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Abstract: The aim of this study is to investigate the chimera states in three populations of pendulum-like elements with 

inertia in varying network topology. Considering the coupling strength between oscillators within each population is stronger 

than the inter-population coupling, we search for the chimera states in three populations of pendulum-like elements under the 

ring and the chain structures by adjusting the inertia and the damping parameter. The numerical evidence is presented showing 

that chimera states exist in a narrow interval of inertia in ring and chain structures. It is found that chimera states cease to exist 

with the decreasing of damping parameter. Furthermore, it is revealed that there is a linear relationship between the inertia (m) 

and damping parameter threshold (εth) in the two network structures. 
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1. Introduction 

The phenomenon of chimera states in the network of 

coupled, identical oscillators has attracted a great deal of 

theoretical and experimental interest. It corresponds to the 

spatiotemporal patterns, in which some oscillators exhibit 

coherent dynamics while the others are incoherent in the 

system. The existence of this remarkable state where the 

population of identical oscillators split into two parts: one is 

synchronized and the other is desynchronized were first 

discovered in 2002 by Kuramoto and Battogtokh [1], and in 

2004 Abrams and Strogatz investigated the phenomenon 

analytically in a ring of phase oscillators coupled by a cosine 

kernel and defined it chimera state [2]. 

Since then, several groups have studied the nonlinear 

dynamics of chimera states in spatiotemporal systems with 

theories and experiments [1-26]. In 2008, Abrams and 

Strogatz found chimera states for identical coupled Kuramoto 

phase oscillators in network of two populations with strong 

coupling in each population and weaker coupling between 

them [3]. In 2010, Martens have found chimera states in the 

case of triangular network [4, 5]. More recently, the systems 

of phase oscillators with inertia have been studied 

theoretically [18-21]. In 2014, Bountis investigated the 

chimera states in two coupled populations of penludum-like 

elements and found the states occur within a narrow interval 

of small values of inertia [18]. In particular, chimera states 

have been shown to emerge in heterogeneous phase lag in the 

network of two coupled phase oscillators [22-24]. 

Furthermore, recent theoretical works have also explored 

chimera states and discussed the dynamics with different 

frequency distributions [25, 26]. 

In this paper, the chimera states in three coupled populations 

of pendulum-like elements in the network of ring and chain 

structures are investigated. Considering the oscillators within 

each population are coupled stronger than the neighboring 

populations and the oscillators oscillate at the same natural 

frequency and fixed phase lag, we discuss the variations of 

chimera states by adjusting the inertia and the damping 

parameter. This paper is organized as follows. In Section 2 the 

model system is presented and the initial conditions are given. In 

Section 3, the results of simulations by adjusting the inertia m  
in network of ring and chain structures are presented. The effects 

of damping parameter ε  on the two network topologies are 

considered and the relationship between m  and ε are analyzed. 

Section 4 summarizes the findings. 

2. Model 

The network of three populations of pendulum-like 
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elements is considered. The dynamics of the network is governed by the following equations:
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where i  denotes the individual oscillators in each population 

with superscripts {1,2,3}σ ∈ . The network has Nσ  

oscillators in each population and the phases of the oscillator 

are defined by θ . m  is the inertia term introduced to each 

oscillator, dσ  
is the gravitational force and α  is a fixed 

phase lag. Here, we keep the natural frequency 0ω = . The 

coupling kernel 'Kσσ  
describes the coupling strength 

between populations σ  and 'σ . We follow previous studies 

on chimera states [18] and set the coupling strength between 

the oscillators within each population ' 0.6Kσσ = , while 

neighboring populations couple with weaker strength 

' 0.4Kσσ = , such that the inter-population coupling is weaker 

than the coupling within each subpopulation. In this system, 

we keep 64N = , 1 2 3 0d d d= = = , and 2 0.05α π= −
 

constant and adjust ε  between 0 and 1. And in following 

simulations we use random initial conditions for oscillators in 

each population within (0, 2 )π .

 

3. Numerical Simulations and Discussions 

 

Figure 1. (Color Online) The left column are snapshots of the variable iθ  for oscillators in all populations, and the right column show order parameters 

( )Z tσ  correspondingly, for different values of inertia m  of a ring structure. (a) 0m = , (c) 0.006m = , (e) 0.012m = , (g) 0.05m = , (i) 0.1m = , (k) 

0.2m = . The oscillators in population 1, 2 and 3 are numbered 1 to 64, 65 to 128 and 129 to 192, respectively. The black, red and blue curves for ( )Z tσ
represent population 1, 2 and 3, respectively. 

To start with, the influence of inertia m  on chimera states in 

parameter space is investigated by increasing the value of m  

continuously while keeping other parameters fixed. Here, we 

consider the case of ring structure network composed of three 

populations connect in head to tail, and discuss the effects of 

inertia on the network behavior. The snapshots of the phase iθ  

of oscillators for all three populations at 1000t =  with different 

values of inertia m are presented in the left panels of Figure 1. 

As shown in Figure 1(a), we present the snapshot of the phases 

iθ  for all the oscillators without inertia ( 0m = ) at 1000t = . 
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The chimera states can be clearly observed, with the dynamics 

in one of the three populations shown disordered behavior, and 

the other two populations are in coherent motion (synchronized). 

When increasing the value of inertia m  up to 0.006 (Figure 1(c)) 

and 0.012 (Figure 1(e)), we observe that there is always one 

disordered population appearing in the whole system, and the 

disordered population can be anyone of the three populations. 

By keeping increasing the inertia up to 0.05m = , we find 

chimera states cease to exist. It is observed that the oscillators in 

one of the populations appearing a two layered coherent 

structure, while the other two populations keep the synchronized 

dynamics, as shown in Figure 1(g) and (i) for 0.05m =  and 

0.1m = , respectively. Then, as the inertia m further increasing 

up to 0.2, the whole system reachesfully synchronization, with 

each population synchronized with one another, as shown in 

Figure 1(k). By keeping increasing m , there are no sign of 

chimera states anymore. This is in accordance with previous 

investigation for the two populations case, where chimera states 

exist for small mass values 1m≪  [18]. 

In order to measure the degree of coherence for the 

oscillators in each population, we introduced the order 

parameter 
( )1

1

( ) j

N
i t

j

Z t N e
σθ

σ
−
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= ∑ , where 1, 2,3σ =  denotes 

the population 1, 2, 3, respectively. The modulus of order 

parameter 1Z =  denotes the coherent (synchronized) 

motion, while 1Z <
 
quantifies the incoherent (disordered) 

motion. The right panels show the evolution of ( )Z tσ  for 

different values of inertia in correspondence to the left 

panels. As can be seen in Figure 1(b), for 0m = , the modulus 

of order parameter for the 3-rd population 3Z  is well below 

1, while for the 1-st and 2-nd populations, 1Z  and 2Z  

approach 1, which means the 3-rd population is disordered 

and the population 1 and 2 are coherent. Remarkably, it is 

noticed that in a short period of time from the beginning, 

1,2,3Z  increase rapidly from 0, and approach 1. Then 3Z  

starts to derivate from the other two 1,2Z  and oscillate over 

time below 1. Figure 1(d) and (f) are similar to Figure 1(b). 

For Figure 1(h), the variations of order parameters 1,2Z  

reach to 1 with time and the dynamic of 3Z  is irregular. We 

note that the order parameter can not characterize the two 

layered coherent structure for the case 0.05m =  and 

0.1m = . For 0.2m =  in Figure 1(l), the system reaches to 

fully synchronization, so that all the order parameters reach 

to 1 with time. Besides, we calculate for higher inertia and 

find that oscillators escape from the coherent oscillations in 

each population. This leads to a higher degree of disorder of 

the system and breaks the chimera state. 

 

Figure 2. (Color Online) The left column are snapshots of the variable iθ  for oscillators in all populations for different values of inertia m  of a chain 

structure, and the right column show order parameters ( )Z tσ  correspondingly. (a) 0m = , (c) 0.5m = , (e) 4m = , (g) 8m = , (i) 12m = . The oscillators in 

population 1, 2 and 3 are numbered 1 to 64, 65 to 128 and 129 to 192, respectively. The black, red and blue curves for ( )Z tσ  represent population 1, 2 and 3, 

respectively. 
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In previous section, the influence of inertia on the 

emergence of chimera states in a ring structure is discussed. 

For a network with three nodes, there are two basic types of 

structure, a ring topology and a chain topology. To 

investigated the effects of different topology on emergence of 

chimera state, in the following, we will discuss a chain 

topology formed by the three populations. The network in 

chain topology can be created by simply setting the coupling 

strength in between the 2-nd population and 3-rd population 

of the above ring topology to zero. For the three populations 

in a chain topology, we will increase the value of inertia m , 

while keeping other parameters fixed, to observe the 

dynamical evolution of the system. The results are shown in 

Figure 2. In the left panels, we present the snapshots of the 

phase iθ  of oscillators for all three populations at 1000t =  

with different values of inertia m . As shown in Figure 2(a), 

we note that the oscillators without inertia in three 

populations show synchronization in each population, 

however, the three populations are not synchronized with 

each other. This is different from the ring structure 

results[See Figure 1(k)]. It seems to be easier for the three 

populations in ring structure to reach fully synchronization, 

but not in chain structure. A simple explanation is that in the 

ring structure the oscillators are better connected than in the 

chain structure for them to reach full synchronization. For 

0.5m = , as shown in Figure 2(c), the dynamics of oscillators 

in population 1 are completely coherent, while the other two 

populations both show the two layered coherent structure. 

When the value of inertia is continuously increased up to 4, a 

clear image of chimera states appears in Figure 2(e), in which 

population 1 is coherent and the other two populations are 

disordered. Then, as we increase the value of m  

continuously, chimera states can still be observed up to 

8m = , as shown in Figure 2(g). However, it is found that 

there are few oscillators escape from the synchronized 

population 1. As we continue to increase the inertia, more 

and more oscillators escape from the synchronized 

population, and there are no clear sign of chimera states 

above 12m = , see Figure 2(i). It is appearant that chimera 

states exist in different parameter space for the two different 

network structures. For the chain structure, chimera states 

will appear with 1m > . The right panels show the variation 

of ( )Z tσ  for the different values of inertia in correspondence 

to the left panels. As can be seen in Figure 2(b), all three 

modulus values of order parameter approach 1 with time, 

which means all the populations are coherent (synchronized). 

For Figure 2(d), it is observed that 1Z  increases rapidly 

from 0 to 1, while the other two 2,3Z  oscillate irregularly 

between 0 and 1 in the beginning and then oscillate 

periodically with time below 1. In Figure 2(f), it can be seen 

that 1Z
 
reaches to 1 with time and the other two 2,3Z  

oscillate below 1 irregularly. For 8m =  as shown in Figure 

2(h), the variation of order parameter for 1-st population 

oscillates around 1 over time and the other two 2,3Z  are 

oscillating below 1 irregularly. As the inertia m  further 

increases, the degree of disorder of the system becomes 

higher, so the variations of modulus of order parameters for 

three populations oscillate below 1 for 12m =  in Figure 2(j). 

Furthermore, we have tried to simulate with higher inertia 

and the system has always been disordered. 

 

Figure 3. Snapshots of iθ  at 1000t =  for 0.012m =  in the ring structure with different damping parameters: (a) 1ε = , (b) 0.9ε = , (c) 0.65ε = , (d) 

0.55ε = , (e) 0.5ε = , (f) 0.3ε = . The oscillators in population 1, 2 and 3 are numbered 1 to 64, 65 to 128 and 129 to 192, respectively. 

In the above section, we have discovered that chimera states exist in both ring and chain structures, and it will 
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disappear with increasing inertia m . Here, the impact of the 

damping parameter ε  with a fixed inertia in the ring 

structure is discussed. We decrease the damping parameter ε  

gradually for the case 0.012m =  in Figure 1(e) and present 

the corresponding snapshots of the phase iθ  of oscillators for 

all three populations at 1000t = . In Figure 3(a) and (b), it is 

shown that the 1-st and 2-nd populations are coherent, while 

the 3-rd population is disordered and chimera states can be 

observed clearly for 1ε =  and 0.9ε = , respectively. Tuning 

down ε  to 0.65, we observe that the 1-st and 2-nd 

populations keep coherence (synchronized) and the imperfect 

two layered structure appeared in the 3-rd population. By 

further decreasing the damping parameter, the two layered 

coherent state pertains, see results for 0.55ε =  (Figure 3 (d)) 

and 0.5ε =  (Figure 3 (e)). To decrease the value of ε  

further, we find that all the populations are fully 

synchronized in the ring structure, as shown in Figure 3(f) for 

0.3ε = . Therefore, below the threshold value of ε , it is 

found that one of the populations in the system appears the 

two layered coherent structure while the other two 

populations are coherent (synchronized) or all of the three 

populations are fully synchronized, and chimera states no 

longer exist. 

 

Figure 4. Threshold values ( )th mε ε= , below which chimera states cease 

to exist in the ring structure. 

To better characterize the influence of the damping 

parameter ε  on the dynamics of the ring structure, we have 

repeated the calculations for different values of m  and 

showed the phase diagram of ( , )thm ε  in Figure 4. We choose 

0.001m = , 0.003 , 0.005 , 0.007 , 0.012 , 0.014 , 0.017 , 

0.018 , 0.02 , and obtain the corresponding threshold value 

7( .) 0 3mε = , 0.38 , 0.49 , 0.51 , 0.55 , 0.61 , 0.65 , 0.67 , 

0.71 . When the value of ε  is above thε , chimera states can 

be observed, otherwise chimera states cease to exist. It is 

worth noting that thε  varies almost linearly with m . 

 

Figure 5. Snapshots of iθ  at 1000t =  for 4m =  in the chain structure with different damping parameters: (a) 1ε = , (b) 0.8ε = , (c) 0.7ε = , (d) 0.6ε = , 

(e) 0.4ε = , (f) 0.1ε = . The oscillators in population 1, 2 and 3 are numbered 1 to 64, 65 to 128 and 129 to 192, respectively. 

In this section, the impact of the damping parameter ε  

with a fixed inertia in the chain structure is discussed. We 

consider the case 4m =  by decreasing the damping 

parameter ε  continuously and present the corresponding 

snapshots of the phase iθ  of oscillators for all three 

populations at 1000t =  in Figure 5. As shown in Figure 5(a) 

and (b), it is observed that the 1-st population is coherent, 

while the 2-nd and 3-rd populations are disordered. Chimera 

states can be observed clearly for 1ε =  and 0.8ε = , 

respectively. By decreasing ε  to 0.7, the 3-rd population 

show coherent dynamics and the other two populations are 

disordered in Figure 5(c). We can see that some oscillators in 

the 2-nd population exhibit coherent behavior. By further 
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decreasing the damping parameter, a clear image of the two 

layered coherent structure occurs in the 2-nd population, 

meanwhile, a small portion of oscillators escapes from the 

coherent in population 1-st and 3-rd, see Figure 5(d). Then, 

by decreasing the value of ε  further and it is found that all 

the populations are disordered in the chain structure, as 

shown in Figure 5(f) for 0.1ε = . Therefore, it suggests that 

more and more oscillators escape from the coherent 

population as ε  decreasing continuously below the threshold 

value, so that chimera states cease to exist. 

 

Figure 6. Threshold values ( )th mε ε= , below which chimera states cease 

to exist in the chain structure. 

In the following, we want to explore how the damping 

parameter ε  and the inertia m  influence the emergence of 

chimera states in the chain structure. We have calculated with 

different values of 3m = , 3.5 , 4 , 4.5 , 5 , 5.5 , 6 , 6.3 , 7 , 

and plotted the phase diagram of ( , )thm ε  in Figure 6 with 

corresponding threshold value 4( .) 0 5mε = , 0.62 , 0.64 , 

0.68 , 0.76 , 0.85 , 0.86 , 0.89 , 0.9 , respectively. When 

thε ε> , we can observe the chimera states in a continuous 

parameter space of ε , otherwise not. All the threshold values 

thε  corresponding to different inertia m  fall on roughly a 

straight line. 

4. Conclusions 

In this paper, the appearance of chimera states in three 

populations in the ring and the chain network structures 

composed of three populations by adjustment of inertia m  

and damping parameter ε is investigated. In the network of 

ring structure, chimera states are numerically observed for 

sufficiently small value of inertia 0 1m< < , while chimera 

states exist in chain structure with the inertia 1m > . Clearly, 

chimera states occur in a narrow interval of inertia for the 

two different network structures. Our results suggest that the 

system will vary from chimera states to fully synchronized 

by increasing m  or decreasing ε  in ring structure. And with 

increasing m  or decreasing ε  in chain structure, there will 

be more and more oscillators escape from the coherent 

population, so that the system becomes disordered and 

chimera states cease to exist. Interestingly, as m increases or 

ε decreases, the two layered coherent structure appears in 

both two network structures. Furthermore, we find the 

corresponding damping thresholds for different value of 

inertia and demonstrate the nearly linear relationship between 

m
 
and thε . This linear relationship has been known to exist 

for the two populations case. We have also tried to simulate 

with different numbers of oscillators in each population, such 

as 32N = , 128N = , and found that the conclusions applies 

to larger system as well. 
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