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Abstract: The expression of Gaussian envelope soliton in Schrödinger equations are given and proved in this paper. According 

to the characteristics of the Gauss envelope soliton, further proposed that the interaction between Gaussian envelope solitons 

exists in Schrödinger equation. The symplectic algorithm for solving Schrödinger equation is proposed after analysis 

characteristics of Schrödinger equation. First, the Schrödinger equation is transformed into the standard Hamiltonian canonical 

equation by separating the real and imaginary parts of wave function. Secondly, the symplectic algorithm is implemented by 

using the Euler center difference method for the canonical equation. The conserved quantity of symplectic algorithm is given, 

and the stability of symplectic algorithm is proved. The numerical simulation experiment was carried out on Schrödinger 

equation in Gauss envelope soliton motion and multi solitons interaction. The experimental results show that the proposed 

method is correct and the symplectic algorithm is effective. 
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1. Introduction 

The research and application of solitons have gone deep 

into various fields, such as mathematics, fluid dynamics, 

nonlinear electromagnetism, optical fiber communication, 

solid state physics and so on. The definition of soliton is not 

the same in all research fields. Scholars of pure theory, such as 

mathematicians, define the soliton very strictly. From the 

mathematical point of view, the soliton is a stable, energy 

limited undispersed solution of some nonlinear partial 

differential equations, that is, it can always keep the wave and 

velocity unchanged. Scholars who value applications, such as 

some applied physicists, are more relaxed about the definition 

of soliton. Physicists believe that as long as the energy of the 

wave is limited and is distributed in a limited space or time 

range, even if the wave changes during the propagation 

process, such as the high order optical soliton in the optical 

fiber, they are also called soliton. There are many forms of 

solitons, such as bell shaped soliton, ring soliton, twisted 

soliton, enveloping soliton, anti soliton, sentry soliton, 

respiratory soliton, etc. 

Soliton has experienced a historical process from discovery 

to establish mathematical model and application. In 1834, 

John Scott Russell accidentally discovered the soliton waves 

in the canal. In 1895, D J Korteweg and De Vries proposed the 

KdV equation of one-way wave propagation in fluids, 

theoretically proved the existence of solitons. In 1955, Enrico 

Fermi, John Pasta and Stan Ulam confirmed the existence of 

solitons using computer numerical experiments. In 1962, 

Perring and Skyrme used Sine-Gordon equation to study the 

basic particles. The calculation results show that the soliton is 

spread out, even if the two soliton collision also still maintain 

the original shape and speed. In 1965, M. D. Kruskal and N. 

Zabusky used numerical simulation method to study the 

nonlinear interaction process of the soliton collision in plasma. 

The results further confirmed that the soliton wave remains 

constant shape and speed after the collision. At present, the 

soliton research has entered the application stage, especially 

the application of optical soliton in optical fiber 

communication field has achieved a lot of results [1-4]. 

The form of soliton is mainly obtained by decoupling the 
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equation. For the interaction process of solitons, it can be 

observed, verified and tested by numerical simulation [5-6]. 

There are many methods of numerical simulation, and the 

most commonly used method is the finite difference method. 

Symplectic algorithm is a numerical algorithm suitable for 

Hamiltonian system equations. 

In 1984, Feng Kang [7] made a presentation report 

entitled "difference scheme and the symplectic geometry", 

first proposed the symplectic geometry algorithm for 

Hamiltonian system, in the Beijing conference of 

differential geometry and differential equation computation 

of partial differential equations. Since then, Feng Kang and 

his team system [8-9] developed this algorithm in. The 

symplectic algorithm has obvious advantages compared 

with then on symplectic algorithm when the numerical 

calculation for the Hamiltonian systems. Because of 

maintaining the symplectic structure, the symplectic 

algorithm makes the numerical calculation of each step be a 

symplectic transformation, eliminate the artificial 

dissipation introduced non symplectic algorithm in the 

calculation process. Therefore, it has the long time tracking 

ability and high stability for the evolutionary computation 

[10-15]. 

The Schrödinger equation belongs to Hamiltonian 

system, it's mathematical framework is the theory of Hilbert 

spaces. Calculate the object of symplectic algorithm is a 

Hamiltonian system, it's mathematical framework is 

symplectic geometry. Therefore, the transform is necessary 

from the Schrödinger's equations to the symplectic 

algorithm. The Schrödinger equation is complex. If the real 

part and the imaginary part of the wave function ware 

regarded as the generalized coordinates and generalized 

momentum. The Schrödinger equations can be written in 

standard form canonical equations of Hamilton system. 

In the Schrödinger equation, the researchers are 

concerned with the mode square (wave packet) of the wave 

function instead of the direct solution of the Schrödinger 

equation. 

Because the direct solution of the Schrödinger equation 

is a conjugate complex number in pairs which physical 

meaning is unknown, but the wave packet is a real number 

which physical meaning is clear. 

The researching objects of this paper is the Gauss 

envelope soliton in Schrödinger equations, their motion and 

interaction process, using the method of combining the 

analytical method and symplectic algorithm. On the one 

hand, the correctness of symplectic algorithm will be 

verified, on the other hand the characteristics of solitons 

motion and interaction will be also verified by the 

numerical simulation using symplectic algorithm. 

2. Analytical Solutions and Interaction of 

Envelope Solitons in the Schrödinger 

Equation 

The one-dimensional stationary Schrödinger equation is 

shown in (1). 

( ) ( ) ( )
2 2

2

,
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2

x t
V x x t

t m x

ψ
ψ

∂  ∂− + ∂ ∂ 

ℏ
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Where, i  is the imaginary symbol; 2h= πℏ , h  is the 

Planck constants, m  is the quantum quality, ( ),x tψ  is the 

wave function, ( )V x  is the potential function. x is the 

position of quantum which is one-dimensional (1D), 2D or 

3D. 

2.1. The Schrödinger Oscillator Equation 

In theory, any potential function can be approximation 

using the parabolic at the nearby of minima in the vicinity can 

use according to the Taylor series expansion principle. In 

practice, any vibration, as long as the amplitude is small 

enough, can be seen as simple harmonic vibration. 

In the case of harmonic vibration, potential function is 

shown in (2). 

( ) 2 21

2
V x m xω=                  (2) 

Where, ω  is the resonant frequency. 

The Schrödinger equation (1) can be written to the form 

such as (3) when potential function is the harmonic oscillator 

function. 
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2.2. The Envelope Soliton Solution of Schrödinger 

Harmonic Oscillator Equation 

The Schrödinger harmonic oscillator equation has the 

envelope soliton solution. The envelope soliton solutions must 

satisfy two conditions: A. The wave function satisfies the 

Schrödinger harmonic oscillator equation as (3); B.The wave 

function does not change with time which always keeps the 

properties of soliton. The (4) is a envelope soliton solution of 

Schrödinger harmonic oscillator equation. 
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Where, a is a real number presenting the length scale. 

The condition A is proved as the following: 

First, ( ),x t
t
ψ∂

∂
, ( ),x t

x
ψ∂

∂
, ( )

2

2
,x t

t
ψ∂

∂
 are calculated such as 

(5), (6), and (7). 
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The Schrödinger harmonic oscillator equation will be 

established if (5) and (7) substitute into (3). 

The condition B is proved as the following: 

The wave packet is shown in (8) calculated by wave 

function (4). 

( ) ( )2 2
, exp cos

m m
x t x a t

ω ωψ ω = − − π  ℏ ℏ
         (8) 

The (8) can be transformed into (9). 

( )
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−
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Where, 

cosa tµ ω=                   (10) 

2m
σ

ω
= ℏ

                   (11) 

From equation (9), (10) and (11) can be seen: (1) the shape of 

wave packet ( ) 2

,x tψ is invariant and Gaussian; (2) the center µ

of wave packet is cosine with the amplitude a and the oscillating 

frequency ω ; (3) The wave packet width is determined by σ , 

and its size is inversely proportional to ω . σ is smaller, wave 

packet more narrow, kurtosis larger, the corresponding 

oscillation frequency ω larger, i.e. motion speed greater. 

In the Hamilton system, the generalized coordinates and the 

generalized momentum are a pair of variables. The other 

observations variables can be to transform from them. 

Therefore the calculation of these two variables is very 

important. The Schrödinger equation belongs to the Hamilton 

system. The generalized coordinate and the generalized 

momentum are the variables of the probability type. Their 

mathematical expectations are usually. 

The mathematical expectations of the coordinate is 

calculated by (12) are shown. 

( ) 2

, d cosx x x t x a tψ ω
+∞

−∞
= =∫         (12) 

Where, y is the intermediate variable, and cosy x a tω= − . 

From (12) it can be seen: the mathematical expectation of 

coordinate is the cosine wave with amplitude a and frequency 

ω . The result is equal to the center position of the wave packet, 

which is the same (10). It reflected from a side that the wave 

packet maintains the symmetry of shape in movement. The 

mathematical expected is only equal to the value of the center 

if the wave packet is symmetric. 

The mathematical expectation of momentum can be 

computed using (13). 

d
sin

d

x
p m ma t

t
ω ω= = −              (13) 

From (13) it can be seen that the mathematical expectation 

of momentum is the sine wave with the amplitude maω and 

the frequency ω . 

The relationship between coordinate and momentum 

mathematical expectation can be shown as (14) from (12) and 

(13). 

( )

2 2

22
1

x p

a maω
+ =                (14) 

According to the formula (14), the relationship between the 

coordinate and momentum mathematical expectation is 

elliptical. The trajectory is closed and elliptic in the phase 

space. In fact, it conclusion is consistent with the classical 

harmonic oscillator. 

2.3. The Interaction Amongst Envelope Solitons in the 

Schrödinger Equation 

According to the formula (4), the shape and motion of wave 

function are relevant with a  and ω . In order to make the 

distinction of multi solitons, the wave function is expressed as

( ), , ,x a tψ ω  in this paper. 

When multiple solitons interact, their wave functions 

overlay as shown in (15). 

( ) ( )
1

, , , ,
n

i i i

i

x t x a tψ ψ ωΣ
=

=∑ ， 1,2,3n = ⋯        (15) 

Where, n  is the number of solitons. 

The wave packet is the square of the wave function's 

models as shown in (16) when the multiple solitons interact. 

( ) ( ) 2

, ,P x t x tψΣ Σ=              (16) 

3. Symplectic Algorithm for Schrödinger 

Equation 

There are a variety of numerical solutions for the 

Schrödinger equation. Compared with other numerical 

methods, symplectic algorithm has outstanding advantages. It 

is shown that the algorithm can preserve the square of the 

model ( ) 2

,x tψ  conservation of the wave function. This 

advantage is the symplectic properties of symplectic 

algorithm for solving Schrödinger equation numerically.    

3.1. The Symplectic Algorithm for Schrödinger Equation 

In (1), H  is the Hamiltonian operator as shown in (17). 

( )
2 2

=
22

V x
m x

∂− +
∂

ℏ
H                  (17) 

Therefore, (1) can be rewritten in matrix form as shown in 

(18). 

i H
t

ψ ψ∂ =
∂

                  (18) 

Where,ψ is a complex matrix. 

1
H =
ℏ
H                    (19) 
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In (3), H  is the real matrix. H is replaced by central 

difference
2

2x

∂
∂

when it is numerical computated. so H  is 

Hermite matrix. 

According to [19], ψ  can be written as the sum of real part 

and imaginary part, as shown in (20). 

R Iiψ ψ ψ= +                    (20) 

The (21) is available after the (20) being substituted into 

(18). 

( ) ( )( )R I R I R Ii ii H H
t

ψ ψ ψ ψ∂ + = + +
∂

         (21) 

The (22) is available after expanding the (21). 

R I
R Ii iH H

t t

ψ ψ ψ ψ∂ ∂− = +
∂ ∂

            (22) 

The (23) is available after separating the real and imaginary 

parts of (22). 

R
I

I
R

H
t

H
t

ψ ψ

ψ ψ

∂ = ∂
∂ = −
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                 (23) 

The (23) can be abbreviated to (24) which is the 

Hamiltonian canonical form of Schrödinger equation. 

R R

I I

0

0

H

Ht

ψ ψ
ψ ψ
    ∂ =    −∂     

            (24) 

The (24) can be abbreviated to (25). 

t

∂ =
∂
Z

KZ                   (25) 

Where, 

R

I

ψ
ψ
 

=  
 
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0

0

H

H

 
=  − 
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Since H  is a Hermite matrix, (27) is established. 

T = −K K                    (28) 

According to (28), it can be proved that K  is a symplectic 

matrix, that is (29). 

T 0+ =K J JK                  (29) 

Where, J  is a symplectic unit matrix as shown in (30). 

 
=  
 

0

0

E
J

E
                  (30) 

Where, E  is a unit matrix. 

For (26), there are some numerical calculation methods. 

The Euler center format is symplectic, as shown in (31). 

1 1

2

n n n n

t

+ +− +=
∆

Z Z Z Z
K               (31) 

The (31) can be deformed into (32) and (33). 

( )1 1
2

n n n n

t
+ +

∆− = +Z Z K Z Z              (32) 

1
2 2

n n

t t
+

∆ ∆   − = +   
   

I K Z I K Z           (33) 

Where, I  is a unit matrix. 

Therefore, the iterative numerical solution of the symplectic 

scheme for (25) is shown in (34). 

1n n+ =Z FZ                    (34) 

Where, 

1

2 2

t t
−∆ ∆   = − +   

   
F I K I K              (35) 

3.2. The Symplectic Conservation Quantity in Schrödinger 

Equation 

The general solution of the Schrödinger equation (18) is 

shown in the (36). 

( )exp iHtψ = −                  (36) 

The (36) is numerical after discrete, and its iteration format 

is shown in (37). 

( )1 exp in nt+ = − ∆Hψ ψψ ψψ ψψ ψ              (37) 

In the (37), ( )exp i t− ∆H  is the time evolution matrix, and is 

called ( )exp i t= − ∆G H . Because G  is a complex exponential 

matrix, its determinant is 1, that is (38). 

( )exp i 1t= − ∆ =G H             (38) 

After the comparison (34) and the (37), it can be found that 

F  is equivalent to the time evolution matrix G . The 

difference is that F is 2 2N N×  complex matrix, while G  is 

N N×  complex exponential matrix. 

Because F  is a symplectic matrix, its determinant is 1 

according to the properties of symplectic matrix. 

1=F                   (39) 

According to the formula (38) and (39), it can be found that 

the symplectic algorithm of the discrete form (34) maintains 

the properties of the Schrödinger equation. 1=F  also shows 

that the symplectic scheme of (34) can guarantee the 

conservation of the form energy. 

In the derivation of the symplectic algorithm of the 

Schrödinger equation, the wave function ψ  is written as the 

sum of the real part 
Rψ  and the imaginary part 

Iψ , thus 

deriving the regular formula (25) of the symplectic algorithm. 
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Therefore, 
Rψ  and 

Iψ can be understood as generalized 

momentum and generalized coordinates. The form energy of 

symplectic algorithm is shown in (40). 

( ) ( )T T

R R I I

1 1

2 2

n n n n nE = +ψ ψ ψ ψψ ψ ψ ψψ ψ ψ ψψ ψ ψ ψ              (40) 

Where, n  is the number of iterations. According to the 

formula (40), the form energy of the symplectic algorithm of 

(34) is the square of the modulus of wave function ( ),x tψ . It is 

in conformity with the physical meaning of the Schrödinger 

equation which is that the cumulative probability is a constant. 

3.3. The Stability of the Symplectic Algorithm of the 

Schrödinger Equation 

According to the formula (35), the F  is a complex matrix. 

It can been seen that K  is an anti Hermite matrix from (29). 

So there is the (41). 

H
1 1

H

2 2 2 2

t t t t
− − ∆ ∆ ∆ ∆      = − + = −       

        
F I K I K I K I + K   (41) 

According to (35), F  is the Cayley transformation of 

2

t∆
K . According to the characteristics of the Cayley 

transformation, the available (42) is available. 

1 1

2 2 2 2

t t t t
− −∆ ∆ ∆ ∆      = − + = + −      

      
F I K I K I K I K      (42) 

Therefore, 1−F  is shown in (43). 

1
1 1

1 =
2 2 2 2

t t t t
−− −

−  ∆ ∆ ∆ ∆     = + − − +      
       

F I K I K I K I K    (43) 

After comparison (41) and (43), the (44) can be obtained. 

H 1−=F F                   (44) 

So, F  is a unitary matrix. According to the properties of 

unitary matrix, the modulus of all the eigenvalues of F are 1, 

that is: 

1iλ = ，
1,2,3i = ⋯            (45) 

Since all the eigenvalues of F  are not greater than 1, the 

(34) is always stable. 

4. Simulation Experiment Results and 

Analysis 

This paper simulated the soliton motion and multiple 

solitons interaction using symplectic algorithm to numerical 

calculating. The calculation results using symplectic 

algorithm were compared with that using theoretical 

analytical solution. The simulation parameters are: Planck 

constant 1=ℏ , quantum quality 1m = , x  range [ ]10,10− , 

0.2x∆ = , 0.02t∆ = . 

4.1. A Soliton Motion Process and Phase Trajectory 

The wave function parameters are 1a = , 5ω = π . First, 

( ), 0xψ  was calculated by (4) as the initial wave function. 

Then, it was substituted into (35) and iterative calculate. The 

snap shots of wave package at 0,2,5t =  are shown in Figure 1. 

 

Figure 1. The snapshotsof wave package. 

As you can see from Figure 1: (1) The envelope soliton 

keep waveform unchanged during the movement; (2) After 

5t = , the soliton finished half a cycle, which arrived position

1x = − from position 1x = . This results are consistent with the 

theoretical calculation equation (9). 

In the case of a single envelope soliton motion, the energy 
n

E  calculated according to the (40) is shown in Figure 2. 

 

Figure 2. The form energy of a soliton. 

As shown in Figure 2, the conserved quantity n
E  of the 

symplectic algorithm has not changed in the numerical 

iterative calculation process, which is consistent with the 

theoretical analysis. 

The coordinate mathematical expectation values x of a 

soliton motion change with time as shown in Figure 3. 

 

Figure 3. x t− . 
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As you can see from Figure 3: The coordinate mathematical 

expectation value x  is a cosine wave, which the amplitude 

and frequency are consistent with (12) of the theoretical 

calculation. 

The relationship of single soliton motion between the 

coordinate mathematical expectation value x  and the 

momentum expectation value p is shown in Figure 4. 

 

Figure 4. p x− . 

As you can see from Figure 4: (1) The relationship between 

x A and p is elliptical, which is consistent with the 

theoretical calculation (14). (2) After 2000 times iterations, 

four cycle calculation, x p−  still maintains a good 

numerical relations, which the four cycle trajectories 

completely overlap. It embodies the advantage of the 

symplectic algorithm. 

4.2. Simulation of the Interaction Process of Multiple 

Solitons 

4.2.1. Two Solitons Interaction 

The wave function parameters are 1
6a = −

, 2
5a =

, 

1 2
5ω ω= = π

. First, ( )1 1 1
, , , 0x aψ ω

 and ( )2 2 2
, , , 0x aψ ω

 were 

calculated using the (4). Second, ( ), 0xψ ∑ was calculated by 

the (15) as the initial wave function. Then, it was substituted 

into (34) and iterative calculate. The snap shots of wave 

package at 0,2,5t =  are shown in Figure 5. 

 

Figure 5. The snapshots of two solitons interaction. 

As you can see from Figure 5: (1) The shapes are invariant 

after the envelope solitons colliding each other. (2) After 5t = , 

the solitons finished half cycle movement. The soliton 1 

moved from position 6x = −  to position 6x = ; the soliton 2 

moved from position 5x = to position 5x = − . 

When the two envelope soliton moves, the energy n
E  

calculated according to the (40) is shown in Figure 6. 

 

Figure 6. The form energy of two solitons. 

As shown in Figure 6, the conserved quantity n
E  of the 

symplectic algorithm has not changed in the numerical 

iterative calculation process, which is consistent with the 

theoretical analysis. 

4.2.2. Three Solitons Interaction 

The wave function parameters are 1
7a = − , 2

1a = − , 3
6a = , 

1 2 3
5ω ω ω= = = π . First, ( )1 1 1

, , , 0x aψ ω , ( )2 2 2
, , , 0x aψ ω  and 

( )3 3 3
, , , 0x aψ ω  were calculated using the (4). Second, ( ), 0xψ ∑  

was calculated by the (15) as the initial wave function. Then, it 

was substituted into (34) and iterative calculate. The snap 

shots of wave package at 0,2,5t =  are shown in Figure 7. 

 

Figure 7. The snapshots of three solitons interaction. 

As you can see from Figure 7: (1) The shapes are invariant 

after the envelope solitons colliding each other. (2) After 5t = , 

the solitons finished half cycle movement. The soliton 1 

moved from position 7x = −  to position 7x = ; the soliton 2 

moved from position 1x = − to position 1x = ; the soliton 3 

moved from position 6x = to position 6x = − . 

When the three envelope soliton moves, the energy n
E  

calculated according to the (40) is shown in Figure 7. 
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Figure 8. The form energy of three solitons. 

As shown in Figure 8, the conserved quantity n
E  of the 

symplectic algorithm has not changed in the numerical 

iterative calculation process, which is consistent with the 

theoretical analysis. 

4.3. The Distribution of Eigenvalues of Matrix F  

When 0.02t∆ = , x∆  is 2, 0.20.02, the distribution of 

eigenvalues of F  is shown in Figure 9. 

 

Figure 9. Distributions of the eigenvalues of matrix F . 

The all eigenvalues are distributed on the unit circle in the 

figure 9, that is =1
i

λ , which is consistent with (46). This 

shows that the algorithm is stable. 

5. Conclusions 

When potential well is the harmonic oscillator, there are 

envelope solitons of the wave packet in Schrödinger equation. 

The shapes of solitons do not vary with time. The solitons can 

maintain the shapes respectively after two or more solitons 

colliding each other. Symplectic algorithm has the advantages 

in the numerical computation for the Hamiltonian system. The 

stability of numerical computation is very outstanding. Next, 

we will continue to study the shape and interaction of 

envelope solitons in 2D and 3D Schrödinger equation. 
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