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Abstract: Based on experimental examples, the strength characteristics of metal alloys and composites under tensile and 

compressive loads are considered to demonstrate both their similarity and difference. Under tensile loads, their behavior is 

essentially the same. Under compressive loads, the composite shows different properties, but similar to the behavior of a metal 

alloy under tension. When tensioned and compressed, it fractured as a material with a different structure. When a metal alloy is 

cyclically compressed, the damage accumulation process is attenuated, which reduces the alloy longevity during subsequent 

tension. The analysis of experimental data for various types of loading from the standpoint of the kinetic concept of fracture is 

carried out. Instead of a number of incompatible approaches or a formal description of experimental data, that based on the 

theory of reaction rates is used. Mathematical modeling of processes is carried out using rheological models of the material. 

Structural models of the material, called physical media, reflect the thermodynamic processes of flow, failure, and changes in the 

structure of the material. Parametric identification of structural models is carried out on the basis of the minimum necessary basic 

experiment: loading of specimens with different speeds at several temperature values and by the amplitude dependence of 

inelasticity. Based on results of these experiments, the scope of applicability conditions for this material and test modes necessary 

for parametric identification of models are selected. One fracture criterion is used, which formally corresponds to the 

achievement of a threshold concentration of micro-damage in any volume of the material, leading to macro-fracture. The 

application of mathematical models for calculating the longevity of materials depending on the temperature and force loading 

conditions and the nature of their changes is shown. Calculations of longevity under constant, monotonously increasing and 

variable loads under conditions of constant or changing temperatures are based on the relationship of plastic flow and failure 

processes distributed over the volume of the material. They are performed numerically by time steps depending on the ratio of 

the rate of change of temperature and stresses. 
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1. Introduction 

There are three methods to assess the longevity of structures 

[1]. The first (most rigorous) one is a detailed study of the 

kinetics of deformation and fracture in a wide range of 

external conditions and the development of a model reflecting 

the main physical regularities in the behavior of the loaded 

material. The second (simpler) method of engineering 

calculations is based on the methods of limiting elastic-plastic 

analysis and employs simpler models. It can also include 

methods of deformable solid mechanics that use 

experimentally determined relationships between stresses, 

strains and longevity. The third method is the simplest, but 

also the least accurate. It is used if there are no available data 

on the material properties and represents an empirical 

relationship of longevity with external loading conditions. 

Here we will talk about the first method, based on a 

mathematical description of general and local plastic strains 

that occur over time and accompany failure, which is an 

alternative approach that eliminates the conditionality and 

incompatibility of existing methods [2]. 

First, the structural heterogeneity of the material is modeled, 

which is quantitatively represented by internal stresses field 

arising when the material is loaded. Second, the 
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thermodynamic processes of the material flow associated with 

the process of damage formation and development in its 

volumes are also simulated. The single fracture criterion is 

reaching a threshold damage concentration in any volume of 

the material, which translates the failure process to the next 

dimensional level (the fracture concentration criterion). 

The first step in the development of a mathematical model 

of a material is to test material specimens at different 

temperatures and constant stresses or under monotonous 

loading at different rates. The result of processing is obtaining 

a force dependence of the activation energy of fracture (AEF). 

The model is based on the relationship between the rate of 

failure, the rate of deformation, and longevity. 

Next, cyclic tests are carried out, and a relationship is 

established between inelastic deformations and endurance (or 

the rate of inelastic deformations and longevity), which is 

similar to the relationship between the flow rate and fracture 

of a material during creep [3]. A similar simulation based on 

mechanical models is known [4]. However, the models we use 

are fundamentally different in that they are based on the 

equations of physical kinetics that explicitly involve the 

temperature [5]. 

All cases of the material behavior will be considered from 

the standpoint of the kinetic concept of fracture [2, 3, 5, 6]. 

Let us demonstrate experimentally observed patterns of the 

fracture and deformation of metal alloys and composite 

materials under various loads. At each type of loading, the 

material displays only some part of its properties. It is 

necessary to follow well-approved test methods and their 

sequence. At the same time, it is desirable to have a minimum 

of necessary information and the complexity of tests and see 

ways to further research to solve special, more complex 

problems. 

2. Failure Under Constant and 

Monotonously Increasing Loads 

As in the study of any new material, we begin with the 

simplest experiments in which the basic laws of the processes are 

visible. Figures 1 and 2 illustrate the results of the thermal 

activation analysis of the fracture of an aluminum alloy and 

carbon fiber specimens under constant and increasing loads and 

various temperatures. The values of U(σ) are obtained by 

multiplying the universal gas constant R by the absolute 

temperature T and by ln(τν0), where ν0 is the characteristic Debye 

frequency, which is the inverse of the average period of thermal 

vibrations of atoms in a solid [6]. The failure time τ is determined 

directly from the experiment if the stress and temperature are 

constant, and as a value reduced to the maximum stress, 

calculated as an integral of the failure rate over time [2]. The 

linearity of the force dependence of the AEF U0 − γσ indicates 

the area of the temperature and time conditions where the 

material structure does not undergo significant changes. 

For an aluminum alloy tested in two structural states under 

tension, the same value of the initial AEF U0 is obtained, and 

the difference is in the different slopes of the force 

dependence of the AEF, where the constancy of the activation 

volume γ will means the stability of the material structure 

under these loading conditions. The alloy at a later stage of 

decay of a supersaturated metal solid solution shows lower 

strength characteristics (increase γ). 

 

Figure 1. Force dependences of AEF of in specimens of AK4-1 T1 alloy in the 

aged at maximum hardness (1) and over-aged (2) states under tension [2]: 1 – 

constant loads in the temperature range of 130–175°C (longevity of 30–

30,000 hours), 2 – monotonously increasing loads in the temperature range of 

20–340°C (loading time ≈30 s). 

 

Figure 2. Force dependences of AEF of T700 carbon fiber specimens of two 

types under monotonously increasing compressive loads; temperature, °C: 

the first type 15–90 (1) and 130 (2), the second type 15–120 (3); loading time 

1.5–130 s. 

The strength characteristics of carbon fiber obtained under 

compressive loads, when they are determined by the 

properties of the binder in the composite, reveals a similar 

dependence U0 − γ|σ| in a certain range of temperature and 

time conditions. The scatter of experimental data is much 

greater here, and the initial AEF U0 is determined with a 

greater error. The types of the tested specimens differ in their 

reinforcement schemes, but their load-bearing capacity mainly 
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depended on the number of longitudinally oriented layers of 

the composite, similar to the case of tension [7, 8]. 

Experiments at 130°C showed that the structure-sensitive 

coefficient γ drastically increases, testifying to the transition 

of the binder material to another structural state (the value 

U(|σ|) is connected by a straight line with U0). 

How will the material be fractured if the stress signs are 

changed to the opposite? Studies of the failure of plastic metal 

alloys at constant stresses show that a specific value of 

longevity is obtained for each combination of temperature 

and stress (Figure 1). If the material specimens are loaded 

with the same compressive stresses, the failure process 

continues further without any external signs of fracture [9]. 

After testing carbon fiber specimens with monotonously 

increasing tensile and compression loads, we obtained a 

three-fold decrease in the so-called "strength" of the material 

during compression, i.e., the opposite effect. This is 

understandable, since the composite is a structure, and the 

fibers cannot endure a compressive load without a binder. 

3. Failure Under Cyclic Loads 

A similar pattern is observed with cyclic loading. Tests of a 

metal alloy with a constant loading amplitude σa when the 

load asymmetry index a=σm/σa changing from +1.5 to −1.5 

have shown that endurance tends to a very large value after 

passing to cyclic compression (Figure 3). Certainly, damage 

(microcracks) does appear and grow in this case, and some 

specimens are fractured [2]. The residual endurance of 

non-fractured specimens in subsequent tests with a 

symmetrical loading cycle was four times smaller on the 

average as compared to the initial state. 

 

Figure 3. Endurance of 1201 AT1 alloy specimens shaped as strips with a 

cross section 6 × 30 mm with a central hole ∅20 mm (Kt=2.08) versus the 

mean stress of the cycle σm during the transition from tension to compression 

(20 °C, 40 Hz, nominal stress amplitude 80 MPa): 1 – calculation by the 

material model; 2 – specimens destroyed; 3 – specimens not destroyed (N ≈ 

1.4 × 107); 4 – residual endurance of non-destroyed specimens in the case of a 

symmetric loading cycle. 

Curve 1 in the figure is calculated based on the fact that the 

local plastic strains at each time step are associated with 

damage accumulation only if they have a positive sign and 

external stresses are also tensile. In other words, we ignore the 

damaging effect of compression. After obtaining a calculated 

estimate of the longevity of the specimens based on the 

effective factor of strain concentration, recalculation was 

performed to the number of cycles that occurred during 

specimen fracture. 

In all cases, mathematical modeling allows one to calculate 

an arbitrary temperature-force loading process in time without 

using any "equivalent" programs that replace and distort the 

real process and use various simplifications in each case. 

Figure 4 shows a structural rheological model of the material, 

which is used to reproduce the general and local plastic flow 

processes accompanying the damage development in 

calculations. The parameters A and B contain the activation 

parameters of flow processes: initial activation energy, 

activation volume, temperature, contribution of plastic strain 

of the element to the total strain of the material and its 

relationship to failure for each volume that this element 

represents [2]. 

The difference from the similar mechanical structural 

model of the material based on the Saint-Venant body [4] is 

the replacement of the dry friction element with an element 

that describes plastic flow kinetics [2, 5]: 

exp( )A Bε σ=ɺ ,                 (1) 

which was named Zhurkov's body (symbol Zh), and 

2 sinh( )A Bε σ=ɺ                 (2) 

named Kauzmann’s body (symbol Km), where 

0 0exp[ / ( )]A Q RTε ν∗= − , / ( )B RTα= . The activation 

parameters of the plastic flow and failure processes for metal 

alloys usually coincide: Q0 ≈ U0 and α≈γ [2-6, 10, 11]. An 

additional structural-sensitive factor here is the parameter ε∗  

which takes into account that the deformation processes are 

the sum of a number of local events [12]. 

 

Figure 4. Structural model of a material describing the elasticity, creep, and 

hysteresis-type in elasticity by a set of elements with a parallel connection of 

an elastic body (Hooke's body) and a plastic flow body (Zhurkov's or 

Kauzmann's body) [2]. 

Each structural element of the model with a parallel 

connection of Hooke and, for example, Zhurkov’s bodies 
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(body PM2) has its own parameters A, B, M and its own 

contribution to the total strain of the material [2]. At a constant 

loading rate d / d t Dσ =  at the time step t, the solution of the 

differential equation of deformation of this structural element 

is the expression, 

0 0

0

exp[ ( )]
1 1

ln
[1 exp( )]

B M Dt

Dt AM
M B BDt

D

σ ε
ε σ

 − − + 
  = + +   + − −    

   (3) 

At t=0 stress σ=σ0 and strain ε=ε0. At D=0 it takes the 

form: 

{ }0 0 0

1 1
ln exp[ ( )]B M ABMt

M B
ε σ σ ε = + − − +  

.   (4) 

Solutions (3) and (4) are sufficient to describe any arbitrary 

loading process, representing it as a piecewise linear 

dependence. 

The corresponding solutions for a sequential connection of 

Hooke’s and Zhurkov’s bodies (body PM1) are 

0 0

exp( ) 1
exp( )

Dt BDt
A B

M BD
ε ε σ −= + + .       (5) 

At D=0, this dependence transforms to the creep equation 

0 0exp( )A B tε ε σ= + .              (6) 

In this case, the remaining elements of the model describe 

the component of unsteady creep as the sum of solutions (4). 

By deforming the PM1 body at a constant speed 

( d / d t Cε = ), we obtain the stress-strain relationship 

0

1
ln exp[ ( )] [1 exp( )]

A
B MCt BMCt

B C
σ σ = − − + + − − 

 
. (7) 

As the time progresses ( t → ∞ ), this expression yields the 

flow stress 

1
ln

A

B C
σ  = −  

 
,                 (8) 

which depends on the strain rate and temperature (the 

so-called “yield strength”). If the loading terminated at some 

time instant (t=0, 0σ σ= , d / d 0tε = ), we obtain the stress 

relaxation equation 

0

1
ln[exp( ) ]B ABMt

B
σ σ= − − + .          (9) 

Solution (4) similarly describes the relaxation of internal 

stresses in a structural element. If the entire sequence of model 

elements shown in Figure 4 is deformed at a constant rate, we 

can apply the method of successive approximations and obtain 

a result known as "plasticity with hardening." Constructing the 

stress-strain dependence from solutions (5) and (7), we see 

that two "plasticity theories" are obtained from the solution of 

the same differential creep equation. 

The structural elements of the material model indicated by 

the symbols PM5 and PM6 (PM stands for Physical Medium), 

when using the Kauzmann body (2) lead to more complex 

solutions, which however, yield the same numerical result at 

high stresses [5]. It is advisable to use them at low stresses and 

high temperatures for a more accurate description of flow and 

failure rates. 

The quantitative characteristic of the material structure is 

represented by the internal stress field that occurs under load. 

When modeling the deformation process distributed over local 

volumes of the material, a discrete representation of the field 

is used in accordance with the structural model (Figure 4) and 

the amplitude dependence of inelasticity [7, 10]. Loading 

carbon fiber with a symmetrical cycle, we see that, in contrast 

to a metal alloy, the increase in inelastic strain occurs mainly 

in the compression half-cycle [10], and the largest increase is 

observed in the first half-cycle. Figure 5 shows the amplitude 

dependence of the disclosure of the hysteresis loop in the case 

of loading of one of the previously tested specimens [10]. The 

relaxation part of inelastic strain, which is also present in 

composites, is here subtracted from the total inelastic strain. 

 

Figure 5. Amplitude dependence of the hysteresis part of disclosure of the 

inelasticity loop of one of the T700 carbon fiber specimens loaded with a 

symmetrical cycle with a stepwise increasing amplitude as a transition from 

tension to compression and back: 1 – inelastic strain in the first cycle, 2 – 

inelastic strain in the second cycle with subsequent stabilization. 

The structural elements of the material model naturally 

describe a large inelastic strain in the first cycle with 

increasing amplitude. In subsequent loading cycles, the 

process is stabilized, and we see two areas with enhancement 

of the hysteresis loop disclosure. Usually, composites have a 

more pronounced accumulation of residual compression 

strains if the fibers were sufficiently stretched during the 

manufacture of the specimens. Otherwise, the opposite 

process can be observed, although the fracture occurs due to 

compression [10]. 

The prediction of longevity is based on the relationship of 
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the failure processes distributed over the material volume with 

the plastic strain values in each of these statistically 

homogeneous volumes. This is an inherent element of the 

structural model of the material. Examples of such 

relationships of the average rate of inelastic deformation with 

longevity or the disclosure of the inelastic loop with 

endurance under variable tensile loads are observed in 

specimens of both metal alloys and composites [2, 10]. The 

distinctive feature of our approach is that only part of inelastic 

strain of the material in each range of loading amplitudes is 

correlated with the rate of failure. Our interpretation implies 

that each increase in inelasticity is associated with the 

appearance of new zones (local volumes) in the material 

structure, where damage appears and begins to develop. Direct 

observations of damage development show that the areas of 

damage occurrence are located at different places of the 

material structure, depending on the stress value, temperature, 

nature of loading, and duration of the failure process [13]. 

For metal alloys and composites that work under tension, 

these relationships are identical, and longevity can be 

calculated by using the same models after performing their 

parametric identification. Under compressive loading, 

however, the failure processes are fundamentally different. In 

a metal alloy under cyclic compression, the process of damage 

accumulation has a decaying character [2]. This reduces the 

residual longevity if followed by tensile loading. For 

composites, the opposite is true. Under compression, 

everything is the same as in metals under tension, but a model 

with different parameters is required. With continuous 

alternation of compressive and tensile loads, the influence of 

the latter can be ignored. Based on these assumptions, the 

longevity of T800 carbon fiber specimens for cyclic loading 

with various asymmetry indexes was calculated [10]. 

4. Failure Under Conditions of Arbitrary 

Changes in Temperature and Load 

The calculated and experimental values of the longevity of 

AK4-1 T1 alloy specimens subjected to variable loads and 

temperatures were compared [2]. The calculations take into 

account the changes in the material structure as functions of 

temperature and stresses [14, 15]. Fracture in this case occurs 

as a result of cyclic creep of the material occurring on the 

contour of holes in the specimens. A change in the material 

structure causes a change in the ratio between the rates of 

deformation and failure, and the stresses at the strain 

concentration points are different. Naturally, the longevity of 

the structure will be affected. 

Table 1 shows experimental data and calculations of the 

longevity of specimens representing a 120 mm wide strip with 

a longitudinal stringer riveted along the axis of symmetry. The 

temperature or its range of variation in the fracture zone Tb, 

the nominal stresses σn or their range of changes in the cycle, 

and the period of the temperature-force loading cycle tc are 

specified. The range of experimental values of the longevity 

corresponds to its actual scatter; the range of calculated 

estimates is obtained taking into account the main errors in 

reproducing the load and temperature in the experiment. It can 

be seen that the calculated estimates are in reasonable 

agreement with the experimental data. 

Deviations from the linear dependence of the AEF (Figure 1) 

require special research, expansion of the temperature-time 

range of tests, and modeling of structural changes in the 

material [2]. This will be the next step for solving problems of 

failure, for example, as a result of thermal fatigue, when 

temperature and stress are mutually correlated processes. 

Duralumin was studied in the widest range of 

temperature-time loading conditions [2, 11, 16]. A number of 

experiments conducted at constant stresses and temperatures 

showed a linear dependence of the AEF on the tensile stresses 

in the temperature range of 125–200°C similar to that shown 

in Figure 1 for the AK4-1 T1 alloy. Then, by supplementing 

these data with test results at various strain and loading rates, 

including cryogenic temperatures, we obtained a fairly 

comprehensive picture of the behavior of this material. Figure 

6 shows the results of thermal activation analysis of all 

experiments [11]. 

Table 1. Experimental and calculated estimates of the longevity of a strip with a longitudinal stringer (Kt=2.89) made of AK4-1 T1 alloy under various 

temperature and force loading programs. 

Mode Tb, °C σn, MPa tc, s 
Longevity, h 

Experiment Calculation 

1 

60–135 

10–310 

240 17.28–22.28 5.90–22.7 

2 120 9.9–14.55 5.25–16.28 

3 480 8.2–33.37 5.95–24.47 

4 83–139 180 12.38–16.12 3.08–10.98 

5 38–131 300 8.83–18.47 8.96–32.3 

6 16–127 360 10.83 12.26–50.86 

7 55–135 360 22.63–24.45 10.7–39.6 

8 62–132 290–310 90 38.87 4.38–31.19 

9 58–114 
10–310 

180 31.7–40.5 13.68–42.53 

10 63–156 300 1.23–1.68 1.49–7.7 

11 135 310 — 0.67 0.72–1.64 

12 150 300 — 0.55 0.36–0.84 

7 – Mode of curing at Тmin, 8 – Mode with a constant load at variable temperature stresses. 
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Figure 6. Comparison of force dependences of the AEF of D16 T alloy at 

constant deformation rates in the range from 10−5 to 100 s−1 (293–573 K) with 

the AEF under monotonous loading (77–293 K); temperature, K: 1 – 77, 2 – 

123, 3 – 223, 4 – 293, 5 – 373, 6 – 423, 7 – 473, 8 – 523, 9 – 573;. I – force 

dependence of the AEF at constant stresses; II – force dependence of the AEF 

at srtain rates from 12.5 to 100 s−1 or monotonous loading at cryogenic 

temperatures for ≈30 s; III – dependence of the AEF at 293 K on the fracture 

time in the range from 12,500 hours (coinciding with line I) to 0.01–0.001 

seconds (coinciding with line II). 

The straight line I in the figure represents the force 

dependence of the AEF corresponding to constant to the 

constant stresses and temperatures of tests. The remaining 

values of U(σ) are obtained under increasing loads, either at 

constant strain rates or at constant loading rates. For low 

temperatures (taking into account the low-temperature 

features of fracture [11]) and long-term loading at room 

temperature, the data are given for individual specimens. In 

other cases, their mean values for several specimens are 

provided. 

As a result, we see the following patterns. If loading occurs 

slowly (relative to a given temperature), then the AEF values 

for these loading modes are grouped near line I, and the 

activation volume γ has minimum value γmin. At high load 

growth rates, the values of U(σ) form another force 

dependence of the AEF, and γ=γmax. These lines are the 

boundaries of the transition region from one value of γ to the 

other, which characterizes the change in the material structure 

associated with the relaxation of internal stresses [2, 3, 11, 16]. 

The same phenomenon is observed in steels, and it becomes 

clear why their strength characteristics increase at 200–300°C 

[11]. 

This transition region is modeled by a spectrum of 

relaxation processes describing the kinetics of changes in 

internal stresses. Thus, the PM1 and PM5 bodies can have their 

own internal structure. In the first approximation, we can use 

its formal description based on the elements of viscous flow, 

i.e., Maxwell bodies [17]. In this case, several parallel 

connected Maxwell bodies can replace one PM5 element [2]. 

However, this situation requires a more profound study of 

internal thermodynamic processes in materials. 

The changes in temperature and stresses can be in different 

proportions. When the rates of their changes are comparable, 

the solutions of the differential equations for the structural 

models of the material (3)–(9) are different. For the case of 

thermo-cyclic loading (Table 1), it is more convenient to use 

an approximate solution at a time step. Let the plastic flow 

rates of the material at the beginning and at the end of the time 

step ∆t with allowance for the structural changes in the 

material be 

0 1 1
1 0

1

exp
Q

RT

α σε ε ν∗
 −

= − 
 

ɺ  

and 

0 2 2
2 0

2

exp
Q

RT

α σε ε ν∗
 −

= − 
 

ɺ  

The change in the plastic strain rate at the step is 

represented as 

exp( )A B D tε = + ∆
⌢ ⌢ ⌢

ɺ  

assuming the argument under the exponent to change linearly.  

Then, after integration we obtain, e.g., the plastic strain 

component in solution (5): 

exp( ) 1
exp( )

D t
A B

D
ε ∆ −∆ =

⌢
⌢ ⌢

⌢ . 

In fatigue failure, the stresses usually change much faster 

than the temperature, and it can be considered as constant at a 

time step and as stepwise changing from step to step. As the 

material model describes the temperature dependence of 

inelasticity, it is possible to recalculate the fatigue failure data 

to a different temperature even without having any 

experimental data. For example, at the design stage, one has to 

evaluate the load conditions allowed for the resource, when 

the material properties for this case have not yet been studied. 

An example of such a calculation is given below. 

Shabalin conducted fatigue tests of the same specimens, 

whose strength characteristics at constant stresses are shown 

in Figure 1 [18]. The specimens were loaded with a frequency 

of 6.67 Hz at temperatures of 20 and 150°C. For each test 

temperature, two loading modes were selected, differing in 

endurance by about three times and with approximately the 

same values in both cases. 

As the experimental data for parametric identification of the 

material model were available in the required volume only for 

the 1201 T1 alloy, the calculations were performed on the 

basis of the model of this material. Therefore, the problem is 

formulated as follows: how much should the loading 

amplitude reduced for the longevity (or endurance) to remain 

unchanged with an increase in temperature? The calculations 

were performed using 64 time steps in a period of the 
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harmonic loading cycle, assuming a linear transition of 

external stresses from one value to another within the time 

step. The results of the experiment and calculations are 

shown in Table 2 [2]. The experimental data are represented 

by mean logarithmic values of endurance; the results of 

longevity calculations are obtained for the fracture probability 

of 0.5 and then recalculated into the number of cycles. 

Table 2. Comparison of experimental and calculated values of endurance of 

specimens tested at temperatures of 20 and 150°C. 

T, K 
Experiment, AK4-1T 1alloy Calculation, 1201T1 alloy 

σa, MPa N, cycle σa, MPa N, cycle 

293 
130 165,700 100 164,287 

150 46,040 120 47,514 

423 
120 151,000 90 154,055 

140 48,920 110 46,391 

A comparison of the calculation and experiment shows that 

the loading amplitude has to be reduced by 10 MPa for the 

longevity (or endurance, as they are proportional in this case) 

to remain approximately the same. If the loading frequencies 

differ significantly, then the material model will provide the 

value of longevity because the structures are loaded and 

destroyed over time. By the example of experiment and 

calculations, we demonstrate how the mathematical model 

describes what we observe in reality. 

The specimens whose fatigue characteristics are shown in 

Figure 3 were tested at three frequencies of 0.1, 1, and 40 Hz 

with a symmetric loading cycle and with the same amplitude 

of 80 MPa. Moreover, at a frequency of 1 Hz, additional tests 

were carried out with a triangular shape of the loading cycle. 

The experimental and calculated results are summarized in 

Table 3. The actual range of endurance and its mean 

logarithmic value are specified. The calculations were also 

performed for the fracture probability of 0.5 at time steps and 

then recalculated into the number of cycles. 

Table 3. Comparison of experimental and calculated values of endurance of specimens from the 1201 AT1 alloy sheet with a cross section of 6 × 30 mm with a 

central hole of ∅20 mm (Kt=2.08), tested at different frequency and shape of the cycle (20°C). 

Cycleshape, frequency 
Experiment: σm=0, σa=80 MPa 

Calculated N at σa⋅Kf=110 MPa 
N, cycle 〈Nlog〉, cycle 

Sinus,40Hz 99,900–272,900, 9 specimens 128,189 127,678 

Triangle,1Hz 116,672–128,176, 3 specimens 122,661 127,160 

Sinus,1Hz 106,420–140,890, 5 specimens 118,190 121,453 
Sinus,0.1Hz 73,710–122,990, 5 specimens 104,272 109,318 

 

Comparing the experimental and calculated data, we see that 

the mathematical model tracks the time factors of loading. If 

these data are represented graphically, the patterns become 

obvious: endurance changes approximately in proportion to the 

change in the logarithm of frequency, and longevity is almost 

inversely proportional to frequency. This follows from the 

solutions of differential equations for the flow of PM1 or PM5 

bodies under rigid (in terms of strain) loading [5]. This is 

evidenced by solutions (3), (7), and (8): changes in strain or stress 

occur with a change in the logarithm of the loading or strain rate. 

Therefore, an increase in frequency induces only a minor change 

in the damage in the cycle and an almost proportional decrease in 

the longevity. The triangular shape of the cycle leads to greater 

longevity because there is no time delay at maximum stress. This 

is what we should be interested in. 

Mathematical modeling of deformation and failure 

processes allows one to avoid schematization of initial 

information about the loads based on the "ideology of the 

cycle," when it comes to fatigue. In addition, the operation of 

structures occurs at a variable temperature, which 

significantly affects the longevity of composites. For example, 

we have a spectrum of loads in operation, represented by the 

spectral density distribution over the frequency. The longevity 

can be estimated directly from the process realization. If there 

are statistical data on such processes, then the equivalent 

pseudorandom process (PRP) with the same statistical 

characteristics is synthesized from the averaged spectral 

density. Then, according to its realization, a calculated 

estimate is obtained. 

Tests were conducted at different loading spectra with 

simulation of a real random process by various types of PRPs 

on BiSS 100 kN (Bangalore Integrated System Solutions) and 

MTS-10 testing machines. The registered loads in the form of 

the bending moment of the wing of a transport aircraft were 

taken as the basis [19]. The estimates for the specimens with a 

cross section 6 × 30 mm with a central hole ∅5 mm made of 

1201 T1 alloy tested under different loading spectra with a 

standard deviation (SD) of 47 MPa and two mean stress values 

(σm=0 and 100 MPa) are compared in Figure 7. The 

calculation was based on the effective strain concentration 

factor for fatigue Kf=1 + q(Kt − 1) [20] corresponding to the 

quality of the material (parameter q) at the time of delivery of 

semi-finished products (forged-rolled plates) [2], where Kt is 

the theoretical stain concentration factor. 

Experiments 2, 3, 5 and 6 simulate the same spectrum of 

real loading in the frequency range from 0.08 to 16 Hz. 

Experiments 7 and 8 represent the spectrum of narrow-band 

random noise in the loading frequency range from 0 to 5.5 Hz 

[2]. In addition, experiment 9 was conducted, in which the 

same spectrum was represented by harmonics distributed over 

the frequency logarithm. Thus, the dispersion was displayed in 

more detail at low frequencies of the spectrum and more 

roughly at high frequencies. The SD and σm were chosen the 

same in order to see the dependence of the longevity on the 

discreteness and frequency composition of spectra. 

The difference between the spectra from each other is that 

the frequency range was limited to the frequency of 5.5 Hz in 

the case with 13 harmonics in the spectrum of narrow-band 

random noise. With 62 harmonics distributed over the 

frequency logarithm, the high-frequency part of the spectrum 

is also represented by a small dispersion value. Therefore, 

despite the small dispersion in the high-frequency part of the 
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loading spectrum, which is not presented in much detail, its 

effect on the fracture time is very significant. Even with a 

slight simplification in the representation of the 

high-frequency part of the spectrum (experiment 9), there is 

already an increase in longevity. 

 

Figure 7. Comparison of calculated longevity estimates τc for different 

loading spectra with experimental logarithmic mean values of the longevity τe 

of the 1201 T1 alloy specimens: 1 – real spectrum of loading and 2 – PRP of 

67 harmonics (σm=100 MPa), 3 – PRP of 23 harmonics (σm=100 MPa), 4 – 

real spectrum of loading and 5 – PRP of 67 harmonics (σm=0), 6 – PRP of 23 

harmonics (σm=0), 7 – PRP of 13 harmonics (σm=100 MPa), 8 – PRP of 13 

harmonics (σm=0), 9 – PRP of 62 harmonics, distributed according to the 

logarithm of frequency (σm=0). 

Program tests of T800 carbon fiber specimens were also 

performed. The calculated values of their endurance under 

harmonic loading with a frequency of 3 or 5 Hz and a negative 

asymmetry index were previously compared with the 

experiment [10]. The forced loading program was a 

conditional cycle scheme for the upper panel of the aircraft 

wing, displaying a supposedly "equivalent" flight cycle, and 

compressive stresses were dominating on the average. In the 

experiment and in the calculation, this program was 

reproduced in time with block duration of 8.5 s at a frequency 

of 1 Hz (Figure 8). 

The mathematical model of the material calculated the 

process of fatigue failure of the composite also by time steps 

in accordance with its time realization in the experiment. The 

calculated longevity estimates converted into cycles and 

blocks of program loading are compared in Figure 9, including 

the previous data. 

The model calculations agree reasonably with experimental 

data for various loading asymmetries, including different 

frequency and shapes of the loading cycles. The issue of 

equivalence of design testing programs requires separate 

consideration. From the viewpoint of mathematical modeling, 

if the longevity of a certain place in the structure under loading 

in operation and in tests is determined by the same structural 

element of the material model, then the equivalent is correctly 

characterized by the ratio of the failure times. Otherwise, with 

a forced loading program, it is necessary to calculate it by the 

damage accumulated by the element of the model that 

determines the longevity in operation. 

 

Figure 8. Program of loading for conditional flight realization of the process. 

 

Figure 9. Comparison of calculated Nc and experimental Ne endurance values 

carbon fiber specimens tested with different loading asymmetries (actual 

scatter in the experiment); σm, MPa: 1 – 0, 2 – −50, 3 – −110, 4 – −166.5, 5 – 

−47.75 (program tests). 

5. Criterion of Fracture 

The rate of fracture is understood to be the inverse of 

longevity, 

0
0

1
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RT

γσω ν
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− = = − 
 

ɺ           (10) 
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for bodies with the Km elements, if the loading conditions and 

material structure are constant. In general, the fracture condition 
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(appearance of crack or delamination) is expressed as 

0

( , , ) d 1t T t

τ

ω σ =∫ ɺ ,               (12) 

which satisfies the Bailey criterion [21]. This condition 

implies that the threshold concentration of damage is reached 

in some volume of the solid body. Expression (10) 

corresponding to numerous experimental data is also 

confirmed by a numerical experiment performed by the 

molecular dynamics method [22]. 

The rate of fracture is associated with the rate of the 

plastic flow of the Zh (1) or Km (2) bodies. The 

dependence of the rate of fracture in (12) material 

structure, reflected in the structural elements of the PM1,5 

and PM2,6 model. Independent summation of damages 

over the structural elements of the material model ensures 

better agreement of the calculation with the experiment 

than their summation in one measure [2]. The same thing 

is observed in structure testing. The place of the most 

rapid failure of the structure depends on the value of the 

loading amplitude. 

According to Kauzmann, expression (2), as well as (11), 

takes into account the reverse flow through the potential 

barrier with the same probability in both forward and reverse 

directions. He was the first to apply the theory of reaction 

rates to the flow of solids [23]. In reality, these probabilities 

may differ, and some very small value of safe stresses is 

found in experiments [6]. Damages do appear and 

accumulate, but their concentration is insufficient for 

macro-fracture of the solid. 

The operation of the concentration criterion of fracture is 

illustrated by the pictures taken with an atomic-force 

microscope during glass failure [24]. When the sizes of pores 

become comparable with the distance between them, their 

coalescence occurs, and this leads to crack propagation. 

6. Conclusion 

Thus, mathematical modeling of the processes of failure 

and plastic flow of the material in individual zones distributed 

over its volume allows obtaining correct estimates of the 

longevity of both metal alloys and composites, including cases 

of arbitrary temperature and force loading. Thus, the use of 

artificial techniques that reduce reliability of these estimates 

can be avoided. 

There are fundamental differences in the behavior of metal 

alloys and composite materials under tension and compression, 

and different mathematical models are required for calculating 

the estimates of longevity with the prevalence of loads of this 

or that type. 
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