, the entropy is 

0.9639546548S =  and 7.987902520S =  for the dRGT 

black hole and the Schwarzschild-de-Sitter black hole, 

respectively. That is, the entropy of the 

Schwarzschild-de-Sitter black hole is approximately 8 times 

greater than the entropy of the dRGT black hole. Notice that 

the black hole entropy depends on the horizon radius. 

6. Conclusion 

In this paper, we calculated the bound on the greybody 

factor for scalar field emitted from black holes in dRGT 

massive gravity. The bound on the reflection probability was 

also calculated. The effects of massive gravity on the 

greybody factors were also explored. The results show that the 

rigorous bound on the greybody factor for the dRGT black 

hole is less than that of the Schwarzschild-de-Sitter black hole. 

When the angular momentum increases, the potential and the 

rigorous bound on the reflection probability also increase. 

However, the rigorous bound on the transmission probability 

decreases. Moreover, we calculated the Hawking temperature, 



69 Tritos Ngampitipan et al.:  Bounding the Greybody Factor, Temperature and Entropy of Black Holes in dRGT Massive Gravity  

 

both for the dRGT black hole and the Schwarzschild-de-Sitter 

black hole. It was found that the Hawking temperature of the 

dRGT black hole is higher than that of the 

Schwarzschild-de-Sitter black hole. The increase in the 

Hawking temperature probably comes from graviton mass. In 

addition, the black hole entropy was also investigated. The 

results indicate that the entropy of the Schwarzschild-de-Sitter 

black hole is more than the entropy of the dRGT black hole. 
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