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Abstract: Quantum theory of fields is the most general theory to date. It has an extremely wide field of application: - the 

physics of elementary particles and their interactions (summarized by the Standard Model); - the physics of the universe close 

to the Big Bang (primordial fluctuations from which the formation of the structure of the universe originates, evaporation of 

black holes, Hawking radiation); - the formalism of condensed matter physics, with applications such as superconductivity, 

superfluidity, phase transitions. Indeed, the quantum theory of fields has been successfully implemented in quantum systems, 

notably in research on fundamental state energy, elementary excitations spectrum, degeneracy parameters: long range order, 

Bogoliubov approximation, density matrix diagonalization,…, as well as the characteristics of these systems: movement 

equation, dynamics of the system,…. Three different quantum systems were concerned in this theoretical study: - a gas of 

identical atoms of spin zero confined into the trap; - electron gas of spin ½ into the metal; - and a gathering of identical ions of 

spin zero at high density confined into a radiofrequency linear Paul trap. The microscopic theory was used in the each case and 

the results obtained by the researchers are presented. 

Keywords: Quantum Theory of Fields, Quantum Systems, Microscopic Theory, Bosons, Fermions, Second Quantization,  

Density Matrix, Fundamental State Energy 

 

1. Introduction 

In quantum theory of fields, particles are described by the 

fields; the quanta of these fields being particles 	�1� . This 

theory, also used for the study of elementary particles, has 

been successfully used within the framework of quantum 

systems, especially in the case of the spin zero boson system 

without electric charge confined in a magneto-optical 

trap	�2, 3�, and electron gas confined in a metal	�4�. The issue 

at stake in this paper is to remind the definition of quantum 

systems, to present some theoretical results obtained on using 

this theory in the study of neutral boson gas confined in a 

magneto-optical trap, and electron gas in a metal. The paper 

will end by giving our results, on the study of an ultra-cold 

and high density non-neutral plasma of identical spin zero 

ions confined in a radiofrequency linear Paul trap	�5�. 
2. Dogmas of Quantum Theory of Fields 

The key element of quantum theory of fields is the pooling 

of quantum theory and the theory of special relativity [6]. 

Einstein's special relativity in demonstrating that mass and 

energy can be converted into one another has put an end to 

matter- energy dualism. The wave-particle duality has been 

abolished by the new quantum theory, where field and 

particles no longer appear as distinct, but as complementary. 

The essential stage of this latest discovery is the article 

published in 1928 by Jordan and Eugene Wigner, and the two 

articles published in 1929-30 by Heisenberg and Pauli; in 

these articles, it is shown that material particles can be 

considered as the quantons of various fields in the same way 

that the photon is the quantum of the electromagnetic field, 

each type of elementary particle being supposed to 

correspond to a field [1, 7]. The dogmas of the quantum 

theory of fields can be summed up in five points: - The 

essential material reality is a set of fields; 

The fields obey the principles of special relativity and 

quantum theory;  

The intensity of a field at a particular point gives the 

probability of finding the quantons associated with it, that is 
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to say, the fundamental particles observed by experimenters;  

The fields interact with each other, which means that the 

quantons associated with them interact, these interactions are 

themselves mediated by quantons;  

There is nothing outside of that [7]. 

These points form the basic image of physics and the task 

of physicists is to bring all the rest of physics into this strict 

framework. 

3. Quantum Theory of Fields Really 

Necessary 

Whenever we have a system with an interacting body, of 

which microscopic physics is supposed to be known, it is 

described by an effective theory which is a renormalizable 

theory of fields [8]. This results in an extremely wide field of 

application which is articulated around three main areas:  

The physics of elementary particles and their interactions, 

summarized by the Standard Model;  

The formalism of condensed matter physics, with 

applications such as superconductivity, superfluidity, phase 

transitions; 

The physics of the universe close to the Big Bang: 

primordial fluctuations from which the formation of the 

structure of the universe originates, evaporation of black 

holes (Hawking radiation), etc. [6].  

Quantum theory of fields has given rise to new ideas: anti-

matter, vacuum physics, identical particles, and exchange 

forces that have transformed the physicists view reality. The 

development of this theory has trained physicists in new 

areas of mathematics, such as Hilbert spaces, operator theory 

and matrix algebra [7]. 

4. Quantum Systems 

Quantum system is obtained by confining identical 

particles (molecules, atoms, electrons, ions…) in a box or a 

trap. When the density of the particles is very high or if the 

temperature of the system is lower, the quantum effects of 

these particles show up	�9�. The density of molecules in air 

room temperature and atmospheric pressure is about 10
19

 cm
-

3
. In liquids and solids, the density of atoms is of order of 

10
22 

cm
-3

, while the density of nucleons in atom is about 10
38

 

cm
-3. At room temperature, electrons in metal (about 10

22 
to 

10
23 

electrons per cm
-3

) are in a quantum system. In solids, 

quantum effects become strong for electrons in metals below 

the Fermi temperature, which is typically 10
4
-10

5
K. For 

helium liquids, the temperature required for observing 

quantum phenomena is of order of 1K. Due to the much 

higher particle density in atomic nuclei, the corresponding 

degeneracy temperature is about 10
11 

K �10�. 
Classical mechanics as well as quantum mechanics are no 

longer used. Instead, we have recourse to quantum statistical 

physics as well as to quantum theory of fields. So, entire spin 

particles (bosons) and half-entire spin particles (fermions) 

appear. Bosons comply with Bose-Einstein statistics whereas 

fermions comply with Fermi-Dirac statistics. Microscopic 

theory has allowed to study the characteristics of these 

quantum systems by using fields corresponding to 

imperceptible identical particles of each system	�11�. 
5. Properties of Quantum Systems 

For the quantum system, being made of indiscernable and 

identical particles, the use of the second quantization method 

offers a more flexible representation that is more concised 

and neater. The second quantization usually considers a 

group of particles more or less independent paired by weak 

interactions	�4�. Particle operators which are concerned with 

second quantization are attributable to the quantum theory of 

fields �12�.  
5.1. Microscopic Theory 

The microscopic theory allows to inquire the properties of 

the groups of identical particles enclosed in a box or a 

trap�9�. The points of microscopic theory are: - Particle field, 

in quantum theory fields stand for Klein-Gordon solutions 

deriving from a free Lagrangian density which is an invariant 

of Lorentz admitting a positive Hamiltonian density. - 

Particle operator (boson operator, fermion operator) annihiles 

or creates one-particle. - Space of system quantum states or 

Fock space. - Field operators of annihilation and creation of 

particle of impulsion p��  at the position 	r� . - Bogoliubov 

prescription for a system of particles in the fundamental state 

with interaction. - Density matrix of the system, it serves to 

characterize the correlations between particles located at r� 
and r�’. - Hamiltonian of the second quantization of particle 

system with short or long range interaction. - Temporal 

evolution of the Heisenberg field operator allowing to 

establish the Gross-Pitaevskii equation (neutral bosons with 

short range interaction) or Hartree-Fock equation (system 

with long range interaction). - Energy calculation of the 

fundamental state. - Spectrum of elementary 

excitations…�13�. 
5.2. Properties of Identical Neutral Particles of Spin Zero 

(Atoms, Molecules) in Trap or Box 

The application of microscopic theory to the system of 

bosons in interaction is but satisfied when there exists a weak 

repulsive interaction between particles, or a gas diluated with 

arbitrary repulsive interaction between particles �9� . Bose-

Einstein condensation (BEC) is a very active research field in 

condensed matter physics and material science. In the 

laboratory a suitable example of BEC is provided by a gas of 

an appropriate density of alkali-metal atoms. All stable alkali 

species Li, Na, K, Rb, and Cs have been 

condensed	�16, 17, 18�. Here are the results of the application 

of microscopic theory to the system of bosons of spin zero, 

with Wander’s short range interaction, confined �9, 10, 14�: 
5.2.1. Real Scalar Field 

φ�x� = �����ℏ�� �  �!��"# $a!���&e&(!) + a!���+e(!),	            (1) 

Equation (1) is the expansion of Klein-Gordon solution, 
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which derives to Lagrangian density of zero spin particle 

with the mass m. 

5.2.2. Boson Operators (One-boson Annihilation/Creation 

Operators) 

a-!���± =	 ∓(������ �  �)��"# 	$Π1�x� ± ik4φ5�x�,e∓(!)              (2) 

Operators (2) are reducible to operators Π1�x� and	φ5�x�	of 

the quantum system. 

5.2.3. Commutation Relations of Boson Operators 

6 7a-!���, a-!���89 : = δ!���!���8$a-!���, a-!���8, = 7a-!���9 , a-!���89 : = 0	                           (3) 

5.2.4. Fock Space of Quantum States 

<|n〉 = @A-BCD√F! |0〉	n = 1, 2, …I0|0J = 1	Im|nJ = δLF 	                       (4) 

5.2.5. Field Operators of Annihilation and Creation of 

Boson with Impulsion M��� at the Position N�� 
6 ψ1�r�� ≡ ∑ a-R���Ir|pJR��� = ∑ a-R���φR����r��R��� = �√S∑ a-R���TUV�.W�V�ψ19�r�� ≡ ∑ a-R���9Ip|rJ = ∑ a-R���9φR���∗ �r��R��� =	 �√S∑ a-R���9T&UV�.W�	V� 	R���    (5) 

5.2.6. Properties According to Field Operators 

The commutation relations of field operators have the 

form: 

Y $ψ1�r��, ψ19�r�8�, = δ�r� − r�8�$ψ1�r��, ψ1�r�′�, = $ψ19�r��, ψ19�r�8�, = 0                 (6) 

The density matrix of the system, which serves to 

characterize the correlations between particles located 

at	r�	and	r�8, is defined by ρ�r�, r�8� = ^φ�N�`ψ19�r��ψ1�r�′�`φ�N�a = ∑ Nb���φR���∗ �r��φR����r�′�R��� , 

it leads to the long range order. Let’s consider the density 

matrix in the ground state 

	ρ4�r�, r�8� = 	N4φ4∗�r��φ4�r�8� 	+cNb���φR���∗ �r��φR����r�8�R���d4  

The first term at right-hand side is of infinite range 

in 	�r� − r�8� , it arises directly as a consequence of the 

macroscopic occupation of a single quantum state, the 

condensate. 

lim|f��g&f��|→iρ4�r�, r�8� = jkS                              (7) 

The second term ∑ Nb���φR���∗ �r��φR����r�8�R���d4  has a finite 

range 	∑ NR���R���	d4 , it describes local correlations between the 

excited system particles. 

lim|f��g&f��|→4ρ4�r�, r�8� = �S @Nl + ∑ NR���R���	d4 C               (8) 

The presence of a term with an infinite range may be 

considered as characteristic of a superfluid boson 

system	�9�. 
In finite- sized system neither the concept of broken 

gauge symmetry, nor the one of off-diagonal long-range 

order can be applied. The condensate wave function Φ 

nevertheless still has a clear meaning: it can in fact be 

determined through the diagonalization of the one-body 

density matrix	�14�, ρ��r�′, r�� = 〈ψ19�r�′�ψ1�r��〉                       (9) 

The diagonalization of this one-body density matrix is 

�dr�8ρ��r�′, r��φR����r�′� =	� dr�′ �S∑ oV�R��� e(R���.�f��&f��8�φR����r�′� 	= � dr�′ ������ �dp�� e(R���.�f��&f��8�oV�φR����r�′� 	= � dr�′ δ�r� − r�′�oV�φR����r�′� = 	NR���φR����r�� (10) 

It corresponds to the eigenfunction φR����r��  with the 

largest eigenvalue NR���. This procedure has been used, for 

example, to explore Bose-Einstein condensation in finite 

drops of liquid helium by Lewart, Pandharipande, and 

Pieper (1988). 

Bose-Einstein condensation occurs when the number of 

atoms N4  of a particular single-particle state becomes very 

large: N4 ≫ 1  and the ratio N4/N  remains finite in 

thermodynamic limit N→ ∞. In this limit the states with N4 

and N4 ± 1 ≈ N4  correspond to the same physical 

configuration and, consequently, the operators	a-4 and a-49 can 

be treated like c numbers:	a-4 = a-49 = �N4	. BEC occurs, for 

a uniform gas, in the single-particle state ψ4 = �√t  having 

zero momentum, and the field operator ψ1�r��  can then be 

decomposed in the form  

ψ1�r�� = �N4/V +	ψ1′�r��                    (11) 

By treating the operator ψ1�r��  as a small perturbation, 

Bogoliubov developed the “first-order” theory for the 

excitations of interacting Bose-gas. The generalization of the 

Bogoliubov prescription to the case of non-uniform and time-

dependent configurations is given by 

ψ1�r�, t� = �N4φw�r�, t� + ∑ a-R���φR����r�, t�R���d4 = ϕ�r�, t� +δψ1�r�, t�                             (12) 

Where one has used the Heisenberg representation for the 

field operators	�9�. The function	ϕ�r�, t� = 	�N4φw�r�, t� is a 

classical field having the meaning of an order parameter and 

is often called the “wave-function of the condensate”. 

5.2.7. Properties According to Hamiltonian Operator 

The many-body Hamiltonian describing N interacting 

bosons confined by an external potential is given, in second 

quantization by: 
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 H1 = �dr�	ψ1 9�r�� 7R5z�L+ V1R(è|}: ψ1�r�� + ��� dr�U14	ψ1 9�r��ψ19�r��ψ1�r��ψ1�r��                                    (13) 

where 	ψ1 9�r��  and ψ1�r��  are the boson field operators that 

create and annihilate the particle at the point r�, respectively, 

and U14  is the two-body interatomic potential. The ground 

state of the system, as well as its thermodynamic properties, 

can be directly calculated starting from this 

Hamiltonian�14�. 
In order to derive the equation for the condensate wave 

function	ϕ�r�, t�, one has to write the time evolution of the 

field operator	ψ1 �r�, t�, using the Heisenberg equation with the 

many-body Hamiltonian (13) 

iℏ ��1�f��,���� = 7− ℏz�L∇1� + V1R(è|} + U14ψ19�r�, t�ψ1�r�, t�: ψ1�r�, t� (14) 

When one replaces the operator ψ1�r�, t� with the classical 

field	ϕ�r�, equation (14) becomes 

iℏ ����f��,���� = 7− ℏz�L∇� + VR(è|} + U4η4�r�, t�: ϕ4�r�, t�      (15) 

�4			is the effective potential. The use of this potential is 

compatible with the replacement of ψ1�r�, t�  by 	ϕ�r� . This 

equation, is known as Gross-Pitaevskii equation. 

The fundamental state energy is given by 

	E4 = ^0`H1`0a	E4 = ∑ ε�4N� +� ��S �N� − j�z� �    (16) 

and the elementary excitations spectrum are 

ε� = ε�4 + jSU4 + j&j�S U4                          (17) 

5.3. Properties of High Density Electron Gas Confined in a 

Metal 

The electron gas, confined in a metal has been 

considered as a quantum gas to which microscopic theory 

has been applied	�4, 9�. The results of this inquiry are the 

following: 

5.3.1. Electron Field (Dirac Field) 

��
� ϕ�x� = �√S∑ �LR���z∑ �a��+��p���v��p���e(R) + a��&��p���u��p���e&(R)��f��R����
ϕ∗�x� = �√S∑ �LR���z∑ �a∗��+��p���u���p���e(R) + a∗��&��p���v���p���e&(R)��f��R����

                                  (18) 

5.3.2. Electron and Positron Operators 

In order to get positron and electron operator, the fields are transformed into operators 

��
� ϕ1�x� = �√S∑ �LR���z∑ �a-��+��p���v��p���e(R) + a-��&��p���u��p���e&(R)��f��R����
ϕ19�x� = �√S∑ �LR���z∑ �a-�9�+��p���u���p���e(R) + a-�9�&��p���v���p���e&(R)��f��R����

                               (19) 

The coefficients of the development (19) are determined by inverse Fourier transforms as: 

��
� a-��&��p��� = �√S �LR���z � dx��	e(!)u��p� ∂4���� ϕ1�x��annihilation	operator	of	fermion�a-��+��p��� = �√S �LR���z � dx��e(!)ϕ19�x� ∂4���� v��p���	�creation	operator	of	anti − fermion�                       (20) 

These operators and their hermitic conjugates constitute 

fermion and anti-fermion operators. In taking to account the 

Pauli exclusion principle, the annihilation operator of a 

fermion a-��&��p���  and the creation operator of fermion a-�9�+��p��� take the following shapes�1, 4�: 
6 c- ≡ a-��&��p��� = �� @σ) − iσ£C = �0 01 0�c-9 ≡ a-�9�&��p��� = �� @σ) + iσ£C 	= �0 10 0�         (21) 

σ), σ£ are the Pauli matrises. One interprets n- = c-9c- as an 

operator number of particles with eigenvalues 1 or 0 associed 

to the respective eigenfunctions |1〉 = @�4C and	|0〉 = @4�C. 

5.3.3. Anti-commutation Relations 

6 �c-R���, c-R8�����9 � = δR���R8������c-R���, c-R8������ = �c-R���9, c-R8�����9 � = 0	                     (22) 

5.3.4. Fock Space 

6c-9R���¤���c-R���¤���|0〉 = nR���¤���4 |0〉nR���¤���4 = ¥1, p < p§0, p > p§                            (23) 
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5.3.5. Field Operators of Creation and Annihilation of 

Electron of Impulsion M��� at the Position N�� 
© ψ1�r�� ≡ ∑ c-R���Ir|pJR��� = ∑ c-R���φR����r��R���ψ19�r�� ≡ ∑ c-R���9Ip|rJ = ∑ c-R���9φR���∗ �r��R���R���                       (24) 

5.3.6. Anti-commutation Relations of Electron Field 

Operators 

Y �ψ1�r��, ψ19�r�8�� = δ�r� − r�8��ψ1�r��, ψ1�r�′�� = �ψ19�r��, ψ19�r�8�� = 0                      (25) 

5.3.7. Hamiltonian Operator of Electrons System 

In second quantization, the Hamiltonian operator has the form 

H1 = �dr�ψ19�r�� 7R5z�L+ V1R(è|}: ψ1�r�� + ��∬dr�dr�8ψ19�r��ψ19�r�8�V1�r� − r�8�ψ1�r�8�ψ1�r��                             (26) 

V1�r� − r�8� is the long range Coulomb interaction. 

5.3.8. Equation of Movement (Temporal Evolution of Heisenberg Operator) 

ℏ ��1�f��,���� 	≅ �R5z�L+ V1R(è|} + �dr�′	V1�r88 − r8� 〈ψ19�r8�ψ1�r8�〉�ψ1�r88� 	− � 	dr�′	ψ1�r8�	V1 �r88 − r8� 〈ψ19�r8�ψ1�r88�〉           (27) 

5.3.9. Dynamics of the System (Hartree-Fock Equation) 

εRφR�r88� ≅ ¬R5z�L+ V1R(è|} + �S� dr�′V1�r88 − r8� ∑ n­­ φ­∗�r8�φ­�r8�®φR�r88� − � dr�′φR�r8�V1�r88 − r8�∑ n­φ­∗�r8�φ­�r88�­    (28) 

5.3.10. Fundamental State Energy and Elementary Excitation Spectrum 

The fundamental state energy according to the Hamiltonian operator is 

	E4 = ^0`H1`0a 	= ∑ NR¤4 εR4R¤ + ��∑ V4^0`c-9R¤c-9Rg¤gc-Rg¤gc-R¤`0aRRg¤¤g 	+ ��∑ V¯^0`c-9R+¯¤c-9R¤c-R+¯¤8c-R¤`0aR¯¤,¯d4 =∑ NR¤4 εR4R¤ + ��∑ V4NR¤4RRg¤¤g �NRg¤g4 − δRgRδ¤g¤� + ∑ V¯R¯¤ NR+¯¤4 NR¤4 	                                   (29) 

and the elementary excitations spectrum are  

εR¤°§± = ���²³´�j�µ = εR4 + ∑ NRg¤g4Rg¤g V4 − ∑ NRg¤g4 VRg&RRg¤g δ¤¤g                                               (30) 

5.4. Properties of Ultra-cold Identical Ions of Spin Zero at 

High Density in rf Linear Paul Trap 

Ultra-cold trapped ions are used as a quantum memory for 

light 	�19, 20� . We applied the microscopic theory to a 

gathering of identical ions of spin zero at high density 

confined in a radiofrequency linear Paul trap. The results of 

our investigation	�5, 15� are the following: 

5.4.1. Fields of Spin Zero Ion and Anti-ion (Complex 

Scalar Field) 

<ϕ�x� = ������� �  �!��!� $a@k��Ce(!) + b∗@k��Ce&(!),
ϕ∗�x� = ������� �  �!��!� $b@k��Ce(!) + a∗@k��Ce&(!),	      (31) 

These fields are the expansion of the solutions of Klein – 

Gordon equation which derives to a mass particle charged 

Lagrangian density. 

5.4.2. Spin Zero Ion and Anti-ion Operators 

In order to get ion and anti-ion operators, fields (31) are 

transformed into operators and the coefficients of the 

development are determined by inverse Fourier transforms as:  

< a-!��� = ������� �  �)��!� 7��1�)��� − ik4ϕ1�x�: e(!)b·!��� = ������� �  �)��!� 7��1∗�)��� − ik4ϕ1∗�x�: e(!)       (32) 

a-!���, b·!��� and their hermitic conjugates constitute ion and anti-

ion operators. 

5.4.3. Commutation Relations of Ion and Anti-ion 

Operators 

6 7a-!���, a-!8����9 	: = 7	b·!���, b·!8����9 : = δ!���!8����$	a-!���, a-!8����, = $	b·!���, b·!8����	, = 7	a-!���9 , a-!8����9 	: = 	… = 0	      (33) 

5.4.4. Fock Space 

Let’s consider the wave functions | …NR����+�…	NR����&�… 〉	 
describing the stationary states, the wave 

function 	| NR����+�〉	 corresponding to the state which 

in	NR����+�	particles have a impulsion	p�� and a charge Q = e	NR����+�; 
the wave function | NR����&�〉 corresponding to the state which 

in 	NR����&�	 particles have a impulsion 	p��  and a charge Q =−e	NR����&�. Thus, the Fock space becomes 
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 `N�+�, N�&�〉 = ��j�º�!j�»�! �a-9�j�º�@b· 9Cj�»� 	∣ 0〉, N�+�, N�&� = 0,1,2,3…	                                    (34) 

with ^N�+�, N�&�`M�+�, M�&�a = δj�º�¾�º�	δj�»�¾�»�  
and 

��
�a-R���9 ¿NR����+�, NR����&�	〉 = ÀNR����+� + 1 	¿NR����+� + 1,NR����&�	〉
b·R���9 ¿NR����+�, NR����&�	〉 = ÀNR����&� + 1	¿NR����+�, NR����&� + 1〉 

��
�a-R��� 	¿NR����+�, NR����&�	〉 = ÀNR����+� 	¿NR����+� − 1,NR����&�	〉
b·R��� 	 ¿NR����+�, NR����&�	〉 = ÀNR����&� 	¿NR����+�, NR����&� − 1	〉 

5.4.5. Field Operators of Annihilation and Creation of Ion 

and Anti-ion of Impulsion M��� at the Position N�� 
© ψ1�r�� = ∑ $a-R��� + b·R���,R��� Ir|pJ = ∑ $a-R��� + b·R���,φR����r��R���ψ19�r�� = ∑ 7a-R���9 + b·R���9:R��� Ip|rJ = ∑ 7a-R���9 + b·R���9:R��� φR���∗ �r��	    (35) 

5.4.6. Properties According to the Field Operators 

The commutation relations of field operators have the form 

Y $ψ1�r��, ψ19�r�8�, = δ�r� − r�8�$ψ1�r��, ψ1�r�′�, = $ψ19�r��, ψ19�r�8�, = 0                (36) 

The one-body density matrix is defined 

ρ��r�′, r�� = ^φ�N�`ψ19�r��ψ1�r�′�`φ�N�a = ∑ NR����+�φR���∗ �r��φR����r�′�R��� + ∑ NR����&�φR���∗ �r��φR����r�′�R���                         (37) 

In a fundamental state, the one-body density matrix becomes 

	ρ4�r�, r�8� = N4�+�φ4∗�r��φ4�r�8� +cNR����+�φR���∗ �r��φR����r�8�R���d4 	+ N4�&�φ4∗�r��φ4�r�8� +cNR����&�φR���∗ �r��φR����r�8�R���d4  

Let’s search for the limit of the one-body density matrix in 

a fundamental state when |r�′ − r�| tends to zero 

lim`f��g&f��`→4 ρ4�±��r�, r�8� = �S 7N4�±� + ∑ NR����±�R���d4 :         (38) 

It describes local correlations between the excited system 

particles. 

The limit of one-body density matrix in a fundamental 

state when �r�′ − r�� tends to ∞ is 

lim`f��g&f��`→i ρ4�±��r�, r�8� = j��±�S                         (39) 

because of destructive interferences this limit exists and 

allows to the presence of macroscopic particles in a 

fundamental state (BEC) �5�. 
Let’s note that in the case of linear Paul trap, the 

dimension of the system confined is finite; then the limit to 

infinity is no longer used. The condensat wave function	Φ is 

given by the diagonalization of the one-body density matrix 

� dr�8Á��r�8, r��φR����r�′� =	� dr�′ �S∑ �NR����+� + NR����&��R��� e(R���.�f��&f��8�φR���	�r�′� 		= � dr�′ ������ �dp�� e(R���.�f��&f��8��NR����+� + NR����&��φR���	�r�′� 		=� dr�′ δ�r� − r�′� �NR����+� + NR����&��φR����r�′� 	= NR����+�φR����r�� + 	NR����&�φR����r��                      (40) 

It corresponds to the eigenfunction	φR����r��, with the largest 

eigenvalue NR���.  
In the case of wake interaction or a high density in the 

trap, the fluctuations in the fundamental state are due to 

Coulomb interaction between charged particles. The 

Bogoliubov approximation leads for boson ions to 

ψ1±�r�, t� = ÀN4�±�φw�r�, t� + δψ1±�r�, t� = Φ±�r�, t� + δψ1±�r�, t�                                                (41) 

5.4.7. Properties According to the Hamiltonian Operator 

In second quantization, the Hamiltonian operator has the form 

H1 = �dr�ψ19�r�� 7R5z�L+ V1R(è|}: ψ1�r�� + ��∬dr�dr�8ψ19�r��ψ19�r�8�V1�r� − r�8�ψ1�r�8�ψ1�r��                         (42) 

here V1�r� − r�8� is the long range Coulomb interaction. 

The temporal evolution of Heisenberg field operator leads to 

i ��1�f88��� 	= −$H1, ψ1�r88�, 	≅ � R5z�L + V1R(è|} + �dr�′	V1�r88 − r8� 〈ψ19�r8�ψ1�r8�〉�ψ1�r88� 	+ � 	dr�′	ψ1�r8�	V1 �r88 − r8� 〈ψ19�r8�ψ1�r88�〉		 (43) 
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and the dynamics of the system (Hartree-Fock Equation) is given by 

εRφR����r88� ≅ ¬ R5z�L + V1R(è|} + � 	dr�′	 	V1 �r88 − r8�∑ NÂ��+�­ φ­∗�r8�φÂ��r8�®φR����r′′� + � 	dr�′	φR����r′� 	V1 �r′′ − r′� ∑ NÂ��+�φÂ�∗�r′�φÂ��r′′�	Â�         (44) 

Equation (44) is the Hartree-Fock equation of zero spin positive charge boson in the radiofrequency linear Paul trap. For the 

negative charge boson, we have the equation 

εRφR����r88� ≅ ¬ R5z�L + V1R(è|} + �dr�′	 	V1 �r88 − r8� ∑ N­�&�­ φÂ�∗�r8�φÂ��r8�®φR����r′′� + � 	dr�′φR����r′�V1�r′′ − r′� ∑ NÂ��&�φÂ�∗�r′�φÂ��r′′�Â�          (45) 

The energy of the fundamental state of system of positive charge boson in the Paul trap is given by: 

^0`H1`0a = ∑ N(�+�ε(4( + 7j��º�:z� $V4 + V¯, + ��∑ N(�+�N(8�+�$V4 + V¯,	(,(gÃ�                                         (46) 

Similarly, one finds for the antiparticles  

^0`H1`0a = ∑ N(�&�ε(4( + 7j��»�:z� $V4 + V¯, + ��∑ N(�&�N(8�&�$V4 + V¯,	(,(gÃ�                                          (47) 

The elementary excitations spectrum is 

	εR��� = Rz�L+ VR(è|} +∑ NÄ��+�Ä� � 	dr�8φÅ�∗�r8�	V�r88 − r8� φÅ��r8� 	+ ∑ NÂ��+�Â� � 	dr�8φÂ�∗�r′�	V�r88 − r8�φÂ��r′′� 	= Rz�L+ VR(è|} +V4∑ NÄ��+�Ä� + V¯ ∑ NÂ��+�Â� 	= Rz�L+ VR(è|} + ∑ NR����+�R��� $V4 + V¯,	                                       (48) 

6. Conclusion 

At low temperature or at high density, the quantum effects 

of particles appear. The spin and the electric charge play a 

determining role in the quantum degeneration of identical 

particle system. The entire spin of a particle is responsible for 

the macroscopic occupation of a quantum state of a single 

particle, the Bose-Einstein condensate (BEC). Whereas the 

half-full spin is responsible for the Pauli exclusion among 

fermions, and leads to the Fermi sea. The short range 

interaction between particles allows to contact potential and 

leads to Gross-Pitaevskii equation, whereas the long range 

interaction leads to Hartree-Fock equation. 

The use of real scalar field for describing neutral bosons 

of spin zero in the trap has given a good agreement with 

the experiment. It is the same with Dirac field in the study 

of electron gas in a metal. The complex scalar field has 

allowed us to determine the parameters of degeneration of 

the confined high density spin zero plasma as well as the 

energy, elementary excitations spectrum. The microscopic 

theory attributable to the quantum theory of fields has 

been successfully implemented in three different quantum 

systems in this paper. 

 

References 

[1] Weinberg S. (1995). The quantum theory of fields. Cambridge 
university press, volume I and II. New York. 

[2] Brantut J. P., Manipulation d’atomes froids dans des potentiels 
lumineux, thèse de doctorat, 2009. 

[3] Dieckmann K., Spreeuw R. J. C, Weidemüller M. & Walraven 
J. T. M. (1998). Two-dimensional magneto-optical trap as a 

source of slow atoms. Phys. Rev. A, vol. 58, no 5, pages 
389163895, Nov. 

[4] Vittel C. (1967). Théorie Quantique du Solide. Dunod, Paris. 

[5] Tshizanga (2011). Dégénérescence quantique d’un système de 
bosons chargés identiques de spin zéro dans un piège de Paul. 
Thèse de doctorat, Université Nationale Pédagogique de 
Kinshasa. Tel-00760356, Version1- 6 Déc. 2012. 

[6] Shaposhnikov M., (2007). Champs Quantiques Relativistes, 
EPF, Lausanne. 

[7] Pagels H., (1985). L’univers quantique. InterEditions, Paris. 

[8] Delamotte B. (2005). Introduction à la théorie quantique des 
champs. www.Iptmc.jussieu.fr. 

[9] Nozières P. and Pines D. (1999). The theory of quantum 
liquids. Perseus books, Cambridge. 

[10] Pethick C. J., Smith H. (2002). Bose–Einstein Condensation in 
Dilute Gases. Cambridge University Press. UK. 

[11] Govaerts J., (1995), L'interaction électrofaible: une fenêtre sur 
la physique au-delà du Modèle Standard, Procedings of the 
\Ecole Internationale Joliot-Curie de Physique Nucléaire, 
Noyaux en Collisions", Maubuisson (France), 11 - 16 
Septembre 1995, éd. Y. Abgrall, pp. 333-416. 

[12] Caradoc-Davies B. M. (2000). Vortex Dynamics in Bose-Einstein 
Condensates, These, University of Otago, 200 pages (2000). 

[13] Tshizanga (2016), Hartree-Fock Equation for a Non-neutral 
Plasma of Spin Zero Ions in a Paul Trap; American Journal of 
Physics and Applications. Vol. 4, No. 3, 2016, pp. 71-77. doi: 
10.11648/j.ajpa.20160403.11. 

[14] Dalfovo F., Giorgini S., Pitaevskii L. P. and Stringari S. 
(1999), Theory of Bose-Einstein condensation in trapped 
gases. Reviews of Modern Physics, Vol. 71, No. 3, April, pp 
463-512. 



100 Fernand Tshizanga Mpinga:  Quantum Theory of Fields and Properties of Quantum Systems  

 

[15] Tshizanga F. M., Badibanga P. M. and Ntampaka B. B. (2014), 
An investigation into the Parameters of Quantum 
Degeneration of an Ultra Cold Non-Neutre Plasma of identical 
Ions of Zero Spin in a Paul Trap. International Journal of 
Measurement Technologies and Instrumentation Engineering, 
4 (1), 51-70. January-March 2014. 

[16] Pei-Lin You, Large-Scale Bose-Einstein condensation in a 
vapor of cesium atoms at normal temperature (T=353K), J 
Material Sci Eng 5: 276 (2016). Doi: 10.4172/2169-
0022.1000276. 

[17] Pei-Lin Yu. Large-Scale Bose-Einstein Condensation in an 
Atomic Gas by Applying an Electric Field. American Journal 

of Modern Physics. Vol. 7. No 4, 2018, pp. 121-130. doi: 
10.11648/j.ajmp.20180704.11. 

[18] Pei-Lin You, Bose-Einstein condensation in a vapor of sodium 
atoms in an electric field, Physica B: condensed matter 
physics 491(2016) 8492, 
http://dx.doi.org/10.1016/j.physb.2016.03.017. 

[19] Mortensen A. Aspects of Ion Coulomb Crystal based Quantum 
Memory for Light. PhD thesis; 2005. 

[20] Dubess R. Réalisation, étude et exploitation d’ensembles 
d’ions refroidis par laser stockés dans des pièges micro-
fabriqués pour l’information quantique. These de doctorat. 
2011. 

 


