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Abstract: In this paper, the nonconservative systems with second order Lagrangian are investigated using fractional 

derivatives. The fractional Euler Lagrange equations for these systems are obtained. Then, fractional Hamiltonian for these 

systems is constructed, which is used to find the Hamilton's equations of motion in the same manner as those obtained by using 

the formulation of Euler Lagrange equations from variational problems, and it is observed that the Hamiltonian formulation is 

in exact agreement with the Lagrangian formulation. The passage from the Lagrangian containing fractional derivatives to the 

Hamiltonian is achieved. We have examined one example to illustrate the formalism. 
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1. Introduction 

The fractional derivatives have played a significant role in 

physics, mathematics and engineering [1-4]. Several attempts 

have been made to include nonconservative forces in the 

Lagrangian and Hamiltonian mechanics. Riewe [5, 6] 

presented a new approach to mechanics that allows one to 

obtain the equations for nonconservative systems using 

fractional derivatives. Eqab et al., [7, 8] developed a general 

formula for determining the potentials of arbitrary forces, 

conservative and nonconservative using the Laplace 

transform of fractional integrals and fractional derivatives 

and also they constructed the Hamiltonian formulation of 

discrete and continuous fields in term of fractional 

derivatives [9]. 

The formalism for investigating the fractional variational 

problem of Lagrange represents an important part of 

fractional calculus and it was discussed by Agrawal [10, 11] 

and this formalism can be extended to Lagrangian systems 

with higher derivatives. Recently Euler Lagrange equations 

have been presented for unconstrained and constrained 

fractional variational problems by Agrawal [12]. The 

resulting equations are found to be similar to those for 

variational problems containing integral order derivatives. In 

other words, the results of fractional calculus of variations 

reduce to those obtained from traditional fractional calculus 

of variations when the derivative of fractional order replaced 

by integral order. This approach is extended to classical fields 

with fractional derivatives [13]. In addition the problem of 

having nonconservative equations of motion arise from the 

use of a variational principle is reexamined by Dreisi-gmeyer 

and Yoang [14]. The action is treated as a Volterra series. 

Besides, the modeled described by fractional order 

derivatives of Riemann-Liouville type in sequential form are 

discussed in Lagrangian and Hamiltonian formalism by 

Klimek [15]. In her work, Klimek showed that the fractional 

Hamiltonian is usually not a constant of motion, even in the 

case when the Hamiltonian is not an explicit function of time. 

While in the limit the fractional operators give classical 

derivatives of the first order, the total time derivatives of the 

Hamiltonian coincide with the partial one. 

More recently, the fractional Hamiltonian analysis for 

higher order derivatives systems were investigated for 

nonsingular systems and the generalization of Ostrogradski's 

formulation was discussed with in framework of fractional 

calculus [16]. The Hamilton-Jacobi formulation for discrete 

Lagrangian systems containing second order fractional 
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derivatives was discussed by Hasan [17]. 

In the present paper as a continuation of previous works, 

the generalized mechanics is considered to obtain the Euler 

Lagrange equations and Hamilton's equations of motion for 

nonconservative systems with second order Lagrangians 

depending on fractional derivatives of coordinates. 

The paper is organized as follows: In Section 2, Agrawal's 

work fractional Lagrangian mechanics is reviewed briefly. In 

Section 3, the fractional Hamiltonian of nonconservative 

systems with second order Lagrangian is constructed. In 

Section 4, one illustrative example is examined. The work 

closes with some concluding remarks (Section 5). 

2. Agrawal's Fractional Lagrangian 

Mechanics 

In Agrawal's work [12] the problem is formulated in term 

of the left and the right Riemann Liouville fractional 

derivatives, which is defined as [18]. 

The left Riemann Liouville fractional derivative reads as 
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which is denoted as the LRLFD, and the right Riemann 

Liouville fractional derivative reads as 
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which is denoted as the RRLFD. 

Here Γ represents the Euler's gamma function, and α is 

the order of the derivative such that 1n α− ≤ ˂ n  and is not 

equal to zero. If α is an integer, these derivatives are defined 

as follows 
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The RL fractional derivatives have the general properties 

can be written as  

( ( )) ( )p q p q
a t a t a tD D f t D f t− −=                        (5) 

under the assumptions that ( )f t is continuous and 0p q≥ ≥ .  

For p ˃0 and t ˃a, we get  

( ( )) ( )p p
a t a tD D f t f t− =                             (6) 

The general formula of semi group property is written as [2]
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Let f and g are two continuous functions on [ ],a b . Then, 
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The Euler Lagrange equations for the fractional calculus of 

variations problem with second order derivatives are 

obtained as 
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Here, L is a function of the form: 

2 2( , , , , )� a t t a t tb b
t

L L q D q D q D q D q eα β α β γ= , 

which describes the irregular Lagrangian or (nonconservative 

system)
 
and γ  is defined as damping factor

 
[19]. 

For 1α β= = , we have  

a t

d
D

dt

α =  

and 

t b

d
D

dt

α = −  

and equation (9) reduces to the standard Euler Lagrange 

equation of second order Lagrangian. 

3. Fractional Hamiltonian of  

Non-conservative Systems  

For nonconservative systems consider the Lagrangian 

depending on the fractional time derivatives of coordinates in 

the form  

2 2( , , , , )� a t t a t tb b
t

L L q D q D q D q D q eα β α β γ=         (10) 

We introduce the fractional generalized momenta as [20]  
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and the Hamiltonian depending on the fractional time 

derivatives reads as  

2
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Calculating the total differential of this Hamiltonian we 

obtain  
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Substituting the values of the momenta from equations 

(11-14) in equation (16) and making use of the Euler 

Lagrange equation (9), we obtain  
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This means that, the Hamiltonian is a function of the form 
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Thus, the total differential of this function reads as  

a t t b

a t t b

H H H
dH dq d D q d D q

q D q D q

H H H H
dp dp d d

p p

H
dt

t

α β
α β

α β α β
α β α β

π π
π π

∂ ∂ ∂= + +
∂ ∂ ∂

∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂

∂+
∂

    (19) 

Comparing equation (17) with equation (19), we get the 

following Hamilton's equations of motion  
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4. Illustrative Example 

We start with the following second order regular 

Lagrangian [21, 22]. 

2 21

2
ɺɺ ɺL q q = − 

                                  (28) 

In the presence of damping process 
t

e
γ

 the Lagrangian 

becomes [23].  
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                             (29) 

The corresponding fractional Lagrangian 

2 2 21 1
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2 2
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Making use of the Euler Lagrange equation (9), we obtain 
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if γ  goes to zero and 1α =  

we obtain the classical solution  

( ) cos sinq t C D A t B tt= + − −                       (32) 

The fractional canonical momenta read as 
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Using equation (15), the Hamiltonian function is 

calculated as 
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Thus, using equations (21-27), the equations of motion are  
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This result is in exact agreement with that obtained by 

using fractional Lagrangian formulation, equation (31). 

Noting that one may obtain the classical solution, equation 

(32), if γ  goes to zero and 1α =  in equation (45).  

5. Conclusion 

As a continuation to previous works, we have used the 

Hamiltonian mechanics to obtain the fractional Hamiltonian 

formulation for nonconservative systems with second order 

Lagrangian. The fractional Euler Lagrange equations for 

these systems were derived. Also we obtained the fractional 

Hamiltonian for these systems and then, Hamiltonian 

equations of motion of these systems have been obtained in 

the same manner as those obtained by using the formulation 

of Euler Lagrange equations from variational problems; and 

it is observed that the Hamiltonian formulation is in exact 

agreement with the Lagrangian formulation.  
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