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Abstract: Chaotic properties of nuclear energy spectra in A=32 nuclei are investigated via the framework of the nuclear 

shell model. The energies (the main object of this investigation) are calculated through accomplishing shell model calculations 

employing the OXBASH computer code with the realistic effective interaction of W in the isospin formalism. The A=32 nuclei 

are supposed to have an inert 
16

O core with 16 nucleons move in the 1d5/2, 2s1/2 and 1d3/2 orbitals. For full hamiltonian 

calculations, the spectral fluctuations (i.e., the nearest neighbor level spacing distributions ( )P s  and the ∆� statistics) are well 

characterized by the Gaussian orthogonal ensemble of random matrices. Besides, they show no dependency on the spin J  and 

isospin .T  For unperturbed hamiltonian calculations, we find a regular behavior for the distribution of ( )P s  and an 

intermediate behavior between the GOE and the Poisson limits for the ∆� statistics. 
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1. Introduction 

Chaos in quantum system was studied extremely 

throughout the last three decades [1]. Bohigas et al. [2] 

proposed a relation between chaos in a classical system and 

the spectral fluctuations of the analogous quantum system, 

where an analytical proof of the Bohigas et al. conjecture is 

found in [3]. It is now typically known that quantum analogs 

of most classically chaotic systems demonstrate spectral 

fluctuations that agree with the random matrix theory (RMT) 

[4, 5] while quantum analogs of classically regular systems 

reveal spectral fluctuations that agree with a Poisson 

distribution. For time-reversal-invariant systems, the suitable 

form of RMT is the Gaussian orthogonal ensemble (GOE). 

RMT was firstly utilized to characterize the statistical 

fluctuations of neutron resonances in compound nuclei [6]. 

RMT has become a standard tool for analyzing the universal 

statistical fluctuations in chaotic systems [7-10]. 

The chaotic behavior of the single particle dynamics in the 

nucleus can be analyzed via the mean field approximation. 

Nevertheless, the nuclear residual interaction mixes different 

mean field configurations and affects the statistical 

fluctuations of the many particle spectrum and wave 

functions. These fluctuations may be investigated with 

different nuclear structure models. The statistics of the low-

lying collective part of the nuclear spectrum were studied in 

the framework of the interacting boson model [11, 12], in 

which the nuclear fermionic space is mapped onto a much 

smaller space of bosonic degrees of freedom. Because of the 

relatively small number of degrees of freedom in this model, 

it was also possible to relate the statistics to the underlying 

mean field collective dynamic. At higher excitations, 

additional degrees of freedom (such as broken pair) become 

important [13], and the effects of interactions on the statistics 

must be studied in larger model spaces. The nuclear shell 

model offers an attractive framework for such studies. In this 

model, realistic effective interactions are available and the 

basis states are labeled by exact quantum numbers of angular 

momentum ( J ), isospin (T ) and parity ( π ) [14]. 

The distribution of eigenvector components [15-19] was 

examined by the framework of the shell model. Brown and 

Bertsch [17] found that the basis vector amplitudes are 

consistent with Gaussian distribution (which is the GOE 

prediction) in regions of high level density but deviated from 

Gaussian behavior in other regions unless the calculation 
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employs degenerate single particle energies. Later studies 

[19] also suggested that calculations with degenerate single 

particle energies are chaotic at lower energies than more 

realistic calculations. 

The electromagnetic transition intensities in a nucleus are 

observables that are sensitive to the wave functions, and the 

study of their statistical distributions should complement [11, 

12] the more common spectral analysis and serve as another 

signature of chaos in quantum systems. Hamoudi et al carried 

out [20] the fp-shell model calculations to study the statistical 

fluctuations of energy spectrum and electromagnetic transition 

intensities in A=60 nuclei using the F5P [21] interaction. The 

calculated results were in agreement with RMT and with the 

previous finding of a Gaussian distribution for the eigenvector 

components [15-19]. Hamoudi studied [22] the effect of the 

one-body hamiltonian on the fluctuation properties of energy 

spectrum and electromagnetic transition intensities in 136 Xe  

using a realistic effective interaction for the N82-model space 

defined by 5/2 7/2 11/2 1/22 , 1 1 , 3d g h s and 3/22d  orbitals. A clear 

quantum signature of breaking the chaoticity was observed as 

the values of the single particle energies are increased. Later, 

Hamoudi et al carried out [23] full fp-shell model calculations 

to investigate the regular to chaos transition of the energy 

spectrum and electromagnetic transition intensities in 
44

V 

using the interaction of FPD6 as a realistic interaction in the 

isospin formalism. The calculated spectral fluctuations and the 

distribution of electromagnetic transition intensities were 

found to have a regular dynamic at 0,β =  ( β  is the strength 

of the off-diagonal residual interaction), a chaotic dynamic at 

0.3β ≥  and intermediate situations at 0 3.β< <  

In the present study, the spectral fluctuations in 
32

A nuclei 

are analyzed by two statistical measures: the nearest neighbor 

level spacing distribution ( )P s  and the Dyson-Mehta 

statistics ( ∆�  statistics). For calculations with the full 

diagonalization of the hamiltonian, the spectral fluctuations 

are found to be consistent with the Gaussian orthogonal 

ensemble of random matrices. In addition, they are 

independent of the spin J  and isospin .T  For calculations 

with the unperturbed hamiltonian, we find a regular behavior 

for the ( )P s  distribution and an intermediate behavior 

between the GOE and the Poisson limits for the ∆� statistics. 

2. Theory 

The many-body system can be described by an effective 

shell-model hamiltonian [14] 

0 ,H H H ′= +                                  (1) 

where 0H  and H ′  are the independent particle (one body) 

part and the residual two-body interaction of .H  The 

unperturbed hamiltonian 

0H e a aλ λ λ
λ

+=∑                           (2) 

characterizes non-interacting fermions in the mean field of 

the appropriate spherical core. The single-particle orbitals 

λ  have quantum numbers ( )ljmλ τ=  of orbital ( l ) and 

total angular momentum ( j ), projection zj m=  and isospin 

projection .τ  The antisymmetrized two-body interaction H ′  

of the valence particles is written as 

;

1
.

4
H V a a a aλµ νρ λ µ ν ρ

+ +′ = ∑                         (3) 

The many-body wave functions with good spin J  and 

isospin T  quantum numbers are constructed via the m −
scheme determinants which have, for given J  and ,T  the 

maximum spin and isospin projection [14], 

3, ; ,M J T T m= =                             (4) 

where m  span the m − scheme subspace of states with 

M J=  and 3 .T T=  

The matrix of the many-body hamiltonian 

; ;JT
kk

k

H JT k H JT k′ ′=∑                      (5) 

is eventually diagonalized to obtain the eigenvalues Eα  and 

the eigenvectors 

; ;k

k

JT C JT kαα =∑                          (6) 

Here, the eigenvalues Eα  are considered as the main 

object of the present investigation. 

The fluctuation properties of nuclear energy spectrum are 

obtained via two statistical measures: the nearest-neighbors 

level spacing distribution ( )P s  and the Dyson-Mehta or 3∆  

statistics [4, 24]. The staircase function of the nuclear shell 

model spectrum ( )N E  is firstly build. Here, ( )N E  is 

defined as the number of levels with excitation energies less 

than or equal to .E  In this study, a smooth fit to the staircase 

function is performed with polynomial fit. The unfolded 

spectrum is then defined by the mapping [12] 

( )i iE N E=ɶ ɶ .                                   (7) 

The real spacings reveal strong fluctuations whereas the 

unfolded levels iEɶ  have a constant average spacing. 

The level spacing distribution (which exemplifies the 

fluctuations of the short-range correlations between energy 

levels) is defined as the probability of two neighboring levels 

to be a distance s  apart. The spacings is  are determined 

from the unfolded levels by 1 .i i is E E+= −ɶ ɶ  A regular system 

is forecasted to perform by the Poisson statistics 

( ) exp( )P s s= − .                              (8) 

If the system is classically chaotic, we foresee to get the 

Wigner distribution 
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2( ) ( / 2) exp( / 4),P s s sπ π= −                (9) 

which is consistent with the GOE statistics. 

The 3∆  statistic (which characterizes the fluctuations of 

the long-range correlations between energy levels) is utilized 

to measure the rigidity of the nuclear spectrum and defined 

by [4] 

2

3 ,

1
( , ) min ( ) ( )

L

A BL N E AE B dE
L

α

α

α
+

 ∆ = − + ∫ ɶ ɶ ɶ .     (10) 

It measures the deviation of the staircase function (of the 

unfolded spectrum) from a straight line. A rigid spectrum 

corresponds to smaller values of 3∆  whereas a soft spectrum 

has a larger 3.∆  To get a smoother function 3( ),L∆  we 

average 3 ( )L∆  over several nα  intervals ( , Lα α + ) 

3 3

1
( ) ( , ).L L

nα α
α∆ = ∆∑                   (11) 

The successive intervals are taken to overlap by / 2.L  

In the Poisson limit, 3 ( ) /15.L L∆ =  In the GOE limit, 

3 /15L∆ ≈  for small ,L  while 2
3 ln Lπ −∆ ≈  for large .L  

3. Results and Discussion 

Shell model calculations are accomplished, using the 

OXBASH code [25], for A=32 nuclei with 0, 1T =  and 2. 

These nuclei are supposed to have an inert core of 
16

O with 

16 active nucleons (8 protons and 8 neutrons) move in the sd-

shell (1d5/2, 2s1/2 and 1d3/2 orbitals) model space. The W 

interaction [26] is selected as a realistic effective interaction 

in the isopspin formalism together with realistic spe’s. Many-

body basis states k  were constructed with good total 

angular momentum J  (its projection ),M  parity π  and 

isospin T  (its projection 3).T  

Table 1 displays the dimensions of all considered J Tπ
 

states for 16 particles move in the sd-shell model space. 

Table 1. Dimensions of J Tπ  states for 16 particles move in the sd-shell 

model space. 

Jπ  0=T  1=T  2=T  

0+  325 481 287 

1+  779 1413 721 

2+  1206 1992 1068 

3+  1304 2268 1135 

4+  1311 2131 1071 

5+  1070 1791 826 

6+  835 1293 581 

7+  531 843 330 

8+  329 460 169 

9+  154 222 62 

The fluctuation properties of energy spectra in A=32 nuclei 

are analyzed by two statistical measures: the nearest neighbor 

level spacing distribution ( )P s  and the Dyson-Mehta 

statistics (∆� statistics). 

 

Figure 1. The nearest level spacing ���� distributions in 32S nucleus for the 

states 0 0 9 0.J Tπ + += −  The histograms are the calculated ���� with full 

hamiltonian. The solid and dashed lines are the GOE and Poisson 

distributions, respectively. 

Figure 1 demonstrates the nearest-neighbors level spacing 

distributions ( ),P s  obtained with full hamiltonian calculations, 

for different unfolded 0 9J π + += −  levels with 0T =  (
32S ) 

nucleus. The GOE distribution (which describes chaotic 

systems) is displayed by the solid line. The Poisson 
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distribution (which corresponds to a random sequence of levels 

and describes regular systems) is displayed by the dashed line. 

The calculated distributions of ( )P s  (histograms) for 

0 0 7 0J T
π + += −  levels agree well with the GOE distribution. 

The level repulsion at small spacings produced through the 

mixing by the off-diagonal hamiltonian (which is considered 

as a distinctive feature of chaotic level statistics) is clearly seen 

in the calculated histograms. In spite of the level repulsion at 

small spacings in histograms 8 0J T
π +=  and 9 0

+
 levels is 

slightly decreased, the general performance of these 

histograms is still very close to the GOE limit. It is obvious 

from Figure 1 that the ( )P s  (histograms) distribution is 

independent of the spin J  (universal for different spins). 
Figure 2 shows the nearest-neighbors level spacing 

distributions ( ),P s  obtained with full hamiltonian 

calculations, for 1T =  and 2 nuclei. The ���� distributions 

for 1 , 3J π + +=  and 6
+

 states with 1T =  ( 32P ) and 2T =  

(
32

Si ) nuclei are presented in the upper and lower panels, 

respectively. It is clear that all selected states with 1T =  and 

2T =  are in very good agreement with the GOE limit of 

random matrices. It is found from this figure that the nearest 

neighbor level spacing distribution is independent of the 

isospin .T  

 

Figure 2. The nearest level spacing ����  distributions for the states 

1 , 3Jπ + +=  and 6 .
+

 The upper panel corresponds to 1T =  ( 32P ) and 

the lower panel corresponds to 2T =  ( 32Si ) nuclei. The histograms 

correspond to the calculated ����  with full Hamiltonian. The solid and 

dashed lines are the GOE and Poisson distributions, respectively. 

Figure 3 illustrates the spectral rigidity (Dyson’s 3∆  

statistics), obtained with full hamiltonian calculations, for the 

0T =  (
32

S ) nucleus. The calculated average 3 ( )L∆  statistic 

(denoted by open circles) is plotted as a function of L  for 

various unfolded 0 0 9 0J T
π + += −  states. The Poisson 

distribution (denoted by the dashed line) and the GOE 

distribution (denoted by the solid line) are also displayed for 

comparison. The calculated distributions of 3∆  statistics for 

0 0, 7 0J Tπ + +=  and 9 0
+

 states reveal some slight 

oscillations around the GOE distribution. These oscillations 

are attributed to the number of intervals nα (which is 

connected to the dimension of J T
π

 states) used in averaging 

the statistics 3 ( , ),Lα∆  see Eq. (11). A smooth statistics 

corresponds to a large nα  and non-smooth statistics 

corresponds to a small .nα  Nevertheless, the global behavior 

for calculated statistics of 0 0, 7 0J Tπ + +=  and 9 0
+

 states is 

still very near to the GOE limit. In general, the calculated 

3 ( )L∆  statistics of all considered 0 0 9 0J T
π + += −  states are 

found to have a chaotic behavior, in very good agreement 

with GOE of random matrices. Besides, they show no 

dependency on the spin .J  

 

Figure 3. The average 3∆  statistics in 32S nucleus for the states 

0 0 9 0.J Tπ + += −  The open circles are the calculated results with full 

hamiltonian. The solid and dashed lines are the GOE and Poisson 

distributions, respectively. 
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Figure 4 exemplifies the Dyson’s 3∆  statistics (the 

spectral rigidity), obtained with full hamiltonian calculations, 

for 1T =  and 2 nuclei. The average 3∆  statistics for 

1 , 3J π + +=  and 6
+

 states with 1T =  ( 32P ) and 2T =  

(
32

Si ) nuclei are displayed in the upper and lower panels, 

correspondingly. Again the 3∆  statistics for all chosen states 

with 1T =  and  are consistent with the GOE of the random 

matrix theory. It is so obvious from this figure that the 3∆  

statistics are independent of the isospin 

 

Figure 4. The average 3∆  statistics for the states 1 , 3Jπ + +=  and 6 .+  The upper panel corresponds to 1T =  ( 32P ) and the lower panel corresponds to 

2T =  ( 32Si ) nuclei. The open circles correspond to the calculated results with full Hamiltonian. The solid and dashed lines are the GOE and Poisson 

distributions, respectively. 

It is important to denote that the calculated results for the 

3∆  statistics in Figures. 3 and 4 confirm the outcome of 

Figures. 1 and 2 that we have obtained from the analysis of 

the )(sP  distributions. 

Figure 5 shows the unperturbed hamiltonian results (the 

non-interacting particles case) for the ����  distributions 

(upper panel) and the average 3∆  statistics (lower panel). 

The left panel corresponds to 
+= 2

π
J  with 0=T  ( S

32
), 

the middle panel corresponds to 
+= 2

π
J  with 1=T  

( P32
) and the right panel corresponds to 

+= 2
π

J  with 

2=T  ( Si
32

) nuclei. All calculated ����  (histograms) 

presented in the upper panel reveal regular behavior (in 

accordance with the Poisson distribution) due to the absence 

of mixing and repulsion between levels caused by the 

nonexistence of the off-diagonal residual interaction. The 

lower panel of this figure shows the calculated 3∆  statistics 

(open circles) intermediate between the GOE (solid line) and 

the Poisson (dashed line) distributions. However, the 

calculated results for the average 3∆  statistics are closer to 

the Poisson distribution. 

 

Figure 5. The ���� distributions (upper panel) and the average 3∆  statistics (lower panel) for 2 .Jπ +=  The left panel corresponds to 0T =  ( 32S ), the 

middle panel corresponds to 1T =  ( 32P ) and the right panel corresponds to 2T =  ( 32Si ) nuclei. The calculated ���� (histograms) and 3∆  statistics (open 

circles) correspond to the results obtained with the absence of the off-diagonal residual interaction. The solid and dashed lines are the GOE and Poisson 

distributions, respectively. 
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4. Conclusions 

The spectral fluctuations in A=32 nuclei are studied via the 

nuclear shell model. The sd-shell model calculations are 

accomplished by the OXBASH computer code with the 

isospin formalism interaction of W. The spectral fluctuations 

obtained with full hamiltonian calculations are found to be 

consistent with the GOE of random matrices (which 

characterizes the chaotic systems). Moreover, the 

distributions of )(sP  and ∆�  statistics are found to be 

independent of the spin J  and isospin .T  For unperturbed 

hamiltonian calculations, we find a regular behavior for the 

distribution of )(sP  and an intermediate behavior between 

the GOE and the Poisson limits (closer to the Poisson limit) 

for the ∆�  statistics. This regularity is attributed to the 

absence of the mixing and repulsion between levels as a 

result of the nonexistence of the off-diagonal residual 

interaction. 
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