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Abstract: During rheological process of rocks at high temperatures and pressures, damage occurs when the visco-plastic 

strains accumulate to a certain level. Damage is assumed to start accumulating at the onset of tertiary creep. The evolution of 

damage can lead to localized deformation and eventual failure of the rock. This paper develops a damage constitutive relation 

and damage evolution equation for rheological failure of rocks based on the theory and method of damage mechanics. A method 

of determining the material constants in the constitutive relation and damage evolution equation is proposed and employed to 

estimate the parameters for marble based on the experiment results. One numerical example explaining deep earthquake 

occurrence is presented to illustrate the application of the constitutive relation and damage evolution equation. The numerical 

results indicate that the proposed constitutive and damage equations are capable of predicting earthquake occurrence based on 

the shear stress evolution. The proposed damage constitutive relation and damage evolution equation for rheological failure of 

rocks provide a theoretical base for numerical calculation simulating geodynamics process inside earth interior. 
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1. Introduction 

Mechanical properties of geological materials depend on 

temperature and pressure. Under low temperatures and 

pressures, rocks deform elastically and undergo failure in a 

brittle manner. Under high temperatures and pressures, rocks 

undergo rheological deformations and fail in a ductile manner. 

Under intermediate temperature and pressure conditions, 

rocks exhibit deformation and failure behavior between the 

two extreme cases [37]. 

 Rocks in the upper lithosphere of Earth contain many 

defects such as dislocations, grain boundaries and microcracks. 

Under certain conditions of temperature and pressure, material 

damage will take place around the defects. It is thus necessary 

to use constitutive equations considering damage in analyzing 

deformation and failure processes in Earth’s interior. The 

theory of damage mechanics has been well developed and has 

been used to investigate rock behavior at shallow depths. In 

deep interior of Earth, research works on geodynamics 

process using damage mechanics are also found in literatures. 

It is generally understood [3, 8, 25, 29] that damage represents 

the characteristics of microcrack/microvoid distribution in the 

material. Consequently, damage may be described as the 

damaged section divided by the original intact section [7] and 

be used to define the effective stress in a damaged material 

[26]. However, damage evolution in rocks under high 

temperatures and pressures is still poorly understood. The 

existing models on rock damage considered several aspects 

including thermodynamics of partial melting materials [1-2, 

24, 33], phenomenological theory of material softening [17, 

34], and brittle damage in crustal rocks [4-5, 14-15, 29-31]. 

Those models may be applied to investigate the behavior of 

geological materials undergoing elastic deformations. The 

models, however, may not be applied to study permanent 

elasto-viscoplastic deformations that occur in rocks under 

high temperatures and pressures. Karrech et al. [23] developed 

a continuum damage theory that can deal with nonlinear 
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visco-plastic deformations. Bercovici and Ricard [2] 

discussed grain-damage hysteresis and plate tectonic states. 

However, under conditions of high temperature, high pressure 

and low differential stress, theoretical and experimental 

investigations are mostly concerned with steady state process 

of rock rheology which is generally described by the power 

law creep relation. Tertiary creep which leads to final failure 

has mostly been ignored. 

Material constants in the creep constitutive equations are 

usually determined using creep and constant strain-rate tests. In 

a constant strain-rate test, the relation between the differential 

stress and strain in a specimen is obtained with strain rate kept 

as a constant. In a creep test, the relation between strain and 

time is obtained with differential stress kept as a constant [16]. 

Figure 1A illustrates a creep curve at constant differential 

stresses. For a given constant stress, an initial strain is first 

produced by the stress. The strain then continuously increases 

with time. In the first stage after loading, the strain rate 

decreases with time and this period is called primary creep. In 

the second stage, the strain rate is a constant and the region is 

called steady state creep or secondary creep. In the final stage of 

creep called tertiary creep, the strain rate increases with time 

and creep failure or rupture occurs at the end of tertiary creep. 

Figure 1B shows a stress-strain curve at a constant strain rate. In 

this case, the stress increases linearly with strain before 

reaching a yield point, which is followed by a region of strain 

hardening. The curve also shows that the strain hardening 

weakens at higher strain levels until steady-state flow is attained. 

Rupture of the sample may terminate steady-state flow at high 

strains, but a region of strain softening may intervene between 

steady-state flow and rupture. These results show the 

correlation between constant strain rate and creep tests as 

discussed in Heard [16]. 

As we know, the steady-state process of creep is universal 

in Earth's interior. Tertiary creep and creep failure are also 

common and very crucial in some geological events, for 

example, rock failure associated with magma transport in 

upper mantle [6]. The present work is concerned with the 

constitutive equations that describe tertiary creep behavior of 

rocks under high temperatures and pressures as well as low 

differential stress. First, a damage constitutive relation and 

damage evolution equation for rheological failure process of 

rocks are presented based on the theory and analytical method 

of damage mechanics which deals with dissipation process of 

rock deformations. Second, a method to determine the 

physical parameters in the equations is described. Finally, one 

numerical example is presented to illustrate the application of 

the model to creep failure of rocks. The research work 

provides a basis for simulating creep deformation and failure 

in interior Earth. 

 
Figure 1. Schematic relations between constant strain-rate and creep tests. (A) creep curves plotted on usual strain-time coordinates; (B) stress-strain curves for 

constant strain-rate tests. 

2. Damage Constitutive Equation for 

Rocks in Rheological Failure Process 

Under high temperature and pressure conditions, creep of 

crustal and upper mantle rocks is often described by the 

following constitutive relation [38]: 

exp -n E pV
A

RT
ε σ + =  

 
ɺ             (1) 

in which ε εɺ is the shear strain rate, σ the differential stress, E 

the activation energy, p the pressure, V the activation volume, 

R the universal gas constant, T absolute temperature, and A 

and n material constants. 

Equation (1) describes the rheological deformation of 

steady state creep (also called secondary creep) for constant 

strain rate under constant differential stress. While the steady 

state creep generally represents the creep stage of the longest 

duration, rock failure occurs after tertiary creep that follows 

the secondary creep. During tertiary creep, the strain rate 

increases rapidly until rock failure and deformations of rock at 

the microscopic level are localized, which lead to severe 

microscopic damages. It is thus essential to include damage in 

the constitutive relations at this stage of creep to precisely 

predict the failure behavior of rocks under high temperature 

and pressure conditions. 

Consider elasto-viscoplastic deformation of a rock. The 

total strain increment consists of the elastic and inelastic strain 

increments as follows [22]: 

dε � dε
�

� dε
��                (2) 

where ε represents strain tensor, and the superscripts e and in 

represent the elastic and inelastic strains, respectively. This 



 American Journal of Physics and Applications 2022; 10(2): 24-32 26 

 

also is the assumption of the Maxwell visco-elastic model. 

The elastic strain tensor is related to the stress by the 

generalized Hooke’s law as follows: 

σ � C: ε�                    (3) 

Where σ is the Cauchy stress tensor and C is the 

fourth-order elasticity tensor for the damaged material. In a 

damaged material, an “effective” stress applied on the actual 

undamaged skeleton is defined under the state of uniaxial 

stress as follows [20, 25, 29-30] 

~

1-

σσ
ω

=                     (4) 

Where σ is the uniaxial stress and ω is the so-called 

damage variable which can be understood as the ratio of 

damaged portion of the section to the entire section on which 

the stress is applied. In this work we assume isotropic damage 

and use a linear elastic damage model of Simo [36]. Eqs. (3) 

and (4) can now be employed to obtain the following 

stress-elastic strain-damage relationship: 

σ = C: ε� = 
1 − ω�C�: ε�            (5) 

Where C
0
 is the fourth-order elasticity tensor for the 

original intact material. For isotropic rocks, the elasticity 

tensor has the coefficients: 

C���� = �K − 2
3 G� δ��δ�� + G�δ��δ�� + δ��δ��� 

where K is the bulk modulus, G the shear modulus, δ�� the 

Kronecker symbol, and the indices (i, j, k, l) have the range of 

1, 2 and 3. 

The relation between the inelastic strain and stress may be 

derived using a dissipation potential Φ. The potential depends 

on both observable variables (such as strain and temperature) 

and internal variables (such as damage, elastic strain, and 

other dissipation quantities). According to the 

thermodynamics theory for irreversible deformation processes, 

the dissipation potential Φ may be expressed as follows: 

( , , ; , , )
in in

T
T

ω ωΦ = Φ ɺ ɺ
qε ε             (6) 

Where εin
 is the inelastic strain tensor, ω is the damage 

variable, T is temperature, and q is the heat flux. Then, we may 

obtain the following constitutive relationship 

;    or , , 1,2,3

;

;   or  , 1,2,3

ijin in
ij

ii

i j

Y

T
T i

qx

T T

ϕ ϕσ
ε

ϕ
ω

ϕ ϕ

∂ ∂= = =
∂ ∂

∂=
∂

∂ ∂ ∂∇ = − = =
∂   ∂ ∂   

   

ɺ

σ
ε

q

   (7) 

Where σ is the stress tensor, or a force driving irreversible 

deformation; Y is the conjugate of the damage variable or the 

strain energy density release rate. 

Based on Legendre transformation, dual dissipative 

complementary potential ψcan be defined as follows: 

( , , ; , , )inY T Tψ ψ ω= ∇σ ε            (8) 

Similarly, the following constitutive relationship may be 

obtained: 

;    or , , 1,2,3

;

;    or , 1,2,3
( )

in in
ij

ij

i

i

i j

Y

q
i

T T T T

x

ψ ψε
σ

ψω

ψ ψ

∂ ∂= = =
∂ ∂

∂=
∂

∂ ∂= − = − =
∂ ∇  ∂∂  ∂ 

ɺ ɺ

ɺ

ε
σ

q

   (9) 

For simplicity, we assume that both the dissipative potential 

and dissipative complementary potential are uncoupled 

among various dissipative mechanisms for damaged rocks. 

Therefore, the dissipative complementary potential can be 

partitioned into two parts, i.e., damage dissipative 

complementary potential ωψ  and inelastic visco-plastic 

dissipative complementary potential nψ  as follows: 

( , )n Yωψ ψ ψ σ= +               (10) 

Where σ is the stress tensor and Y is the strain energy 

density release rate related to damage rate as shown as 

equation (7). Because we only consider the rheological 

deformation process of rocks at constant temperature, the 

internal variable T (temperature) can be dropped out in Eq. 

(10). 

The damage dissipative complementary potential and 

visco-plastic dissipative complementary potential for 

time-dependent visco-plastic problems may be expressed in 

the following form [28] (Liu and Hao, 2011): 

0

2

0

1

0

0

1

2 (1 )

(1 )

1 (1 )

N

ep

n

Y P

S

K

N K

ω αψ
ω

σωψ
ω

∏

+

=
−

 −
=  + − 

ɺ

       (11) 

where  S�,α�, 0K , n are material constants; Y∏  is a 

damage dual force for isotropic materials; and: 

1

23 1
: ; ( )

2 3
ep tr Iσ    ′ ′ ′= = −   

   
σ σ σ σ σ      (12) 

2 2
( : ) ( : ) , . 1, 2,3

3 3

in in in in
ij ijP i jε ε= = =ɺ ɺ ɺ ɺ ɺε ε  

Where epσ  is the effective stress and Pɺ  is the effective 
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inelastic strain rate. 

Then the constitutive equations for rock creep and damage 

can be written as follows: 

n

0

3 '

(1 ) 2

epin n

epK

σψ σ
ω σ

 ∂= =  ∂ − 
ɺε

σ
        (13) 

0 (1 )

n

ep
P

K

σ
ω

 
=  − 

ɺ                 (14) 

The damage evolution equation may be taken in the 

following form: 

0
0 (1 )

Y Y
P

Y Y Y S

ω ω
α

ψ ψω
ω

∏ ∏

∏ ∏

∂∂ ∂
= = =

∂ ∂ ∂ −
ɺɺ       (15) 

If we define the damage variable as the ratio of damaged 

portion of the section to the entire section on which the stress 

is applied, the expression of Y∏  postulated by Lemaitre [33] 

under low temperature and low pressure conditions are given 

as follows: 

2

2
02 (1 )

ep R
Y

E

νσ
ω∏ =

−
              (16) 

Where E� is the elastic module,ν  is Poisson’s ratio, Rv is 

given by 

2

2
(1 ) 3(1 2 )

3

m

ep

Rν
σν ν
σ
 

= + + −  
 
 

        (17) 

in which: 

11 22 33

1
( )

3
mσ σ σ σ= + +            (18) 

It is necessary to point out that the relationship for Rv is 

valid only at the condition of σm < σep, which implies that the 

rock undergoes accelerated creep deformation. 
In this paper we are concerned with damage evolution in 

rocks under high temperatures and high pressures. Eqs. (16) 

and (17) of Lemaitre’s model are thus not applicable. In 

addition, stresses will satisfy a condition that σm > σep under 

high pressures, which implies that the creep undergoes three 

phases, i.e., transient creep, steady creep and tertiary creep. In 

this case, damage is assumed to start accumulating at the onset 

of tertiary creep. An obvious fact is that higher pressures result 

in smaller increases in the rate of damage. Hence we must 

modify Rv in Eq. (17) so that the model can be used under high 

temperature and pressure conditions. We introduce a 

parameter R$
% related to the confining pressure. The proposed 

damage evolution equation has the following form: 

0

2 '

02
0 00 0

log
(1 )2 (1 )

n

ep epR T

K TE S

ν
α

σ σ
ω λ

ωω +

   
= +  −−   
ɺ   (19) 

where the material constants are defined as follows 

2

'

0

0

0 0

1,

A

2

ep

m

n

R

K A

B
E S

ν
σ
σ

α

−

 
=   
 

=
= −

=

                 (20) 

In the above equations, T is the temperature; A, B, 0λ  and 

T0 are material constants. It is seen that the damage evolution 

rate may be decreased by higher pressure (associated with mσ ) 

and low devitoric stress (associated with epσ ) through the 

parameter Rv’. The relationship between damage 

accumulation and temperature is proposed here based on some 

experimental results on granite under high temperatures [9]. 

Finally, the rheological constitutive equation and damage 

evolution equation of rock become 

2 '

0
0

'
exp ,

1

log
(1 ) 1

n

ep
n

ep

n

ep ep

E PV
A

RT

B R T

T

ν

σ σε
ω σ

σ σ
ω λ

ω ω

  + = −   −   

  
= +  − −   

ɺ

ɺ

       (21) 

The above constitutive equation with damage variable 

shows that the strain rate satisfies the Lemaitre strain 

equivalence principle, i.e., the strain tensor induced by stress 

tensor acting on the damaged material is equivalent to that 

induced by the effective stress tensor acting on the intact 

material. 

In general damage is not significant during secondary creep 

at low differential stress levels. We thus can assume that the 

damage variable is zero, i.e., ω=0, at the onset of tertiary creep 

although energy dissipative process with other mechanisms 

such as dislocation and diffusion exist in secondary creep. 

During tertiary creep, damage starts to evolve from ω=0 to 

ω=ωc which is the critical damage value at final rupture of 

material. More detailed analysis about material parameters 

related to the damage in the rheological process of rocks will 

be discussed in the next section. 

3. Method for Determination of Material 

Parameters 

The material parameters in the damage constitutive 

equation may be obtained by rheological experiments of rock 

samples. The parameters in the damage evolution equation 

and the condition for damage initiation are very difficult to 

determine because of limitations in time duration in creep tests 

under conditions of high temperatures and pressures. 

Damage and rupture of rocks are closely related to the 

dissipative energy during the deformation process. We assume 

that damage begins to occur when the dissipative energy 
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accumulates to a critical value Wd,. When the dissipative 

energy further increases to Wp, complete rupture takes place. 

Wd and Wp may be estimated using the stress-strain curve 

under constant strain rate. Wd is the plastic work done by the 

stress before peak point on the stress-strain curve, and Wp is 

the dissipative work corresponding to the softening part of the 

stress-strain curve after the peak point. Wp is also called 

fracture energy. Figure 2 schematically shows the areas that 

correspond to the two energies, respectively. 

Plastic work for pseudo tri-axial rheological test may be 

described as following: 

0 0

int t
in d

W d dt
dt

εσ ε σ= =∫ ∫            (22) 

where  σ and ε represent differential stress and axial strain, 

respectively, in a creep test. We assume that no damage occurs 

(i.e., ω=0) and only visco-plastic deformation takes place 

during secondary creep of the rock. Substituting the 

constitutive equation with ω=0 into Eq. (22), we have 

1

0
exp exp

t
n nE PV E PV

W A dt A t
RT RT

σ σ σ ++ +   = ⋅ − = −   
   ∫  (23) 

Where parameter A contains a factor '(
)*

�+,
. Damage in 

the rock is initiated when W=Ep. Using this condition and Eq. 

(23), the time at which damage begins to occur, td, may be 

determined as follows 

1
exp

p

d n

E E PV
t

RTAσ +
+ =  

 
          (24) 

During tertiary creep, damage in the rock grows 

continuously. Substituting Eq. (21) into Eq. (22), we have: 

'
0

0

exp
1

E
2 exp - (1 / 2)

T

T
3 log

n
E PV

W A dt
RT

PV
A

R

B R
T

ν

σσ
ω

ω ω

σ λ

+   = ⋅ −   −   

+  − 
 =

 
+ 

 

∫
    (25) 

Creep failure occurs when W=Ef. The critical damage ωc is 

determined by the following formula: 

'
f2

1 1c

DE R

A

νσω = − −              (26) 

where 

0
0

3 log )

2exp -

T
B

T
D

E PV

RT

λ
 

+ 
 =

+ 
 
 

            (27) 

The relationship between creep failure time tc and ωc may 

be obtained from damage evolution equation as follows: 

1 2 '
0

0 0

(1 ) (1 ) log
c c

d

t
n n

t

T
d B R dt

T

ω
νω ω σ λ+ +  

 − − − = +  
 

∫ ∫  (28) 

Integrating the above equation gives the relation between 

time tc and ωc as follows: 

1

2
' 2

0
0

1 1 ( 2) log ( )
n

n
c v c d

T
n BR t t

T
ω σ λ

+
+  

= − − + + −  
   

 (29) 

The material parameter B in the damage evolution equation 

may be estimated by the softening part of the stress-strain 

curve under constant strain rate experiment for rocks under 

low confining pressure. When strain rate is constant, the 

following relationship may be obtained through rheological 

constitutive equation and damage evolution equation: 

2 '

(1 )n

ep

A

B Rν

ω ωε
σ

−=
ɺ

ɺ                 (30) 

The relation between damage ω and time t is obtained as 

follows: 

1

2
' 2

s 0
0

1 1 ( 2) log ( )
n

n
v d

T
n BR t t

T
ω σ λ

+
+  

= − − + + −  
   

 (31) 

Where σ- is the peak stress on the stress-strain curve. The 

constant B may be determined using Eqs. (25) and (26) and 

curve fitting of the test data. 

In summary, the parameters in the damage constitutive 

equation may be estimated using the creep test results, and the 

parameters in the damage evolution equation may be 

estimated using the stress-strain curve of the material. 

 
Figure 2. Sketch of various energy regions. 

4. Determination of Material Parameters 

Using the Test Results for Marble 

In this section, we use marble as an example to show how to 

determine the material parameters in the constitutive relation 

and damage evolution equation in Eq. (21). 

There are many test results on marble since 1960’s [11, 16, 
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19, 35, 39]. In most of the sixty-four tests reported by Heard 

[35], jacketed cylinders of Yule marble (oriented parallel, at 

45°C and normal to the foliation) were extended 10 percent at 

temperatures from 25°C to 500°C under 5 kb confining 

pressure. In the tests of Schmid et al.[35], specimens of 

Carrara marble were experimentally deformed at temperatures 

between 600°C and 1050°C and strain rates between 10
+) 

and 10
+/  see

-1
. Jin et al. [19] reported their 

room-temperature experimental results on Yexian marble 

under cyclic loading with confining pressures ranging from 50 

to 200 MPa and a constant strain rate 5 1 10
+2

s
+,. In the 

work of Rutter [39], Carrara marble was deformed to very 

large tensile and compressive strains at temperatures ranging 

between 500°C and 1000°C, and confining pressures of 200 

and 300 MPa. Schmid et al. [35] summarized and reviewed 

some experimental data. 

Figure 2 schematically shows the stress-strain curve and 

associated plastic energy and fracture energy. These energies 

depend on confining pressure and temperature. The plastic 

energy increases with increasing confining pressure. The 

fracture energy increases with increasing confining pressure 

under low level of pressures, but decreases with increasing 

confining pressure under higher level of pressures. We 

propose the following expression to approximate the fracture 

energy Ef: 

E4 = H, exp
−H)σ9� � H( exp
�H:σ9� � H2 � k<PV�
T � T@�                    (32) 

Where T is the absolute temperature;k< is the coefficient of 

thermal expansion; V� is the specific volume of rock at zero 

pressure; T@is room temperature which is selected as 298.15 K 

in this paper, σ9 is the confining pressure in MPa, and Hi (i=1, 

2, 3, 4, 5) are material constants. The last term in equation (32) 

is the thermal energy at temperature T, which reduces total 

fracture energy. 

The material parameters Hi (i=1, 2, 3, 4, 5) in equation (32) 

are determined using the experimental results in Heard [16] 

and Jin et al. [19]. A non-linear least-squares method is 

employed and the results are given as follows: 

H, � 0.384MPa; H) � 0.0075MPa+,; H( � 4.0995MPa; H: � 0.2352MPa+,; H2 � 0.6242MPa 

We propose the following relationship between the plastic 

energy and confining pressure: 

32
1E

RR
p cR Tσ=               (33) 

WhereR1, R2 and R3 are material constants. Again by using 

the test results of Heard [16] and Jin et al. [19] and a 

non-linear least-squares method, these constants are 

determined as follows: 

3212
1 2 3R 7.0 10 M ; 3.67; 3.33

RR
Pa K R R

−−= × = = −  (34) 

From the test data at different confining pressures and 

temperatures, we found that the parameters in the rheological 

constitutive equation for steady state creep vary greatly. For 

example, when confining pressure and temperature are 

600MPaand 800°C, respectively, the rheological parameters 

are given as follows: 

-1 3 -4.2 -1 3 1
0E 96770.0 MPa E=232.35kJmol ,A=10 MPa  s ,n=4.2,V=357 m molµ −= ，            (35) 

Using Eqs. (25), (32), and (35), parameters B, 0λ  and T0 

at the same condition with equation (35) can be estimated as 

B � 3.15 1 10+,:MPa+/.), 0λ =1.0003759, and T0=298.15K, 

respectively. 

Figure 3 shows the stress-strain curve at a constant strain 

rate 10
-5

s
-1

 under a confining pressure of 600MPa and 

temperature of 800°C based on the parameters determined 

above and equations (21) and (33). 

 
Figure 3. Stress-strain curve at constant strain rate 10-5s-1 under confining pressure with 600MPa and temperature with 800J for marble is calculated based 
on experimental results (Heard, 1963; Jin et al., 1991). 
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Figure 4. A calculating model for deep earthquakes mechanism (a) Sketch of 

model for numerical calculation; (b) The shear stress change in plate central 

part with time. 

5. One Numerical Example 

In this section, we present one example to illustrate 

applications of the constitutive relation and damage evolution 

equation developed in this paper and to discuss the 

geodynamic implications of rock rhological failure under high 

temperatures and pressures. 

One of the mechanisms for explaining deep earthquake 

occurrence is plastic instability due to excessive heat and high 

strain rate [12, 13, 18, 32]. The damage constitutive equations 

presented in this paper can be used to calculate stresses at a 

fault and to describe the deformation process and damage 

evolution leading to rheological failure. 

As we know, when a plate subducts into the upper mantle, 

the temperature in the outside layer is higher than that in the 

central part of the plate as schematically shown in Figure 4a. 

It is assumed that deformations in both parts are the same. 

The stresses in the two parts are thus different due to 

different rheological properties caused by different 

temperatures. The calculation procedure for the stresses is 

described as follow: 

1) The initial shear stresses and temperatures are denoted 

by τ0
out

 and T
out

 in the outside part and τ0
in

 and T
in
 in the 

inside part. Assume 

out
0 0 0

in out in
T Tτ τ τ= = >；  

2) Calculate the shear creep strain in the outside part caused 

by the shear stress in the outside part. The total strain is 

the sum of the elastic shear strain and creep shear strain. 

The shear stresses and creep strains at time t are denoted 

by τt
out

 and εt
out

 in the outside part and τt
in

 and εt
in

 in the 

inside part, respectively. Now 

0 0; ( )
out in in out
t t t tGτ τ τ τ ε ε= = + −  

3) Repeating the steps above, we may obtain the shear 

stress as a function of time in the central part of the 

plate. 

The material parameters are basically based on the 

experimental results for olivine. One of the parameters, B, is 

artificially assumed because of lack of experiment data. The 

initial shear stress is assumed as 50MPa, confining pressure is 

24 GPa, which corresponds to a depth of 650km within Earth 

interior. The shear stress variation with time in the central part 

is shown in figure 4b. It is found that the shear stress may 

reach to 3x10
4
MPa. This stress level satisfies the requirement 

for fault sliding at depth of 650 km [21]. 

6. Conclusion 

Deformations of rocks in Earth’s interior are a slow 

time-dependent process under actions of various mechanical 

and thermal forces. Damage and creep mechanics is a 

convenient tool to describe and simulate this process. In this 

paper we develop a damage constitutive model for the 

rheological failure process of rocks on the basis of the theory 

and analysis method of damage mechanics concerning the 

dissipative process of damage. Different from the existing 

studies on damages in rocks under high temperatures and 

pressures, this work assumes that damage is negligible during 

secondary creep and starts accumulating at the beginning of 

tertiary creep. In addition, it puts forward a method for 

determining the material parameters in the constitutive and 

damage evolution equations. The material parameters for 

marble are estimated using the method and the available 

experimental test results. 

One example explaining deep earthquake occurrence is 

given to illustrate the application of the damage constitutive 

equation and damage evolution equation under high 

temperatures and high pressures The numerical results 

indicates that our proposed constitutive model is capable of 

predicting damage evolution and rheological failure in rocks 

under high temperatures and pressures, i.e., earthquake 

occurrence based on the shear stress evolution. 
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