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Abstract: Quantum chromodynamics (QCD) is the fundamental quantum field theory of quarks and gluons. To discuss
it in a mathematically well-defined way, the theory has to be regularized by replacing space-time with a Euclidean lattice.
This regularized theory, called lattice QCD (LQCD), has proven to be an efficient approach which allows for both theoretical
understanding and computational analysis. LQCD has become a standard tool in elementary particle physics, which can be
solved by the hybrid Monte Carlo method. The calculation of force is most difficult part in the hybrid Monte Carlo method. This
lecture gives the details of the force calculation in one-loop Symanzik improved action, Wilson fermion with clover term, asqtad
fermion, HISQ fermion, rooted staggered fermion, smeared fermion, staggered Wilson fermion, overlap fermion and domain
wall fermion. The even-odd precondition are also considered in these calculations.
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1. Introduction

Lattice QCD (LQCD), started in 1974 [1], is a mature
subject, and it provides a framework in which the strong
interactions can be studied from first principles, from low to
high energy scales. At the high energy level, it can test the
perturbative method as shown in deep inelastic experiments
where a very high momentum transfer and weakly coupled
quarks appear as the prominent degrees of freedom. While
at the low energy level, only LQCD can provide tool to
study non-perturbative phenomena. Now, lattice QCD is an
important tool to test the Standard Model, where it can give
various hadronic matrix elements, which can compare those
obtained using phenomenological approaches. It can also
explore the QCD phase diagram for temperature and finite
density. There are many other physical applications of LQCD,
e.g., for the calculation of hadron spectrum, pseudoscalar
decay constants, kaon bag parameter, semileptonic form
factors, strong gauge coupling, quark masses, etc. Lattice
QCD becomes quantitatively predictive only with the advent
of supercomputers [2]. There are several textbooks and notes
available for detailed introduction [3][4][5][6][7], where the

discretization of the continuum QCD are introduced. The
recent progress of lattice QCD can be referred to FLAG
Review 2021 [8]. The goal of this lecture is to give a
concise formula for the force coming from the gauge action
and fermion action, which is the most important part in the
algorithms of LQCD. Based on these formula, I hope that the
reader can understand the free LQCD codes (such as MILC,
Chroma, CPS, etc.) easily.

The arrangement of the paper is as follows. In section 2, the
one-loop Symanzik improved action is presented and its force
calculation is given in details. In section 3, Wilson fermion
action with clover term and its fermion force is given. The
fermion force for asqtad fermion (Sec. 4), HISQ fermion (Sec.
5), smeared fermions (Sec. 7), rooted staggered fermion (Sec.
6), staggered Wilson fermion (Sec. 8), overlap fermion (Sec.9)
and domain wall fermion (Sec.10) are calculated in details,
respectively. Conclusions are given in section 11.

2. One-loop Symanzik Improved Action

The one-loop Symanzik improved action is based on the
sum of the plaquette, rectangle and cube loops [9]:
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Where the sum in each line are shown in Figure 1.
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Figure 1. The plaquette (Left), rectangle (Middle) and cube loop (Right) are shown.

We always use the lattice unit a 1 in the whole
paper. Here ) denotes the sum over all sites n in 4D
lattice and 1 < pu,v,p < 4 denote the four directions
of the 4D lattice. In the third line of (1) there are
16 terms: {1 < pu < v < p < 4,4v,+p}
{(1,£2,+£3),(1,£2,44), (1,£3,+4),(2,+3,4+4)}. Here
+u and —p denotes the positive and negative direction of u,
respectively. For each site n, there are 34 paths including 6
plaquette, 12 rectangles and 16 cube loops, which begin and
terminate at n. Denote by P,, any one in these 34 paths. We
also use P, to represent the multiplication of SU(3) matrix
U along this path P,, and denote by cp the corresponding

— gzﬂ: ;Cp [3 — Retr(Pn)} = g

Where Retr denotes the real part of the trace of 3 x 3 matrix,
[ is the inverse gauge coupling. The one-loop Symanzik
improved action has the lattice artifacts of O(asa?) which
does not include the one-loop contributions from dynamical
fermions. The standard Wilson gauge action is replaced
by this perturbatively-improved action with tadpole-improved
correction terms that remove the leading errors due to the
lattice. Let {T;}5_, be the 8 generators of Lie algebra su(3) of
SU(3). These generators are traceless, complex, and hermitian
3 x 3 matrices obeying the normalization condition

coefficient which depends on the path type. In particular, cp
does not depends on lattice site n. As usual the link variable
Uy, is the SU(3) matrix defined on the link (n,n + ) and

Unto,—v = U,TW. In general, P, with L = 4,6 links has a
form

P’IL == nl,dl "'U’ILL7dL (2)
wherenl—nL—&—ch—n nz+1—n1+czz,i—1 , L —1.

It is noted that the L directions {d;}L , are determlned by

the type of path P. wg in (1) is the tadpole coefficient and
4log(ugp)
o 3.0%83%

g = . The one-loop Symanzik improved action is

S ep [3 - Retr(Pn)} 3)
all 34 paths P n
Each link variable can be represented by
8 .
Unp=exp (i wh L), p=1234
i=1

with 8 real numbers {w}, ,}%_, for each link (n, 11). By using
the presentation of each link in (5), the gauge action in (3) is a
function of w;’ ..~ The gauge force of Sg is

tr[Tka] = §6jka j,kz 1,--~ 78 (4)
88(; B 0P,
_ = = T; Retr -
Z 8wk 3 342pa:nhs P o zn: zz: (awk,ﬂ)

W™

all 34 paths P =1 n i

L
Z CPZZZTiReU(Um,dl“ U,

aUnl di

lldlla;
k,p

Unisriizs Unpar)  (6)
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Where P, is given by (2). Since
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8U iTiUm’d“ if Unhdl = Uk,p7 i.e. , Ny = k and dl =p
&:i“d’ = Un,,a,(—1T;), ifUy,.q, = U,IJ, =Ukgp,—p, 1.6. , iy =k+pandd; = —p 7
k.p 0, otherwise
only two terms in the sum over n in (6) does not vanish, i.e.,
=1
=ny =k — . (nu, i) = (k, p) ®)
Jj=1
=1
n=ny=k+p— iy Af (g, di) = (k+p, —p) )
j=1

Inserting (7) into (6), and using the cyclic property of trace,

in (6) then becomes

L
g Z cp Z { Z T; Retr [(iTi)(Um,dl e UnL,dL Un17d1 e Unl—lydl—l):| (1 da) =

Retr(B) = Retr(BT) for any complex matrix B, the gauge force

=(k,p)

all 34 paths P =1 i
i T T T T
Z Ti Retr[(lTi)(Unhdl U”l tdion Unhdl U”L7dL o Uﬂz+17dz+1)} (nl,dz):(k’-&-ﬁ,—P)}
= § Z ¢p Z { ny,dy nL dr, Unl,dl T Unlfl,dl,l)TA +
all 34 paths P [=1 (n,di)=(k,p)
f T T
(Unladl U”L ndio1 Unl dy UnL;dL o Unz+1,d1+1)TA (ny,di)=(k+p —p)}
_ B
T 6 cp Z Ug,p ”l+lvdl+1 o UnpdUnyyay Unl—l»dl—l)
= (n1,di)=(k,p)
all 34 paths P =
T T T
Uardics ™ Unias Unpa “ Ui (m,dz):(k-‘rﬁa—ﬂ)} }TA (10)
where Br 4 is the traceless and anti-Hermitian part of 3 x 3 complex matrix B
B-B'  w(B- Bf
Bra = - ( >13 (11)
2 6
In (10), we used
. . 1,
ZlTRe“ iT:B] = Z T {uliTB] + .} = ZTitr (T:(B — BY| = 3 Tur[iT;Bra = 5iBra (12)

For any 3 x 3 complex matrix B. We always use c.c. to
represent the complex conjugate.

In summary, the gauge fermion force has two contributions.
One contribution comes from the paths passing through the

1. For all direction p

2.ty , = 0 for each site k

3. For all 34 global path P

4. Fog e:éch link [ of P

5. If d; :l:p, go to step 4

6. If dy = p, ty » T =cpUy, 1,digr " 'UnL]LdLUn1T,d1 T
7. Ifd = p’tk/’ _CPUTLL 1,di—1 ”Unl,dlUﬂL,dL'

link (&, p) in the positive direction and the other from the paths
passing through the link (k, p) in the negative direction. The
implementation of gauge force calculation can be written as
follows.

Un,_,.4,_, forall sites k = n;.
il

nusrdiy, Torallsites k =ny — p.



American Journal of Physics and Applications 2022; 10(1): 8-23

8. Calculate £ 51(Ug,ptr,p) T4 for each site k

Based on the standard Wilson gauge action, we use
the hybrid monte carlo algorithm to simulate the plaquette
expectation value and static quark potential aV (an), as shown

11

in Figure 2 where the lattice size in the space directions and
Euclidean time direction are 16 and 6, respectively.
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Figure 2. The plaquette expectation and static quark potential oV (an) depends on the inverse gauge coupling (3.

3. Wilson Fermion Action with Clover Term
The Wilson fermion matrix with clover term is [10]
D=A-kD

with the diagonal part

An,m = [1 - ﬁ Z [,YM)’YV]FTL;MV} 6n,m

1<p<v<4

and non-diagonal part in lattice space
4
Z( 1= %)Un,wOntjism + (1 + %) Un,— i 0n— um)

Here {v,}},

_; are the 4 x 4 Gamma matrices, m is the non-dimensional bare mass of each specie, xk =

13)

(14)

15)

1 .
m, Csw 1S the

Sheikholeslami-Wohlert coefficient, which can be determined by perturbative method [11], tadpole improvement [12][13] and

nonperturbative method [14]. The clover part F,,.,,,, in (14) is anti-Hermitian

1
Fn;w = g(Qn;uV - Qn;vu)
with
Qn swvy — YUnsuw + Un V,— + Un —v Tt Un;—l/,u = QL;VH
where Uy, = Uy Unt i Untpto, - Unto,—0 = rTz;u,u’ etc. Thus the diagonal part in (14) is
c
Anm:|:1_$ y Tv@n; l/:|6nm
; 32(m+4) Z [ry/‘« 0 ]Q S )

1<p#v<4

The partition function of LQCD for the Wilson fermion with two degenerate flavors reads

/D Je=5¢lUl det (DT D) = /D

/D e~ SclU detD

(16)

A7)

(18)

=S[U] (19)
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where we used det D = det DT and introduced the pseduofermion (real field) ¢. The effective action in (19) is
SlU) = SalU] +¢"(DTD) "¢ (20)

The one-loop Symanzik improved action S¢ in 20 is given in (3) and it’s derivative has been calculated in section 2. The
derivative of the fermion action is calculated as follows

D Dn m
- [¢T(DTD) Lo =T ai X +cec. YT‘9 X +coc. 1)
Ow W, p Wk p Ow, 0
with
X =(D'D)"'¢, Y =DX (22)
Since
ODp.m ) t )
W = (1 — ’yp)(lTi)Uk’p(sn+p$m5n’k + (1 + wp)Uhp(—lTi)én,ﬁ,mém,k (23)
k,p
the contribution of (23) to (21) is
Y IDnm Xm +cc.
awkp
= {YT(l =) (iT3) Uy, pXktp — Yk+p( + ’Yp)Uk p(lT )Xk} +c.c.
- tr(iTi(B - C)) +ee. 24)
with the 3 x 3 matrix
B=((1=7)UkpXpss) @Y, ie,Boa=((1—7)UkpXrrs) ¥ (25)
Yo )Vk,pNAk+p k> s> Pb,a Yo )Vk,pNXk+p b Kk Jaa
C=X.® (Y,J+p(1 n *yp)U,I’p) (26)

The last equality in (24) use the fact

Y (1= 9,) (T Uk pXisp = Vil (iT3)Z = Y]

k,aa

(T})ap Zap = tr(iT; B) @27)

with Z = (1 — 7,)Uk,, Xk+p. We always use a,b, c,d, e, f etc. for the color indices and «, 3 etc. for the Dirac indices. The
contribution of D for the fermion force — ", TiawiL(k) [¢T(DTD)~1¢)] is
P

S, (tr(iﬂ-(B o)+ c.c.) = —i(B — C)ra (28)
By using (18), the contribution of A to (21) is

OAn m
yIZ=—mm oy 4.

" aw,@’p
¢ 0 6
= Yn e Z['Vu:’VV}Qn;;an + c.c.
k.p nF#Y
= > A 8 (Qn,,w Qniwp) Xn + cc. (29)
n=k,k—+p,k+D,k+p+0
where we omit the writing of factor —% before the sum. In the last equality we used
0
87 Zhl“’ 'YV]Qn;/_w = Z['va '71/] aw (Qn PV Qn;up) (30)
k,p n#v v k,p
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where the sum over n and v is understood. The sum over n in (29) runs for n = k, k+ p, k£, k+ p+ D, otherwise the derivative
%(Qn; pv — Qnip) 0 (29) vanishes. Let us consider the term n = & + © and the other terms are similar. Since
k,p

0

) (Qk+l7;pu - QkJrf/;l/p)

i
Wk,p
0

= (Ukw,—uUk,pUk+ﬁ,uUk+/3+ﬁ,—p - Uk+ﬂ,pUk+ﬁ+a,—uUk-+ﬁ,—pUk,u>

7
&uk)p

the contribution to (29) is

0 .
YkTJrf/['YPa ’YV]W(QIH—I?;,OV - Qk-i-f/;l/p)Xk-l-ﬁ tcce = tr(lTi(B + C)) +c.c.

k,p

where

B = (UkypUk+ﬁ,VUk+ﬁ+f/,*pXk+f/) ® (YJ+1>[7p77V]Uk+o,—u)

C= (Uk,ka+,>) ® (YIL-Q[’Vm’YV}Uk+f«pUk+ﬁ+ffﬁuUk+ﬁﬁp)

= Ukto,—v (1)) Uk, o Ukt v Untpto,—p = Ukt pUbet prto,—Uset o (= 1T30) Uk

€29

(32)

(33)

(34)

The above calculation shows that B comes from the part of the fermion action

Y o lor 1)Ukt 5,0 Uk pUbet o Uk oo, p X

And it’s derivative with respect to w}c’ o, Will insert i7; before
Uy, and thus separate two vectors in I3 as shown in (33). The
formula of C' in (34) can also be understand.

The elements of non-diagonal part in Wilson fermion matrix
are nonzero only for two neighbouring sites, and thus the even-
odd precondition can be used, i.e., we first label all even sites
and then the odd sites. Using these labelling of sites, the

M = A, — KDoAy  Dye

Wilson fermion matrix in (13) can be written as
_ A, —kD¢y
b= ( 7K/DOG Ao
where D,, = —Dle and the matrix D., has the form of
(15), which is defined on the even sites (rows) and odd sites

(columns). A.(A,) are the diagonal part A, which defined on
the even (odd) sites. Introducing the Schur complement of D

one has det D = det M det A,. The partition function in (19) can be written as

Z = / D[U]e= 5V det (M M)(det(A4,))? = / D[U|D[¢]e V]

where we used AI) = A,, the pseudofermion ¢ is defined on the even sites and the effective action reads

S[U] = Sa[U] + ' (MTM)™1¢ — 2trln A,

The derivative of the fermion action is

0
Ow'

¢t (1))

where

Xe=(M"M)""¢,

(35)

(36)

(37

Yja—M.Xe + c.c. (38)
ow*

Y, =MX, (39)
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are defined on the even sites. From the definition of M in (35)

OM 04, e

v} :
€ Quwi ¢ ¢ Owt

oD 9A, oD
t eo t T oe
YIS X, Y61X+Y061X) (40)

with X, = A;'Doe X, Y, = A;1D,.Y. defined on the odd sites. The calculation of Y,/ 24 X, (V{242 X,) is similar to (29)
aD oc X, are also similar to (24).

except these formula are define on the even (odd) sites. The calculation of YT BD Zee X and YJr
The derivative of the action trln A, can be calculated as follows:

8trhqu _ Z r(A_ aAon)

awzvp odd sites " Ow
8
= Z tr (A;n 8 Z [PYLL’ ’YV]Qn;uy)
odd sites k.p n#v
= Z tr [Ao n[’ypa fYV] (Qn pv Qn;yp):| 41

odd sites n=k,k+p,k+0,k+pE0

which is rather similar to (29). For example, if £ is the even site, then there are the contribution for the odd site n = k + ¥

0
A_ v Uipv Uiy =t ﬂ B C 42
koD 1 g @usinps = Quisn)] = w(iTi(B + ) 42)
where
B = (Uk,pUk+ﬁ,uUk+ﬁ+:>,—p) (Ao zlc+,,hpa%]Uk+ﬁ,—u)
C= (Uk,u> (AO P %]Uk+0,pUk+ﬁ+a,—uUk+ﬁ,—p)
4. Asqtad Fermion reduce this taste violation [15], which was used in many large

scale simulations [16]. As shown in in Figure 3, the asqtad

. . ) fermion matrix is
Compared to Wilson fermion the staggered fermions are

numerically very fast to simulate. This is because the D =m +cyDy + c1 D1 + c3Ds + c5Ds + c7 D7 + e, Dy, (43)

staggered fermion, with only one component per lattice

site, and the massless limit protected by a remnant chiral = where cy etc. are the coefficients, the Gamma matrices in the
symmetry. But the major drawbacks is the taste violations due ~ Wilson fermion are replaced by the staggered factor 7, , =
to the exchange of ultraviolet gluons between different taste ~ (—1)"** ™= for lattice site n = (n1,--- ,n4), N1 = L.
components living on neighboring lattice sites. The asqtad  The asqtad fermion matrix D incldue the (4 x 2 = 8) Naik
(a-squared tadpole improved) fermion is introduced largely to  terms [17]

[DN]n,m = Z T, |:Un,/tUn+ﬁ,“u,Un+2/1,p5n+3ﬂ,m - (p, — 7,[14):| (44)
"

the (4 x 2 = 8) one-link terms
[Dl]n,m = Z N, |:Un,u6n+ﬂ,m - (,LL — _M):I (45)
"
the (4 x 3 x 4 = 48) three-staple terms
D3 n,m Z Tn,u Z [ n,+tv Un+o uUn-l—ﬂiﬁ,:Fv(sn+;l,m - (,U — _,U))] (46)
VR
the (4 x 3 x 2 x 8 = 192) five-staple terms

Znn “w Z Z |: n,tv Un+o ipUniDiﬁ,uUn-‘r;lif/iﬁ,q:pUn—i—ﬂiﬁ,q:u(sn-‘rﬂ,m - (/’[’ — _M):| 47)
vEN pFEp,Y
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the (4 x 3 x 2 x 16 = 384) seven-staple terms

E Mn,p § E § |: n,tv nj:l/ ipUnif/j:ﬁ,j:UUniﬁiﬁj:&,p,

VFEL pFE b,V OFE V0

Untptotpts, soUntptotproUntpto, 7o0ntim — (1 — —M)} (48)

and the (4 x 3 x 4 = 48) Lepage terms [15]

[ Z Nn,p Z [ n,tv n:l:u :I:VUn:i:QD,pUn—Q—[L:th/,IuUn+ﬂ:ﬁ:ﬁ,1u5n+ﬂ,m - (/Uf - 7,11,):| (49)
vE#p

H

1% -V
1%

A
L n n p n o n op

-—¥

-~
=
-
-
-
=

Figure 3. The Naik term, one-link, three-staple, five-staple, seven-staple and Lepage term (from left to right).

The asqtad fermion matrix (43) include the contribution from two neighbouring sites
Vi udntpm + Vi, —un—pm (50)

where V' = FU is the fat link depending on the thin link U

Vn,u = nn,;L{ClUn,u+

Cc3 E Un,iuUnif/,uUn—i-ﬂif/,:Fu +
vEu

052 E Un +0vUn+o,40Un+o4p,uUntpto+p,5pUntpto, 70 +
VFEW pFELY

C7Un,iuUniz7,ipUniDiﬁ,iaUnif/i,ﬁié,uUn-&-ﬂiﬁiﬁi&,:FaUn-i—;liﬁi,é,:FpUn-i-ﬂiﬁ,:Fu} (51)

The partition function for two degenerate staggered fermions is

Z = /D[U]e‘SG[U] det(DTD) = /D[U]D[qﬁ]e‘sm (52)
with the effective action
S[U] = Sq[U] + ¢'(DTD) 1o (53)

The derivative of the fermion action ¢ (DT D)~1¢ is given in (21) and (22). We gather all paths (8 +8+48+ 1924384 +48 =
688) in asqtad matrix. All paths can start any site n and end some site m = n £ i,n + 3ji. Let P be these paths with length
L =1,3,5,7 and denote also by P the multiplication of link variables along P: P = Uy ---U; --- Up. It’s contrbution to

bl oD 2 X A+ cc (54)
5‘wk,p
in (21) is
L 3U L
Mo 2 YU+ U o Zl Uir - U X +ce. =Y [tr(inB) +eec. (55)

=1
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with
, (UUp1 - UL X)) @ (YU - Upq), it U = Uy,
B =ssign X . ’ 56
g { (Uiss - UpXon) @ (VUL - U, iU =T, 56

Here sign = (%), ,, since this path starts from site n and
ends at n=£/i, n£3/. The implementation of staggered fermion
force is similar to the algorithm in section 2.

Similar to the even-odd precondition for the Wilson
fermion, the asqtad fermion matrix in (43) under the even-odd
precondition is written as

m D,
Dye m )

-

D.o =cnDn + Z ¢iD; +cr Dy
i=1,3.5,7

where
(57)
is defined on the even sites (rows) and odd sites (columns).

Then det D = det M with M = m? — D, D,.. The partition
function is

Z = / DIUID[gle IV (58)
with the effective action
S[U) = SalU]+ ¢"(MTM) "¢ (59)

where ¢ is defined on the even sites. The calculation of the
fermion force is similar to (38)(39)(40) where A., A, and «
are replaced by m and 1, respectively. Y./ %Z <2 X, is obtained
from (55) and (56) where n is the even site. Similarly, we can
calculate Y,/ 9Pz X, .

5. HISQ Fermion

The taste violations in the asqtad action can be further
reduced by additional smearings. This is the highly improved
staggered quark (HISQ) fermion, which was introduced in
[18]. At tree-level it removes both O(a?) errors and, to
lowest order in the quark speed v/c, O(a*m?) errors. It
also substantially reduces effects caused by taste-symmetry
breaking. This makes it attractive not only for light quarks,
but means that it is also quite accurate for heavy quarks. It is
being used to directly simulate charm quarks and to approach
direct simulations of bottom quarks [19][20][21].

To introduce the HISQ fermion, we reunitarize the link
variable V in (51) by

—1/2

W = UV = Vi (Vn,#vnt#) (60)

and smear the links W again to obtain X = FW. The HISQ
fermion matrix is similar to asqtad fermion matrix except the
background U with replacement of W

D=m + C?VDN [W} + (Xn,y6n+ﬂ,m, + Xn,—u(sn—ﬂ,m) (61)

Similar to (54), we want to calculate

- 0Dyt
ma &uzp
+ ODnmsab Wy vied OVpwier OULusgn
Y OWp,vica OVpwier OULpuign 8w§€,p
vief ggp):;f Ouk0up (ITi Ut ) gn

A
L U pigh OUk, pigh
Fk,p;gh(lTiUk,p)gh
«w(iT; B)

m,b

m,b
Fp

Fp ( TiUkyp)gh

(62)

Where a,b,--- Here we

introduced

,h denotes the color indices.

8Wp,l/ sed

T (63)

8Dnm ab
Fpier = (YJf

S X ) S
naaWpucd b

Wpwier

F . p—
pviel 8Uk7p;gh

Fk,p;gh = (64)

and

B=U,F, (65)

The calculation in the bracket of (63) is the same with the
those in asqtad fermion (See section 4) where the background
gauge field U is replaced by W. By the definition of V' in (51),
F'in (64) can be written as

~ 0
Fy. . = c U, U
k,p;gh Fpvier Z Porr— Uy oigh ( ni,di nL,dL)ef
8Un d
= Z cp ; F, 7u,ef( nyi,dy * Unl 1,di—1 8Uk ; gl U7L1+1 dig1 """ UnL,dL)ef
L
_ OUnp, a4
= Z cp tI'( nad Ungoydy s 8Unh : Unl+1,dl+1 Unpdy ij:l’) (66)
— k.,p;g

P =1
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Where the sum over p, v should be understood. The sum
over P runs for all paths starting from some site and ends at

the neighboring site in the positive direction. Let P be a path of

length L, connecting L + 1 sites (n;) |, withn; 11 = n; +d;,

For all direction
Fy, , = 0 for eac
For all path P
For e;é: link [ of P

If d; # +£p, go to step 4

For all (p, v), calculate Ap v =

Fk,p;gh+ Zp,l/ Z

site k

ni,dy

Nownkwoe—

6. Rooted Staggered Fermion

Now we consider the rational HMC for rooted staggered
fermion action, which caused rather controversial discussion.

:/DUdet(Ml)%det(M)* —Sa —/DUdet(M M: 1) det(Mi)e=Se —/DUD¢ZD¢ e~ S6=5rF

Where the two degenerated up/down (light) fermion [ with
bare mass m; and a stranger fermion s with bare mass mg are
considered. The staggered fermion matrix for fermion [ (s)

Mg = Deo D}, + 4mj,, = Mo + 4mj}, (68)
is the fermion matrix, where D, is given by (57). The
staggered fermion matrix M; (M) and the pseudofermion ¢
(¢s) are both defined on the even sites. The determinants in
(67) represent the (1)ight and (s)trange quark contributions to
the vacuum. The fermion action in (67) is

Sp = o} (M, I MI)g, + ¢EM; 1o, 69)

2 2
MM, 3

Un,_1,4,_, and By, =
P ang,l, has Where k =ngifdy = p; k=n; — pif

= (Mo + 4ml)§(M0 +4m,)"8 = ag

i=1,---,L—1. Hereni = p,ns, +dy = p+ . Then
aUn a 5nl,kOgh7 lf dl =p
W = m—pkOgny i dp = —
k.pigh 0, otherwise

where Ogy, is a 3 x 3 matrix with 1 at (g, h) and 0, otherwise.
The calculation of F' can be written as follows.

T
'UnL,dLF

niy1, dz+1 o p,v

dl:—p

See the comments of the rooted staggered fermion [16]. After
integrating out the Grassman-valued quark fields, the 2+1
quark flavor QCD partition function is given by a functional
integral over gauge fields,

(67)

In the hybrid Monte Carlo method, ¢; and ¢, are sampled
according to the distribution e~ 57, which can be realized
according to

3
= Mén

2 _2
o= M[S Ms ®n, ¢ (70)

where 7 is sampled from the Gaussian distribution e,

2 _2
M;* M ® can be approximated by by rational polynomial of
My

2

N
Zd MO+/Bp

3
Similarly, M can also be approximated by another rational polynomial of Mj. The fermion action in (69) can be calculated

by

Sp = (M; * M3 ¢n)'(

MJ%MS%QSI)

+(MS36)t (M5 5 64) (71)

_2 2 _3
where M, ® Mg and M 8 are also be approximated by rational polynomials of M. In order to calculate the fermion force,

each term (e.g., ¢ (M,

M
ol (M, T M)y ~ ¢] (040 + Z ap(Mo + ﬂp)_l)@

p=1

-4 M )¢1) of the fermion action in (69) is approximated as

(72)
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with its derivative

2 OM,
~ T
awk (a7 0o ~ =Y aply
p=1 P
M
oD

_ €eo "'

= —Zapxp[awz D! +CC] Tp
p=1 s
M

= —Zapx;a leoxg—i—cc
p:l P

= —Za p 9D GOm0 4occ.

pT p,n Bwk » p,m
U, o

= - 3 cp Z o [V Uiy o t-Usga -+ U+ (73)

all 688 loops P inasqtad ~ p=1 wk,p
where the path P = U; - - - Uy, is a length of L from lattice site n to m, x,, and x;’, are given by
(MO+Bp)xp:¢la x;:DZoxpa pzla 7M
Here x,, and a:g are defined on the even sites and odd sites, respectively. If U; = Uy, , in (73),
_2 2 .
— (¢j(Ml Yk )¢l) - 3 cPtr(lﬂUl Uy [Z (a8, ® T, n)} Uy - Ul_l) fee (74
k,p all 688 loops P in asqtad
If U, = U] in (73),
9 . . M
- (@T(Ml 4M54)¢l) __ 3 CPtr(iTiUlT ..Ut [Zap(xz,m ®x;n)f}U£ - U;H) fee. (75
k.p all 688 loops P in asqtad p=1

We use the rational HMC algorithm to simulate the chiral
condensate of up/light fermion and strange fermion, where
m; = 0.01, mgs = 0.05, with the lattice size 8 in each
direction, ug = 0.862. Figure 4 shows the chiral condensate of
the light(u/d) fermion and strange fermion on the inverse gauge
coupling 3. The chiral condensate decreases with increasing

B.

25 ——
3 ufd ——
X s —X%—
2 ¥
% *
2 15t ¥
[¥]
2
8 X
(&)
7 !
=
Q
0.5 ¥
+
ol . . XXX
0 1 2 3 4 5 6 7 8 9 10

inverse gauge coupling

Figure 4. The dependence of chiral condensate on inverse gauge coupling B.

7. Smeared Fermion

Both the asqtad and HISQ fermion introduce smeared gauge
field to reduce the taste violation of the standard staggered
fermion. In fact the other fermions can also benefit from
smearings of gauge field. For Wilson fermions the spread of
the near zero real modes of the Wilson Dirac operator make
it impossible to simulate at small quark masses without going
to very fine lattice spacing or large volumes. Smearing can
reduce the spread of the eigenvalues [22]. Chiral fermions
including overlap fermion and domain wall fermion also
benefit from smeared gauge field. This is because the smearing
reduces the occurrence of low modes of the Kernel operator
from which it is constructed [23][24]. But one cannot perform
this smearing too aggressively, however, since the smearing
may distort short distance physics and enhance discretization
errors. Here I give the Hyper-cubic (HYP) blocking smearing
[25][26].

HYP smearing consist three steps of projected APE type
smearing.
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. a - ~
Vn,u = PI'OJ |:<1 - al)U’ﬂ,lJ« + ' Z Vn7V§MVn+lA’7M§VVJ+ﬂ,u;;L:|
+v#£u
~ . Qs - - _
Vi = Proj [(1 —a2)Up, + a1 Z Vn:PW.U«VnJFﬁaN?PVVerrﬂ,p;uu]
tpFv,p
= . ag
Vigp = Proj|(1 = ag)Un + S Y UnaUnsnuUls - (76)
En#p,vip

Where we used the notations in Ref. [26]. Here Proj v < pand v,p # p, and thus there are 12 combinations for
denotes the projection to SU(3) matrix. V,, , is the smeared  (u;vp). In practical implementation of HYP, we introduce
link from the site n in direction x while U, ,, is the original =~ W, ,,, = Vi, 4w, for n = uwvp # p,v,p. The second and
(thin) link. From the definition of V' the two indices v, p in  third step of HYP smearing can be rewritten as
Vy.uvp can be interchanged, and Vj, ,,.,,, can be defined for

~ . Q2
Vn,,u;u = Proj [(1 — OéQ)Un”u + Z Z Wn,p,)\Wn+ﬁ,#»>\W;+ﬁ,>\}
EpAV, W A=pVL
. ag

Winm = Proj [(1 — ag)Unu+ 5 (UMUM,HU;W +(n— 777))} (77)

For each site n, we want to store ‘N/W“,, for u # vand W, ,, , for u # n.

The smeared Wilson fermion action can be written as S = ¢! (DTD)*qu where ¢ is the pseudo-fermion and D is the smeared
Wilson matrix, i.e., the thin link U, , is replaced by the smeared link V;, ,,. By the chain rule, one has

OSF oV,
IOF _ Ret (zn *“) 78
ow e o Bw (78)
v, OV, OU, OV Vi e
En n,u _ Zn |: n,pn n,pn 4 n,u m,V,pi|
e w *lou,, ow * OVpwp  OW
o, - OV OU, Voo Wi
— 2(1) 1] E(l) ‘ |: m,v;p m,v 7’m,1/,p rL,(x,,B'y:|
B e gt 0w OV, 0w
oU, ovU, ~ OV oy OU,
_ E(1) “w 2(2) v 2(2) n,a; By m,v
R e A W X T S
(2(1) + 2(2) + 2(3)> any (79)
v v v aw
where
O0SF 1 av, ~ av,
T, n —y, (D =, —— 80
K 5Vn,,/ n,pn N 8Un ;t’ m,v;p sH an,y,p7 ( )
3 ov. . - . OV v v,
2@ w1 Frmyp w2 w@1) IVmuip o g(3) w2 GVnaify g1
m,V m,v;p 8Um,y ) n,o;By m,u,pana;ﬂ’yv m,v n,a; By aUmﬂj ( )
Inserting (79) to (78), one has
0Sr

. 1 2 3
T Retr((IT) Uk »(Z() + ) + =)

The details of calculations for X(*) can be found in [26].
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8. Staggered Wilson Fermion
Adams introduced the massless Staggered Wilson fermion matrix [27][28]
Dyy = Dy + Wy (82)
where Dy = %Dl is the massless staggered fermion matrix and D is given by (45).
Wy =r(1 —eT'5) (83)

with Wilson-like parameter r > 0, e, = (—1)mtnatnstnay, Ty = 55C where 175 = 1727304, i€,
N5thn = (—1)(M+n3)q) The operator C is given by

a Z CuCyCrCy (84)

pnro

where the sum ) ;s runs for all 4! permutations of (1,2, 3, 4) and

T T_
C, = Liptdp (85)
2

with T 1y, = Uy, +,¥p+p. Obviously,

(eDgy)T = €Dy, <= DI, = Dy, (86)
due to eCy, = Cle.
The fermion action for the staggered Wilson fermion with two degenerate flavors is

Sp = 0" (DL, Dsw)™"0 (87)

with pseudofermion fields ¢. To calculate the fermion force, we have to compute

TaDsz yt 95t 0Dy X + y T sw Wy,

Y
Owy, , 8kp 8kp

X

with X = (DJWDSW) “l¢pand Y = D, X. The calculation of yt %X is given before. Since the operator € and 75 are diagonal
k,p

in lattice space, which does not depend on U,

TaWsz
Oowy, »
r oCy,
= g 2 (VTens) 5= (CLC,CoX) +
" pvpo wk,p
out
- Unpg im0
2 X4‘ Za [ 1@ X+ Bwip X”*u} +
N _2 X 4' Z Yn |:5n’k5”’piTiUkvPX”+ﬂ + 5n*ﬂ,k5#7PUl;r,p(_iTi)Xn*ﬂ} +
" prio
T . ~ o
T 2x4l D {Y’JIT"U’@PXHﬁ + VLU (- lTi)Xk] +
"o
r . ~ ) i
= gt T (W Kusp) @ V] = Ko (V] UL )]+ (88)
" Vo

Where Y = Ytens and X = ©,C,C, X. The other three 9, Overlap Fermion
terms (- - - ) in (88) can also be written as the first term.

The overlap fermion matrix is

Doy = (1 =m)D% +m (89)
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where m is the non-dimensional fermion mass and

1 .
Db =3 (1 + 7551gn[H]) (90)
satisfying the

is the overlap fermion matrix at m = 0,

Ginsparg-Wilson equation [29]. sign[H] = H(HTH)~1/?

4
0 1

Dw;n,m =5 Z ((1 - ’Y/L)UTL,/L(STL-‘:-[L,M + (1 + 'Y;/.)Un,—uan—/l,m)

2
p=1

The numerical implementation requires an approximation of
the matrix sign function of a Wilson-like fermion operator, and
various approaches are being used. In fact, it is possible to
rewrite these approximations in terms of a five-dimensional
formulation, showing that the domain wall fermion and
overlap fermion are essentially equivalent [30][31].

By introducing the pseudo-fermion ¢, the fermion action is

r =" (D{,Dov) "' (93)

The derivative of the fermion action is the same with (21)
where the fermion matrix is replaced by the overlap fermion
matrix D,y. To calculate the X and Y in (22), we approximate

where the Hermitian matrix H is
H =~5(Dy — M) 1)

Here M > 0 is the large mass and DY is the Wilson fermion
matrix at chiral limit m = 0

(92)
sign[H] in (90) (See P. 180 in [7])
N—-1
sign[H] ~ H Z en T (H (94)
n=0
with
5 H2 _ (32 2
- e 9

where o and [ are the (in magnitude) smallest and the
largest eigenvalues of H, respectively. T, is the first kind of
Chebyshev polynomials of order n and the coefficient ¢,, in
(94) is

o /11 df/f;() o) = (50 + )+ 52— )

Expanding the RHS of (94), one has

sign[H] ~ dyH + dsH® +

where {dz;_ 1}
Similar to (54), we want to calculate

OD,y.
Yrj 8ovi,n,m)(m
wk »

2l—1 OH
— d H] 1 anQZ 1]X
LSS s S

2[—-1

ot don o HPNT! (96)

Y, etc., depend on the coefficients {c, }) ', o and 8.

| ) _ L
= 726121 1 Z s HI 1755[(1 =) (AT3) Uk pOntpmOnk + (1 +%)U11,p(—lﬂ)5nfﬁ,m5m,k X,

2l—-1

= de 1 Z Vs HO s (1= ) () Uk o 1 X —

20—-1
Zdzz 2 Vs Y o149 UL (T
= (1Ti(B %) + c.c. 97)
where
1 2l—-1 .
Bz—zdgl VS (U B X ) @ (Vs HO s (1))

=1 Jj=1
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N 20—1
1—-m 1—1—4 i
c=-—" ;dm,l Zl (H2 L JXk> ® (Y,Lﬁ%HJ Los(1 + yp)U,IJ))
= Jj=

See (25) and (26) for comparison of B and C.

10. Domain Wall Fermion

The domain wall fermion makes use of a 5D lattice and then construct the chiral Dirac fermions when the lattice size N5 in
5th dimension is large [32][33][34][35]. The domain wall operator can be constructed from the massless Wilson operator Df,)v

de,ns,mt = 63,t(D3/;n,m - M56n,m) + 5%ng:«;¢ (98)
with
DS =651 — (1= 8s,ng—1)P-0sq10 — (1 = 05,0) Pr6s—1,0 + m(P-84,n5—160,4 + P18s,00N;—1,¢) 99)
and the chiral projector
1+
pp=-—=0 (100)
2
Here M5 is the domain wall barrier, m is the bare fermion mass, s,t = 0,--- , N5 — 1 are the indices in the 5th dimension.

The fermion action for the domain wall fermion with two degenerate flavors is
-1
S = U (Day(m)' Daw(m)) W + & (Do (1)1 D (1)) @ (101)

With pseudofermion field ¥ or Pauli-Villars field ¢. Here Acknowledgements
Dgyw (1) is the domain wall matrix Dgy, (m) with m = 1. Since
the link variable only appear in the massless Wilson matrix Daming Li was supported by the National Science
D&, the fermion force calculation is rather simple (See section  Foundation of China (No. 11271258, 11971309).
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