
American Journal of Physics and Applications
2022; 10(1): 8-23
http://www.sciencepublishinggroup.com/j/ajpa
doi: 10.11648/j.ajpa.20221001.12
ISSN: 2330-4286 (Print); ISSN: 2330-4308 (Online)

The Calculation of Force in Lattice Quantum
Chromodynamics

Daming Li

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China

Email address:
lidaming@sjtu.edu.cn

To cite this article:
Daming Li. The Calculation of Force in Lattice Quantum Chromodynamics. American Journal of Physics and Applications.
Vol. 10, No. 1, 2022, pp. 8-23. doi: 10.11648/j.ajpa.20221001.12

Received: December 14, 2021; Accepted: December 28, 2021; Published: February 15, 2022

Abstract: Quantum chromodynamics (QCD) is the fundamental quantum field theory of quarks and gluons. To discuss
it in a mathematically well-defined way, the theory has to be regularized by replacing space-time with a Euclidean lattice.
This regularized theory, called lattice QCD (LQCD), has proven to be an efficient approach which allows for both theoretical
understanding and computational analysis. LQCD has become a standard tool in elementary particle physics, which can be
solved by the hybrid Monte Carlo method. The calculation of force is most difficult part in the hybrid Monte Carlo method. This
lecture gives the details of the force calculation in one-loop Symanzik improved action, Wilson fermion with clover term, asqtad
fermion, HISQ fermion, rooted staggered fermion, smeared fermion, staggered Wilson fermion, overlap fermion and domain
wall fermion. The even-odd precondition are also considered in these calculations.
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1. Introduction

Lattice QCD (LQCD), started in 1974 [1], is a mature
subject, and it provides a framework in which the strong
interactions can be studied from first principles, from low to
high energy scales. At the high energy level, it can test the
perturbative method as shown in deep inelastic experiments
where a very high momentum transfer and weakly coupled
quarks appear as the prominent degrees of freedom. While
at the low energy level, only LQCD can provide tool to
study non-perturbative phenomena. Now, lattice QCD is an
important tool to test the Standard Model, where it can give
various hadronic matrix elements, which can compare those
obtained using phenomenological approaches. It can also
explore the QCD phase diagram for temperature and finite
density. There are many other physical applications of LQCD,
e.g., for the calculation of hadron spectrum, pseudoscalar
decay constants, kaon bag parameter, semileptonic form
factors, strong gauge coupling, quark masses, etc. Lattice
QCD becomes quantitatively predictive only with the advent
of supercomputers [2]. There are several textbooks and notes
available for detailed introduction [3][4][5][6][7], where the

discretization of the continuum QCD are introduced. The
recent progress of lattice QCD can be referred to FLAG
Review 2021 [8]. The goal of this lecture is to give a
concise formula for the force coming from the gauge action
and fermion action, which is the most important part in the
algorithms of LQCD. Based on these formula, I hope that the
reader can understand the free LQCD codes (such as MILC,
Chroma, CPS, etc.) easily.

The arrangement of the paper is as follows. In section 2, the
one-loop Symanzik improved action is presented and its force
calculation is given in details. In section 3, Wilson fermion
action with clover term and its fermion force is given. The
fermion force for asqtad fermion (Sec. 4), HISQ fermion (Sec.
5), smeared fermions (Sec. 7), rooted staggered fermion (Sec.
6), staggered Wilson fermion (Sec. 8), overlap fermion (Sec.9)
and domain wall fermion (Sec.10) are calculated in details,
respectively. Conclusions are given in section 11.

2. One-loop Symanzik Improved Action
The one-loop Symanzik improved action is based on the

sum of the plaquette, rectangle and cube loops [9]:
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∑
n

∑
Pn

cPPn =
∑
n

∑
1≤µ<ν≤4

Un,µUn+µ̂,νUn+µ̂+ν̂,−µUn+ν̂,−ν −

1 + 0.4805αs
20u20

∑
n

∑
µ6=ν=1,··· ,4

Un,µUn+µ̂,µUn+2µ̂,νUn+2µ̂+ν̂,−µUn+µ̂+ν̂,−µUn+ν̂,−ν −

2× 0.03325αs
u20

∑
n

∑
1≤µ<ν<ρ≤4,±ν,±ρ

Un,µUn+µ̂,νUn+µ̂+ν̂,ρUn+µ̂+ν̂+ρ̂,−µUn+ν̂+ρ̂,−νUn+ρ̂,−ρ (1)

Where the sum in each line are shown in Figure 1.

Figure 1. The plaquette (Left), rectangle (Middle) and cube loop (Right) are shown.

We always use the lattice unit a = 1 in the whole
paper. Here

∑
n denotes the sum over all sites n in 4D

lattice and 1 ≤ µ, ν, ρ ≤ 4 denote the four directions
of the 4D lattice. In the third line of (1) there are
16 terms: {1 ≤ µ < ν < ρ ≤ 4,±ν,±ρ} =
{(1,±2,±3), (1,±2,±4), (1,±3,±4), (2,±3,±4)}. Here
+µ and −µ denotes the positive and negative direction of µ,
respectively. For each site n, there are 34 paths including 6
plaquette, 12 rectangles and 16 cube loops, which begin and
terminate at n. Denote by Pn any one in these 34 paths. We
also use Pn to represent the multiplication of SU(3) matrix
U along this path Pn, and denote by cP the corresponding

coefficient which depends on the path type. In particular, cP
does not depends on lattice site n. As usual the link variable
Un,µ is the SU(3) matrix defined on the link (n, n + ν̂) and
Un+ν̂,−ν = U†n,ν . In general, Pn with L = 4, 6 links has a
form

Pn = Un1,d1 · · ·UnL,dL (2)

where n1 = nL + d̂L = n, ni+1 = ni + d̂i, i = 1, · · · , L− 1.
It is noted that the L directions {di}Li=1 are determined by
the type of path P . u0 in (1) is the tadpole coefficient and
αs = − 4 log(u0)

3.06839 . The one-loop Symanzik improved action is

SG[U ] =
β

3

∑
n

∑
Pn

cP

[
3− Retr(Pn)

]
=
β

3

∑
all 34 paths P

∑
n

cP

[
3− Retr(Pn)

]
(3)

Where Retr denotes the real part of the trace of 3×3 matrix,
β is the inverse gauge coupling. The one-loop Symanzik
improved action has the lattice artifacts of O(αsa

2) which
does not include the one-loop contributions from dynamical
fermions. The standard Wilson gauge action is replaced
by this perturbatively-improved action with tadpole-improved
correction terms that remove the leading errors due to the
lattice. Let {Ti}8i=1 be the 8 generators of Lie algebra su(3) of
SU(3). These generators are traceless, complex, and hermitian
3× 3 matrices obeying the normalization condition

tr[TjTk] =
1

2
δjk, j, k = 1, · · · , 8 (4)

Each link variable can be represented by

Un,µ = exp
(

i
8∑
i=1

ωin,µTi

)
, µ = 1, 2, 3, 4 (5)

with 8 real numbers {ωin,µ}8i=1 for each link (n, µ). By using
the presentation of each link in (5), the gauge action in (3) is a
function of ωin,µ. The gauge force of SG is

−
∑
i

Ti
∂SG
∂ωik,ρ

=
β

3

∑
all 34 paths P

cP
∑
n

∑
i

Ti Retr
( ∂Pn
∂ωik,ρ

)

=
β

3

∑
all 34 paths P

cP

L∑
l=1

∑
n

∑
i

Ti Retr
(
Un1,d1 · · ·Unl−1,dl−1

∂Unl,dl
∂ωik,ρ

Unl+1,dl+1
· · ·UnL,dL

)
(6)
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Where Pn is given by (2). Since

∂Unl,dl
∂ωik,ρ

=


iTiUnl,dl , if Unl,dl = Uk,ρ, i.e. , nl = k and dl = ρ

Unl,dl(−iTi), if Unl,dl = U†k,ρ ≡ Uk+ρ̂,−ρ, i.e. , nl = k + ρ̂ and dl = −ρ
0, otherwise

(7)

only two terms in the sum over n in (6) does not vanish, i.e.,

n = n1 = k −
l−1∑
j=1

d̂j , if (nl, dl) = (k, ρ) (8)

n = n1 = k + ρ̂−
l−1∑
j=1

d̂j , if (nl, dl) = (k + ρ̂,−ρ) (9)

Inserting (7) into (6), and using the cyclic property of trace, Retr(B) = Retr(B†) for any complex matrix B, the gauge force
in (6) then becomes

−
∑
i

Ti
∂SG
∂ωik,ρ

=
β

3

∑
all 34 paths P

cP

L∑
l=1

{∑
i

Ti Retr
[
(iTi)(Unl,dl · · ·UnL,dLUn1,d1 · · ·Unl−1,dl−1

)
]
(nl,dl)=(k,ρ)

+

∑
i

Ti Retr
[
(iTi)(U

†
nl,dl

U†nl−1,dl−1
· · ·U†n1,d1

U†nL,dL · · ·U
†
nl+1,dl+1

)
]
(nl,dl)=(k+ρ̂,−ρ)

}
=

β

6

∑
all 34 paths P

cP

L∑
l=1

{
i(Unl,dl · · ·UnL,dLUn1,d1 · · ·Unl−1,dl−1

)TA

∣∣∣
(nl,dl)=(k,ρ)

+

i(U†nl,dlU
†
nl−1,dl−1

· · ·U†n1,d1
U†nL,dL · · ·U

†
nl+1,dl+1

)TA

∣∣∣
(nl,dl)=(k+ρ̂,−ρ)

}
=

β

6

∑
all 34 paths P

cP

L∑
l=1

{
iUk,ρ

[
(Unl+1,dl+1

· · ·UnL,dLUn1,d1 · · ·Unl−1,dl−1
)
∣∣∣
(nl,dl)=(k,ρ)

+

(U†nl−1,dl−1
· · ·U†n1,d1

U†nL,dL · · ·U
†
nl+1,dl+1

)
∣∣∣
(nl,dl)=(k+ρ̂,−ρ)

]}
TA

(10)

where BTA is the traceless and anti-Hermitian part of 3× 3 complex matrix B

BTA =
B −B†

2
− tr(B −B†)

6
I3 (11)

In (10), we used

8∑
i=1

TiRetr[iTiB] =
1

2

∑
i

Ti

{
tr[iTiB] + c.c.

}
=

1

2

∑
i

Titr
[
iTi(B −B†)

]
=
∑
i

Titr
[
iTiBTA

]
=

1

2
iBTA (12)

For any 3 × 3 complex matrix B. We always use c.c. to
represent the complex conjugate.

In summary, the gauge fermion force has two contributions.
One contribution comes from the paths passing through the

link (k, ρ) in the positive direction and the other from the paths
passing through the link (k, ρ) in the negative direction. The
implementation of gauge force calculation can be written as
follows.

1. For all direction ρ
2. tk,ρ = 0 for each site k
3. For all 34 global path P
4. For each link l of P
5. If dl 6= ±ρ, go to step 4
6. If dl = ρ, tk,ρ + = cPUnl+1,dl+1

· · ·UnL,dLUn1,d1 · · ·Unl−1,dl−1
for all sites k = nl.

7. If dl = −ρ, tk,ρ + = cPU
†
nl−1,dl−1

· · ·U†n1,d1
U†nL,dL · · ·U

†
nl+1,dl+1

for all sites k = nl − ρ̂.
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8. Calculate β
6 i(Uk,ρtk,ρ)TA for each site k

Based on the standard Wilson gauge action, we use
the hybrid monte carlo algorithm to simulate the plaquette
expectation value and static quark potential aV (an), as shown

in Figure 2 where the lattice size in the space directions and
Euclidean time direction are 16 and 6, respectively.

Figure 2. The plaquette expectation and static quark potential aV (an) depends on the inverse gauge coupling β.

3. Wilson Fermion Action with Clover Term

The Wilson fermion matrix with clover term is [10]

D = A− κD (13)

with the diagonal part

An,m =
[
1− csw

4(m+ 4)

∑
1≤µ<ν≤4

[γµ, γν ]Fn;µν

]
δn,m (14)

and non-diagonal part in lattice space

Dn,m =

4∑
µ=1

(
(1− γµ)Un,µδn+µ̂,m + (1 + γµ)Un,−µδn−µ̂,m

)
(15)

Here {γµ}4µ=1 are the 4 × 4 Gamma matrices, m is the non-dimensional bare mass of each specie, κ = 1
2(m+4) , csw is the

Sheikholeslami-Wohlert coefficient, which can be determined by perturbative method [11], tadpole improvement [12][13] and
nonperturbative method [14]. The clover part Fn;µν in (14) is anti-Hermitian

Fn;µν =
1

8
(Qn;µν −Qn;νµ) (16)

with

Qn;µν = Un;µ,ν + Un;ν,−µ + Un;−µ,−ν + Un;−ν,µ = Q†n;νµ (17)

where Un;µ,ν = Un,µUn+µ̂,νUn+µ̂+ν̂,−µUn+ν̂,−ν = U†n;ν,µ, etc. Thus the diagonal part in (14) is

An,m =
[
1− csw

32(m+ 4)

∑
1≤µ 6=ν≤4

[γµ, γν ]Qn;µν

]
δn,m (18)

The partition function of LQCD for the Wilson fermion with two degenerate flavors reads

Z =

∫
D[U ]e−SG[U ](detD)2 =

∫
D[U ]e−SG[U ] det(D†D) =

∫
D[U ]D[φ]e−S[U ] (19)
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where we used detD = detD† and introduced the pseduofermion (real field) φ. The effective action in (19) is

S[U ] = SG[U ] + φ†(D†D)−1φ (20)

The one-loop Symanzik improved action SG in 20 is given in (3) and it’s derivative has been calculated in section 2. The
derivative of the fermion action is calculated as follows

− ∂

∂ωik,ρ
[φ†(D†D)−1φ] = Y †

∂D

∂ωik,ρ
X + c.c. = Y †n

∂Dn,m

∂ωik,ρ
Xm + c.c. (21)

with

X = (D†D)−1φ, Y = DX (22)

Since

∂Dn,m
∂ωik,ρ

= (1− γρ)(iTi)Uk,ρδn+ρ̂,mδn,k + (1 + γρ)U
†
k,ρ(−iTi)δn−ρ̂,mδm,k (23)

the contribution of (23) to (21) is

Y †n
∂Dn,m
∂ωik,ρ

Xm + c.c.

=
[
Y †k (1− γρ)(iTi)Uk,ρXk+ρ̂ − Y †k+ρ̂(1 + γρ)U

†
k,ρ(iTi)Xk

]
+ c.c.

= tr
(

iTi(B − C)
)

+ c.c. (24)

with the 3× 3 matrix

B =
(

(1− γρ)Uk,ρXk+ρ̂

)
⊗ Y †k , i.e., Bb,a =

(
(1− γρ)Uk,ρXk+ρ̂

)
αb

(Y †k )αa (25)

C = Xk ⊗
(
Y †k+ρ̂(1 + γρ)U

†
k,ρ

)
(26)

The last equality in (24) use the fact

Y †k (1− γρ)(iTi)Uk,ρXk+ρ̂ = Y †k (iTi)Z = Y †k,αa(iTi)abZαb = tr(iTiB) (27)

with Z = (1 − γρ)Uk,ρXk+ρ̂. We always use a, b, c, d, e, f etc. for the color indices and α, β etc. for the Dirac indices. The
contribution of D for the fermion force −

∑
i Ti

∂
∂ωiρ(k)

[φ†(D†D)−1φ] is

−
∑
i

Ti

(
tr(iTi(B − C)) + c.c.

)
= −i(B − C)TA (28)

By using (18), the contribution of A to (21) is

Y †n
∂An,m
∂ωik,ρ

Xm + c.c.

= Y †n
∂

∂ωik,ρ

∑
µ6=ν

[γµ, γν ]Qn;µνXn + c.c.

=
∑

n=k,k+ρ̂,k±ν̂,k+ρ̂±ν̂

Y †n [γρ, γν ]
∂

∂ωik,ρ
(Qn;ρν −Qn;νρ)Xn + c.c. (29)

where we omit the writing of factor − csw
32(m+4) before the sum. In the last equality we used

∂

∂ωik,ρ

∑
µ6=ν

[γµ, γν ]Qn;µν =
∑
ν

[γρ, γν ]
∂

∂ωik,ρ
(Qn;ρν −Qn;νρ) (30)
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where the sum over n and ν is understood. The sum over n in (29) runs for n = k, k+ ρ̂, k± ν̂, k+ ρ̂± ν̂, otherwise the derivative
∂

∂ωik,ρ
(Qn;ρν −Qn;νρ) in (29) vanishes. Let us consider the term n = k + ν̂ and the other terms are similar. Since

∂

∂ωik,ρ
(Qk+ν̂;ρν −Qk+ν̂;νρ)

=
∂

∂ωik,ρ

(
Uk+ν̂,−νUk,ρUk+ρ̂,νUk+ρ̂+ν̂,−ρ − Uk+ν̂,ρUk+ρ̂+ν̂,−νUk+ρ̂,−ρUk,ν

)
= Uk+ν̂,−ν(iTi)Uk,ρUk+ρ̂,νUk+ρ̂+ν̂,−ρ − Uk+ν̂,ρUk+ρ̂+ν̂,−νUk+ρ̂,−ρ(−iTi)Uk,ν (31)

the contribution to (29) is

Y †k+ν̂ [γρ, γν ]
∂

∂ωik,ρ
(Qk+ν̂;ρν −Qk+ν̂;νρ)Xk+ν̂ + c.c. = tr

(
iTi(B + C)

)
+ c.c. (32)

where

B =
(
Uk,ρUk+ρ̂,νUk+ρ̂+ν̂,−ρXk+ν̂

)
⊗
(
Y †k+ν̂ [γρ, γν ]Uk+ν̂,−ν

)
(33)

C =
(
Uk,νXk+ν̂

)
⊗
(
Y †k+ν̂ [γρ, γν ]Uk+ν̂,ρUk+ρ̂+ν̂,−νUk+ρ̂,−ρ

)
(34)

The above calculation shows that B comes from the part of the fermion action

Y †k+ν̂ [γρ, γν ]Uk+ν̂,−νUk,ρUk+ρ̂,νUk+ρ̂+ν̂,−ρXk+ν̂

And it’s derivative with respect to ωik,ρ will insert iTi before
Uk,ρ and thus separate two vectors in B as shown in (33). The
formula of C in (34) can also be understand.

The elements of non-diagonal part in Wilson fermion matrix
are nonzero only for two neighbouring sites, and thus the even-
odd precondition can be used, i.e., we first label all even sites
and then the odd sites. Using these labelling of sites, the

Wilson fermion matrix in (13) can be written as

D =

(
Ae −κDeo

−κDoe Ao

)
where Deo = −D†oe and the matrix Deo has the form of
(15), which is defined on the even sites (rows) and odd sites
(columns). Ae(Ao) are the diagonal part A, which defined on
the even (odd) sites. Introducing the Schur complement of D

M = Ae − κ2DeoA
−1
o Doe (35)

one has detD = detM detAo. The partition function in (19) can be written as

Z =

∫
D[U ]e−SG[U ] det(M†M)(det(Ao))

2 =

∫
D[U ]D[φ]e−S[U ] (36)

where we used A†o = Ao, the pseudofermion φ is defined on the even sites and the effective action reads

S[U ] = SG[U ] + φ†(M†M)−1φ− 2tr lnAo (37)

The derivative of the fermion action is

∂

∂ωi

[
φ†(M†M)−1φ

]
= Y †e

∂M

∂ωi
Xe + c.c. (38)

where

Xe = (M†M)−1φ, Ye = MXe (39)
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are defined on the even sites. From the definition of M in (35)

Y †e
∂M

∂ωi
Xe = Y †e

∂Ae
∂ωi

Xe − κ2
(
Y †e

∂Deo

∂ωi
Xo − Y †o

∂Ao
∂ωi

Xo + Y †o
∂Doe

∂ωi
Xe

)
(40)

with Xo = A−1o DoeXe, Yo = A−1o DoeYe defined on the odd sites. The calculation of Y †e
∂Ae
∂ωiXe (Y †o

∂Ao
∂ωiXo) is similar to (29)

except these formula are define on the even (odd) sites. The calculation of Y †e
∂Deo
∂ωi Xo and Y †o

∂Doe
∂ωi Xe are also similar to (24).

The derivative of the action tr lnAo can be calculated as follows:

∂tr lnAo
∂ωik,ρ

=
∑

odd sites n

tr
(
A−1o,n

∂Ao,n
∂ωik,ρ

)
=

∑
odd sites n

tr
(
A−1o,n

∂

∂ωik,ρ

∑
µ6=ν

[γµ, γν ]Qn;µν

)
=

∑
odd sites n=k,k+ρ̂,k±ν̂,k+ρ̂±ν̂

tr
[
A−1o,n[γρ, γν ]

∂

∂ωik,ρ
(Qn;ρν −Qn;νρ)

]
(41)

which is rather similar to (29). For example, if k is the even site, then there are the contribution for the odd site n = k + ν̂

tr
[
A−1o,k+ν̂ [γρ, γν ]

∂

∂ωik,ρ
(Qk+ν̂;ρν −Qk+ν̂;νρ)

]
= tr

(
iTi(B + C)

)
(42)

where
B =

(
Uk,ρUk+ρ̂,νUk+ρ̂+ν̂,−ρ

)(
A−1o,k+ν̂ [γρ, γν ]Uk+ν̂,−ν

)
C =

(
Uk,ν

)(
A−1o,k+ν̂ [γρ, γν ]Uk+ν̂,ρUk+ρ̂+ν̂,−νUk+ρ̂,−ρ

)
4. Asqtad Fermion

Compared to Wilson fermion the staggered fermions are
numerically very fast to simulate. This is because the
staggered fermion, with only one component per lattice
site, and the massless limit protected by a remnant chiral
symmetry. But the major drawbacks is the taste violations due
to the exchange of ultraviolet gluons between different taste
components living on neighboring lattice sites. The asqtad
(a-squared tadpole improved) fermion is introduced largely to

reduce this taste violation [15], which was used in many large
scale simulations [16]. As shown in in Figure 3, the asqtad
fermion matrix is

D = m+ cNDN + c1D1 + c3D3 + c5D5 + c7D7 + cLDL (43)

where cN etc. are the coefficients, the Gamma matrices in the
Wilson fermion are replaced by the staggered factor ηn,µ =
(−1)n1+··· ,nµ−1 for lattice site n = (n1, · · · , n4), ηn,1 = 1.
The asqtad fermion matrix D incldue the (4 × 2 = 8) Naik
terms [17]

[DN ]n,m =
∑
µ

ηn,µ

[
Un,µUn+µ̂,µUn+2µ̂,µδn+3µ̂,m − (µ→ −µ)

]
(44)

the (4× 2 = 8) one-link terms

[D1]n,m =
∑
µ

ηn,µ

[
Un,µδn+µ̂,m − (µ→ −µ)

]
(45)

the (4× 3× 4 = 48) three-staple terms

[D3]n,m =
∑
µ

ηn,µ
∑
ν 6=µ

[
Un,±νUn±ν̂,µUn+µ̂±ν̂,∓νδn+µ̂,m − (µ→ −µ)

]
(46)

the (4× 3× 2× 8 = 192) five-staple terms

[D5]n,m =
∑
µ

ηn,µ
∑
ν 6=µ

∑
ρ6=µ,ν

[
Un,±νUn±ν̂,±ρUn±ν̂±ρ̂,µUn+µ̂±ν̂±ρ̂,∓ρUn+µ̂±ν̂,∓νδn+µ̂,m − (µ→ −µ)

]
(47)
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the (4× 3× 2× 16 = 384) seven-staple terms

[D7]n,m =
∑
µ

ηn,µ
∑
ν 6=µ

∑
ρ 6=µ,ν

∑
σ 6=µ,ν,ρ

[
Un,±νUn±ν̂,±ρUn±ν̂±ρ̂,±σUn±ν̂±ρ̂±σ̂,µ

Un+µ̂±ν̂±ρ̂±σ̂,∓σUn+µ̂±ν̂±ρ̂,∓ρUn+µ̂±ν̂,∓νδn+µ̂,m − (µ→ −µ)
]

(48)

and the (4× 3× 4 = 48) Lepage terms [15]

[DL]n,m =
∑
µ

ηn,µ
∑
ν 6=µ

[
Un,±νUn±ν̂,±νUn±2ν̂,µUn+µ̂±2ν̂,∓νUn+µ̂±ν̂,∓νδn+µ̂,m − (µ→ −µ)

]
(49)

Figure 3. The Naik term, one-link, three-staple, five-staple, seven-staple and Lepage term (from left to right).

The asqtad fermion matrix (43) include the contribution from two neighbouring sites

Vn,µδn+µ̂,m + Vn,−µδn−µ̂,m (50)

where V = FU is the fat link depending on the thin link U

Vn,µ = ηn,µ

{
c1Un,µ +

c3
∑
ν 6=µ

Un,±νUn±ν̂,µUn+µ̂±ν̂,∓ν +

c5
∑
ν 6=µ

∑
ρ 6=µ,ν

Un,±νUn±ν̂,±ρUn±ν̂±ρ̂,µUn+µ̂±ν̂±ρ̂,∓ρUn+µ̂±ν̂,∓ν +

c7Un,±νUn±ν̂,±ρUn±ν̂±ρ̂,±σUn±ν̂±ρ̂±σ̂,µUn+µ̂±ν̂±ρ̂±σ̂,∓σUn+µ̂±ν̂±ρ̂,∓ρUn+µ̂±ν̂,∓ν

}
(51)

The partition function for two degenerate staggered fermions is

Z =

∫
D[U ]e−SG[U ] det(D†D) =

∫
D[U ]D[φ]e−S[U ] (52)

with the effective action

S[U ] = SG[U ] + φ†(D†D)−1φ (53)

The derivative of the fermion action φ†(D†D)−1φ is given in (21) and (22). We gather all paths (8+8+48+192+384+48 =
688) in asqtad matrix. All paths can start any site n and end some site m = n ± µ̂, n ± 3µ̂. Let P be these paths with length
L = 1, 3, 5, 7 and denote also by P the multiplication of link variables along P : P = U1 · · ·Ul · · ·UL. It’s contrbution to

Y †n
∂Dn,m

∂ωik,ρ
Xm + c.c. (54)

in (21) is

ηn,µ

L∑
l=1

Y †nU1 · · ·Ul−1
∂Ul
∂ωik,ρ

Ul+1 · · ·ULXm + c.c. =

L∑
l=1

[
tr(iTiB) + c.c.

]
(55)



16 Daming Li: The Calculation of Force in Lattice Quantum Chromodynamics

with

B = sign ×
{

(UlUl+1 · · ·ULXm)⊗ (Y †nU1 · · ·Ul−1), if Ul = Uk,ρ
(Ul+1 · · ·ULXm)⊗ (Y †nU1 · · ·Ul−1Ul), if Ul = U†k,ρ

(56)

Here sign = (±)ηn,µ since this path starts from site n and
ends at n±µ̂, n±3µ̂. The implementation of staggered fermion
force is similar to the algorithm in section 2.

Similar to the even-odd precondition for the Wilson
fermion, the asqtad fermion matrix in (43) under the even-odd
precondition is written as

D =

(
m Deo

Doe m

)
where

Deo = cNDN +
∑

i=1,3,5,7

ciDi + cLDL (57)

is defined on the even sites (rows) and odd sites (columns).
Then detD = detM with M = m2−DeoDoe. The partition
function is

Z =

∫
D[U ]D[φ]e−S[U ] (58)

with the effective action

S[U ] = SG[U ] + φ†(M†M)−1φ (59)

where φ is defined on the even sites. The calculation of the
fermion force is similar to (38)(39)(40) where Ae, Ao and κ
are replaced by m and 1, respectively. Y †e

∂Deo
∂ωi Xo is obtained

from (55) and (56) where n is the even site. Similarly, we can
calculate Y †o

∂Doe
∂ωi Xe.

5. HISQ Fermion

The taste violations in the asqtad action can be further
reduced by additional smearings. This is the highly improved
staggered quark (HISQ) fermion, which was introduced in
[18]. At tree-level it removes both O(a2) errors and, to
lowest order in the quark speed v/c, O(a4m4) errors. It
also substantially reduces effects caused by taste-symmetry
breaking. This makes it attractive not only for light quarks,
but means that it is also quite accurate for heavy quarks. It is
being used to directly simulate charm quarks and to approach
direct simulations of bottom quarks [19][20][21].

To introduce the HISQ fermion, we reunitarize the link
variable V in (51) by

Wn,µ = UVn,µ ≡ Vn,µ
(
Vn,µV

†
n,µ

)−1/2
(60)

and smear the links W again to obtain X = FW . The HISQ
fermion matrix is similar to asqtad fermion matrix except the
background U with replacement of W

D = m+ c′NDN [W ] + (Xn,µδn+µ̂,m +Xn,−µδn−µ̂,m) (61)

Similar to (54), we want to calculate

Y †n,a
∂Dnm;ab

∂ωik,ρ
Xm,b

= Y †n,a
∂Dnm;ab

∂Wp,ν;cd

∂Wp,ν;cd

∂Vp,ν;ef

∂Vp,ν;ef
∂Ul,µ;gh

∂Ul,µ;gh
∂ωik,ρ

Xm,b

= Fp,ν;ef
∂Vp,ν;ef
∂Ul,µ;gh

δlkδµρ(iTiUl,µ)gh

= Fp,ν;ef
∂Vp,ν;ef
∂Uk,ρ;gh

(iTiUk,ρ)gh

= F̃k,ρ;gh(iTiUk,ρ)gh
= tr(iTiB) (62)

Where a, b, · · · , h denotes the color indices. Here we
introduced

Fp,ν;ef =
(
Y †n,a

∂Dnm;ab

∂Wp,ν;cd
Xm,b

)∂Wp,ν;cd

∂Vp,ν;ef
(63)

F̃k,ρ;gh = Fp,ν;ef
∂Vp,ν;ef
∂Uk,ρ;gh

(64)

and

B = Uk,ρF̃
T
k,ρ (65)

The calculation in the bracket of (63) is the same with the
those in asqtad fermion (See section 4) where the background
gauge field U is replaced byW . By the definition of V in (51),
F̃ in (64) can be written as

F̃k,ρ;gh = Fp,ν;ef
∑
P

c̃P
∂

∂Uk,ρ;gh
(Un1,d1 · · ·UnL,dL)ef

=
∑
P

c̃P

L∑
l=1

Fp,ν;ef

(
Un1,d1 · · ·Unl−1,dl−1

∂Unl,dl
∂Uk,ρ;gh

Unl+1,dl+1
· · ·UnL,dL

)
ef

=
∑
P

c̃P

L∑
l=1

tr
(
Un1,d1 · · ·Unl−1,dl−1

∂Unl,dl
∂Uk,ρ;gh

Unl+1,dl+1
· · ·UnL,dLFTp,ν

)
(66)



American Journal of Physics and Applications 2022; 10(1): 8-23 17

Where the sum over p, ν should be understood. The sum
over P runs for all paths starting from some site and ends at
the neighboring site in the positive direction. Let P be a path of
length L, connecting L+1 sites (ni)

L
i=1, with ni+1 = ni+ d̂i,

i = 1, · · · , L− 1. Here n1 = p, nL + d̂L = p+ ν̂. Then

∂Unl,dl
∂Uk,ρ;gh

=

 δnl,kOgh, if dl = ρ
δnl−ρ̂,kOgh, if dl = −ρ
0, otherwise

where Ogh is a 3× 3 matrix with 1 at (g, h) and 0, otherwise.
The calculation of F̃ can be written as follows.

1. For all direction ρ
2. F̃k,ρ = 0 for each site k
3. For all path P
4. For each link l of P
5. If dl 6= ±ρ, go to step 4
6. For all (p, ν), calculate Ap,ν = Un1,d1 · · ·Unl−1,dl−1

and Bp,ν = Unl+1,dl+1
· · ·UnL,dLFTp,ν

7. F̃k,ρ;gh+ =
∑
p,ν

∑
aAp,ν;agBp,ν;ha, where k = nl if dl = ρ; k = nl − ρ̂ if dl = −ρ

6. Rooted Staggered Fermion
Now we consider the rational HMC for rooted staggered

fermion action, which caused rather controversial discussion.

See the comments of the rooted staggered fermion [16]. After
integrating out the Grassman-valued quark fields, the 2+1
quark flavor QCD partition function is given by a functional
integral over gauge fields,

Z =

∫
DU det(Ml)

2
4 det(Ms)

1
4 e−SG =

∫
DU det(M

2
4

l M
− 2

4
s ) det(M

3
4
s )e−SG =

∫
DUDφlDφse

−SG−SF (67)

Where the two degenerated up/down (light) fermion l with
bare mass ml and a stranger fermion s with bare mass ms are
considered. The staggered fermion matrix for fermion l (s)

Ml/s = DeoD
†
eo + 4m2

l/s ≡M0 + 4m2
l/s (68)

is the fermion matrix, where Deo is given by (57). The
staggered fermion matrix Ml (Ms) and the pseudofermion φl
(φs) are both defined on the even sites. The determinants in
(67) represent the (l)ight and (s)trange quark contributions to
the vacuum. The fermion action in (67) is

SF = φ†l (M
− 2

4

l M
2
4
s )φl + φ†sM

− 3
4

s φs (69)

In the hybrid Monte Carlo method, φl and φs are sampled
according to the distribution e−SF , which can be realized
according to

φl = M
2
8

l M
− 2

8
s η, φs = M

3
8
s η (70)

where η is sampled from the Gaussian distribution e−η
†η .

M
2
8

l M
− 2

8
s can be approximated by by rational polynomial of

M0

M
2
8

l M
− 2

8
s = (M0 + 4ml)

2
8 (M0 + 4ms)

− 2
8 ≈ α̃0 +

N∑
p=1

α̃p(M0 + β̃p)
−1

Similarly, M
3
8
s can also be approximated by another rational polynomial of M0. The fermion action in (69) can be calculated

by

SF = (M
− 2

8

l M
2
8
s φl)

†(M
− 2

8

l M
2
8
s φl) + (M

− 3
8

s φs)
†(M

− 3
8

s φs) (71)

where M−
2
8

l M
2
8
s and M−

3
8

s are also be approximated by rational polynomials of M0. In order to calculate the fermion force,

each term (e.g., φ†l (M
− 2

4

l M
2
4
s )φl) of the fermion action in (69) is approximated as

φ†l (M
− 2

4

l M
2
4
s )φl ≈ φ†l

(
α0 +

M∑
p=1

αp(M0 + βp)
−1
)
φl (72)
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with its derivative

∂

∂ωik,ρ

(
φ†l (M

− 2
4

l M
2
4
s )φl

)
≈ −

M∑
p=1

αpx
†
p

∂M0

∂ωik,ρ
xp

= −
M∑
p=1

αpx
†
p

[ ∂Deo

∂ωik,ρ
D†eo + c.c.

]
xp

= −
M∑
p=1

αpx
†
p

∂Deo

∂ωik,ρ
xop + c.c.

= −
M∑
p=1

αpx
†
p,n

∂Deo,n,m

∂ωik,ρ
xop,m + c.c.

= −
∑

all 688 loops P in asqtad

cP

M∑
p=1

αpx
†
p,n

[
U1 · · ·Ul−1

∂Ul
∂ωik,ρ

Ul+1 · · ·UL
]
xop,m + c.c. (73)

where the path P = U1 · · ·UL is a length of L from lattice site n to m, xp and xop are given by

(M0 + βp)xp = φl, xop = D†eoxp, p = 1, · · · ,M

Here xp and xop are defined on the even sites and odd sites, respectively. If Ul = Uk,ρ in (73),

∂

∂ωik,ρ

(
φ†l (M

− 2
4

l M
2
4
s )φl

)
= −

∑
all 688 loops P in asqtad

cP tr
(

iTiUl · · ·UL
[ M∑
p=1

αp(x
o
p,m ⊗ x†p,n)

]
U1 · · ·Ul−1

)
+ c.c. (74)

If Ul = U†k,ρ in (73),

∂

∂ωik,ρ

(
φ†l (M

− 2
4

l M
2
4
s )φl

)
= −

∑
all 688 loops P in asqtad

cP tr
(

iTiU
†
l · · ·U

†
1

[ M∑
p=1

αp(x
o
p,m ⊗ x†p,n)†

]
U†L · · ·U

†
l+1

)
+ c.c. (75)

We use the rational HMC algorithm to simulate the chiral
condensate of up/light fermion and strange fermion, where
ml = 0.01, ms = 0.05, with the lattice size 8 in each
direction, u0 = 0.862. Figure 4 shows the chiral condensate of
the light(u/d) fermion and strange fermion on the inverse gauge
coupling β. The chiral condensate decreases with increasing
β.

Figure 4. The dependence of chiral condensate on inverse gauge coupling β.

7. Smeared Fermion
Both the asqtad and HISQ fermion introduce smeared gauge

field to reduce the taste violation of the standard staggered
fermion. In fact the other fermions can also benefit from
smearings of gauge field. For Wilson fermions the spread of
the near zero real modes of the Wilson Dirac operator make
it impossible to simulate at small quark masses without going
to very fine lattice spacing or large volumes. Smearing can
reduce the spread of the eigenvalues [22]. Chiral fermions
including overlap fermion and domain wall fermion also
benefit from smeared gauge field. This is because the smearing
reduces the occurrence of low modes of the Kernel operator
from which it is constructed [23][24]. But one cannot perform
this smearing too aggressively, however, since the smearing
may distort short distance physics and enhance discretization
errors. Here I give the Hyper-cubic (HYP) blocking smearing
[25][26].

HYP smearing consist three steps of projected APE type
smearing.
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Vn,µ = Proj
[
(1− α1)Un,µ +

α1

6

∑
±ν 6=µ

Ṽn,ν;µṼn+ν̂,µ;ν Ṽ
†
n+µ̂,ν;µ

]
Ṽn,µ;ν = Proj

[
(1− α2)Un,µ +

α2

4

∑
±ρ6=ν,µ

V̄n,ρ;νµV̄n+ρ̂,µ;ρν V̄
†
n+µ̂,ρ;νµ

]
V̄n,µ;νρ = Proj

[
(1− α3)Un,µ +

α3

2

∑
±η 6=ρ,ν,µ

Un,ηUn+η̂,µU
†
n+µ̂,η

]
(76)

Where we used the notations in Ref. [26]. Here Proj
denotes the projection to SU(3) matrix. Vn,µ is the smeared
link from the site n in direction µ while Un,µ is the original
(thin) link. From the definition of V̄ the two indices ν, ρ in
V̄n,µ;νρ can be interchanged, and V̄n,µ;νρ can be defined for

ν < ρ and ν, ρ 6= µ, and thus there are 12 combinations for
(µ; νρ). In practical implementation of HYP, we introduce
Wn,µ,η = V̄n,µ;νρ for η = µνρ 6= µ, ν, ρ. The second and
third step of HYP smearing can be rewritten as

Ṽn,µ;ν = Proj
[
(1− α2)Un,µ +

α2

4

∑
±ρ6=ν,µ,λ=ρνµ

Wn,ρ,λWn+ρ̂,µ,λW
†
n+µ̂,λ

]
Wn,µ,η = Proj

[
(1− α3)Un,µ +

α3

2

(
Un,ηUn+η̂,µU

†
n+µ̂,η + (η → −η)

)]
(77)

For each site n, we want to store Ṽn,µ;ν for µ 6= ν and Wn,µ,η for µ 6= η.
The smeared Wilson fermion action can be written as SF = φ†(D†D)−1φwhere φ is the pseudo-fermion andD is the smeared

Wilson matrix, i.e., the thin link Un,µ is replaced by the smeared link Vn,µ. By the chain rule, one has

∂SF
∂ω

= Retr
(

Σn,µ
∂Vn,µ
∂ω

)
(78)

Σn,µ
∂Vn,µ
∂ω

= Σn,µ

[ ∂Vn,µ
∂Un,µ

∂Un,µ
∂ω

+
∂Vn,µ

∂Ṽm,ν;ρ

∂Ṽm,ν;ρ
∂ω

]
= Σ(1)

µ

∂Uµ
∂ω

+ Σ̃(1)
m,ν;ρ

[∂Ṽm,ν;ρ
∂Um,ν

∂Um,ν
∂ω

+
∂Ṽm,ν;ρ
∂V̄n,α;βγ

∂V̄n,α;βγ
∂ω

]
= Σ(1)

µ

∂Uµ
∂ω

+ Σ(2)
ν

∂Uν
∂ω

+ Σ̃
(2)
n,α;βγ

∂V̄n,α;βγ
∂Um,ν

∂Um,ν
∂ω

=
(

Σ(1)
ν + Σ(2)

ν + Σ(3)
ν

)∂Uν
∂ω

(79)

where

Σn,µ =
∂SF
∂Vn,µ

, Σ(1)
n,µ = Σn,µ

∂Vn,µ
∂Un,µ

, Σ̃(1)
m,ν;ρ = Σn,µ

∂Vn,µ

∂Ṽm,ν;ρ
, (80)

Σ(2)
m,ν = Σ̃(1)

m,ν;ρ

∂Ṽm,ν;ρ
∂Um,ν

, Σ̃
(2)
n,α;βγ = Σ̃(1)

m,ν;ρ

∂Ṽm,ν;ρ
∂V̄n,α;βγ

, Σ(3)
m,ν = Σ̃

(2)
n,α;βγ

∂V̄n,α;βγ
∂Um,ν

(81)

Inserting (79) to (78), one has
∂SF
∂ωik,ρ

= Retr
(

(iTi)Uk,ρ(Σ
(1)
k,ρ + Σ

(2)
k,ρ + Σ

(3)
k,ρ)
)

The details of calculations for Σ(i) can be found in [26].
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8. Staggered Wilson Fermion
Adams introduced the massless Staggered Wilson fermion matrix [27][28]

Dsw = Dst +Wst (82)

where Dst = 1
2D1 is the massless staggered fermion matrix and D1 is given by (45).

Wst = r(1− εΓ5) (83)

with Wilson-like parameter r > 0, εψn = (−1)(n1+n2+n3+n4)ψn. Γ5 = η5C where η5 = η1η2η3η4, i.e.,
η5ψn = (−1)(n1+n3)ψn. The operator C is given by

C =
1

4!

∑
µνλσ

CµCνCλCσ (84)

where the sum
∑
αβγδ runs for all 4! permutations of (1, 2, 3, 4) and

Cµ =
T+µ + T−µ

2
(85)

with T±µψn = Un,±µψn±µ̂. Obviously,

(εDsw)† = εDsw ⇐⇒ D†sw = εDswε (86)

due to εCµ = Cµε.
The fermion action for the staggered Wilson fermion with two degenerate flavors is

SF = φ†(D†swDsw)−1φ (87)

with pseudofermion fields φ. To calculate the fermion force, we have to compute

Y †
∂Dsw

∂ωik,ρ
X = Y †

∂Dst

∂ωik,ρ
X + Y †

∂Wsw

∂ωik,ρ
X

withX = (D†swDsw)−1φ and Y = DswX . The calculation of Y † ∂Dst
∂ωik,ρ

X is given before. Since the operator ε and η5 are diagonal

in lattice space, which does not depend on U ,

Y †
∂Wsw

∂ωik,ρ
X

= − r
4!

∑
µνρσ

(Y †εη5)
∂Cµ
∂ωik,ρ

(CνCρCσX) + · · ·

= − r

2× 4!

∑
µνλσ

Ỹ †n

[∂Un,µ
∂ωik,ρ

X̃n+µ̂ +
∂U†n−µ̂,µ
∂ωik,ρ

X̃n−µ̂

]
+ · · ·

= − r

2× 4!

∑
µνλσ

Ỹ †n

[
δn,kδµ,ρiTiUk,ρX̃n+µ̂ + δn−µ̂,kδµ,ρU

†
k,ρ(−iTi)X̃n−µ̂

]
+ · · ·

= − r

2× 4!

∑
νλσ

[
Ỹ †k iTiUk,ρX̃k+ρ̂ + Ỹ †k+ρ̂U

†
k,ρ(−iTi)X̃k

]
+ · · ·

= − r

2× 4!

∑
νλσ

tr
[
iTi
(

(Uk,ρX̃k+ρ̂)⊗ Ỹ †k − X̃k ⊗ (Ỹ †k+ρ̂U
†
k,ρ)
)]

+ · · · (88)

Where Ỹ † = Y †εη5 and X̃ = CνCρCσX . The other three
terms (· · · ) in (88) can also be written as the first term.

9. Overlap Fermion
The overlap fermion matrix is

Dov = (1−m)D0
ov +m (89)
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where m is the non-dimensional fermion mass and

D0
ov =

1

2

(
1 + γ5sign[H]

)
(90)

is the overlap fermion matrix at m = 0, satisfying the
Ginsparg-Wilson equation [29]. sign[H] ≡ H(H†H)−1/2

where the Hermitian matrix H is

H = γ5(D0
w −M) (91)

HereM > 0 is the large mass andD0
w is the Wilson fermion

matrix at chiral limit m = 0

D0
w;n,m =

1

2

4∑
µ=1

(
(1− γµ)Un,µδn+µ̂,m + (1 + γµ)Un,−µδn−µ̂,m

)
(92)

The numerical implementation requires an approximation of
the matrix sign function of a Wilson-like fermion operator, and
various approaches are being used. In fact, it is possible to
rewrite these approximations in terms of a five-dimensional
formulation, showing that the domain wall fermion and
overlap fermion are essentially equivalent [30][31].

By introducing the pseudo-fermion φ, the fermion action is

SF = φ†(D†ovDov)−1φ (93)

The derivative of the fermion action is the same with (21)
where the fermion matrix is replaced by the overlap fermion
matrix Dov. To calculate the X and Y in (22), we approximate

sign[H] in (90) (See P. 180 in [7])

sign[H] ≈ H
N−1∑
n=0

cnTn(H̃) (94)

with

H̃ =
2H2 − (β2 + α2)

β2 − α2
(95)

where α and β are the (in magnitude) smallest and the
largest eigenvalues of H , respectively. Tn is the first kind of
Chebyshev polynomials of order n and the coefficient cn in
(94) is

cn =

∫ 1

−1
dx
r(x)Tn(x)√

1− x2
, r(x) =

(1

2
(β2 + α2) +

x

2
(β2 − α2)

)−1/2
Expanding the RHS of (94), one has

sign[H] ≈ d1H + d3H
3 + · · ·+ d2N−1H

2N−1 (96)

where {d2l−1}Ni=1 etc., depend on the coefficients {cn}N−1n=0 , α and β.
Similar to (54), we want to calculate

Y †n
∂Dov;n,m

∂ωik,ρ
Xm

=
1−m

2

N∑
l=1

d2l−1

2l−1∑
j=1

Y †nγ5H
j−1 ∂Hn,m

∂ωik,ρ
H2l−1−jXm

=
1−m

2

N∑
l=1

d2l−1

2l−1∑
j=1

Y †nγ5H
j−1γ5

1

2

[
(1− γρ)(iTi)Uk,ρδn+ρ̂,mδn,k + (1 + γρ)U

†
k,ρ(−iTi)δn−ρ̂,mδm,k

]
H2l−1−jXm

=
1−m

4

N∑
l=1

d2l−1

2l−1∑
j=1

Y †k γ5H
j−1γ5(1− γρ)(iTi)Uk,ρH2l−1−jXk+ρ̂ −

1−m
4

N∑
l=1

d2l−1

2l−1∑
j=1

Y †k+ρ̂γ5H
j−1γ5(1 + γρ)U

†
k,ρ(iTi)H2l−1−jXk

= tr(iTi(B − C)) + c.c. (97)

where

B =
1−m

4

N∑
l=1

d2l−1

2l−1∑
j=1

(
Uk,ρH

2l−1−jXk+ρ̂

)
⊗
(
Y †k γ5H

j−1γ5(1− γρ)
)
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C =
1−m

4

N∑
l=1

d2l−1

2l−1∑
j=1

(
H2l−1−jXk

)
⊗
(
Y †k+ρ̂γ5H

j−1γ5(1 + γρ)U
†
k,ρ

)
See (25) and (26) for comparison of B and C.

10. Domain Wall Fermion
The domain wall fermion makes use of a 5D lattice and then construct the chiral Dirac fermions when the lattice size N5 in

5th dimension is large [32][33][34][35]. The domain wall operator can be constructed from the massless Wilson operator D0
w

Ddw,ns,mt = δs,t(D
0
w;n,m −M5δn,m) + δn,mD

dw
5;s,t (98)

with

Ddw
5;s,t = δs,t − (1− δs,N5−1)P−δs+1,t − (1− δs,0)P+δs−1,t +m(P−δs,N5−1δ0,t + P+δs,0δN5−1,t) (99)

and the chiral projector

P± =
1± γ5

2
(100)

Here M5 is the domain wall barrier, m is the bare fermion mass, s, t = 0, · · · , N5 − 1 are the indices in the 5th dimension.
The fermion action for the domain wall fermion with two degenerate flavors is

SF = Ψ†
(
Ddw(m)†Ddw(m)

)−1
Ψ + Φ†

(
Ddw(1)†Ddw(1)

)
Φ (101)

With pseudofermion field Ψ or Pauli-Villars field Φ. Here
Ddw(1) is the domain wall matrix Ddw(m) with m = 1. Since
the link variable only appear in the massless Wilson matrix
D0

w, the fermion force calculation is rather simple (See section
3).

11. Conclusions

This lecture give the details of the force calculation in
lattice QCD. The most popular gauge action and fermion
actions, including the one-loop Symanzik improved action,
Wilson fermion with clover term, staggered fermion, asqtad
fermion, HISQ fermion, smeared fermion, overlap fermion
and domain wall fermion. The even-odd precondition in the
Wilson fermion and staggered fermions, are also considered.
The formula for the force can be understand as follows: the
derivative of the action can be obtained by inserting (iTi)
or (−iTi) in the action before Un,µ or after U†n,µ and then
combining two parts which are separated by (iTi) or (−iTi)
in the action.

There are other actions for LQCD, including perfect action
[36][37], D234c action, NRQCD action and Fermilab action.
Alford, Klassen, and Lepage have proposed improved gauge
and Dirac actions, D234c action [38], which involves second,
third, and fourth order derivatives. Lepage and collaborators
suggested NRQCD action to approximate heavy quark in
heavy-heavy or heavy-light systems [39][40]. Fermilab action
[41], which interpolate between the light improved SW-clover
action and the NRQCD for the heavy quark. The force
calculations of these action will be considered in the future.
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