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Abstract: The lambda point in liquid He4 is a well established phenomenon acknowledged as an example of 
Bose-Einstain condensation. This is generally accepted, but there are serious discrepancies between the theory and 
experimental results, namely the lower value of the transition temperature Tλ and the negative value of dTλ /dP. These 

discrepancies can be explained in term of the quantum stochastic hydrodynamic analogy (SQHA). The SQHA shows that at 

the He4
I→He4

II superfluid transition the quantum coherence length λc becomes of order of the distance up to which the 

wave function of a couple of He4 atoms extends itself. In this case, the He4
2 state is quantum and the quantum 

pseudo-potential brings a repulsive interaction that leads to the negative dTλ /dP behavior. This fact overcomes the 

difficulty to explain the phenomenon by introducing a Hamiltonian inter-atomic repulsive potential that would obstacle the 
gas-liquid transition. 

Keywords: Lambda Point, Liquid He4, Maximum Density, Low Temperature Critical Dynamics,  
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1. Introduction 

To explain the He4
I→He4

II superfluid transition London 

[1] in 1938 made the hypothesis that He4 lambda point 
might be an example of Bose-Einstain (BE) condensation 
(BEC). This hypothesis was based upon the similarity 
between the shape of the heat capacity of an ideal boson gas 

at the BEC transition and the data for the He4
I→He4

II 

transition. This convincement was reinforced by the 
observation that there is no similar phase transition in the 

Fermi liquid He3. However, even if the basic BEC 
hypothesis is acknowledged, looking in details some 
discrepancies exist [2]. Among those, two are the majors: (1) 
the calculated BE transition temperature T

B
 for an ideal gas 

is 3.14 K while the measured one for the He4 is of 2.17K. (2) 
The variation of the transition temperature Tλ with pressure 

is negative and is opposite in sign to that expected from the 
BEC. The standard way out is to address the differences to 
the fact that the BEC theory is applied to an ideal gas while 

the He4 is clearly not, since it shows a van der waals-like 

liquid gas phase transition. Therefore, the inter-molecular 
potential must be taken into account when we calculate the 
transition temperature T

B
 and its variation with temperature. 

The BEC theory [3] affirms that below the BE 
temperature T

B
 the number of particles, N

e
, in the excited 

state reads 

N
e
 = pqdd

kT
h 333

1]/exp[

1
∫ −

−

ε
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At the BE temperature T
B
, it is assumed that all the 

particles go in the excited state so that 
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As equation (3) shows, the increase of pressure, leading to 
the volume V decrease, will bring to the increase of T

B
. This 

contradicts what is experimentally observed at lambda point 
where d Tλ /dP is negative.  

By considering the van der Waals state equation 

P = {n k T/ (V – n b)} – a n2 /V2,         (5) 

(where n is the number of molecules, b is the fourfold atomic 
volume and a is the mean inter-molecular potential energy 
derived by using the rigid sphere approximation given by 
(21-22)) that for punctual particles (i.e., b = 0) with an 
attractive potential (i.e., a>0) reads 

P = n k T/ V – a n2 /V2                (6) 

we can see that the pressure decrease – a n2 /V2 is a 
consequence of the attractive intermolecular potential.  
This is equivalent to a compression of the ideal gas and, 
since the integration in (1) is carried out on the system 
volume, we can say that a cohesive intermolecular potential 
reduces the system volume and by (3) that T

B
 increases. 

Therefore, given the ideal gas pressure P
IG ≅ n k T/ V, the 

variation of BEC critical temperature in a real gas ∆T
c
 = T

c
 – 

T
B
 has the same sign of the pressure variation ∆P (with 

respect to the real gas) according to the expression 

∆T
B
 ∝ ∆P = P

IG 
–

 
P ≅ a n2 /V2> 0         (7) 

Moreover, given dT
c
/dP ~ d∆T

c
/dP it follows that 

dT
c
/dP ∝ a n2 d(V−2)/dP > 0             (8) 

since V decreases with the pressure. 
Feyman [4] in 1953 and later Butler and Friedman [5,6]  

calculated in detail the contribution of the inter-molecular 
potential for a bosonic system showing that it would need a 
repulsive potential, causing an expansion of the gas, in order 
to lower  T

B
 as one might expect from (7) (i.e., ∆T

c
 < 0 ).  

Shortly afterwards, ter Haar [7], pointed out that the 
repulsive potential was unphysical and would hinder the 
gas-liquid transition from taking place. 

Recently, Deeney et al. [8] showed that a quantum source 
of energy leading to the expansion of the condensate may 
explain the negative dTλ /dP behavior. The SQHA model 

supports this hypothesis showing that the quantum pseudo 
potential (QPP) (that acts only in the quantum condensed 
state) generate a repulsive force leading to the anomalous 
behavior at lambda point. 

The QPP is a well-defined potential energy in the 
Madelung’s quantum hydrodynamic analogy (QHA). It is 
responsible for the realization of the eigenstates and the 
consequent quantum dynamics. As shown by Weiner [9], 
this energy is a real energy of the system and consists in the 
difference between the quantum energy and the classical 

one.  
If fluctuations are present, the stochastic quantum 

hydrodynamic analogy (SQHA) shows that the quantum 
potential may have a finite range of interaction λq [10] so 
that dynamics on a much larger scale acquire the classical 
behavior. On the opposite side, on a scale shorter than the 
quantum coherence length λc the quantum behavior is 
restored [10].  

Following this approach, when the couples of  He4 
molecules lie at a distance smaller or equal to the quantum 
coherence length λc, the atomic dynamics becomes quantum 
(the related quantum pseudo potential interaction appears) 

and the systems makes the He4
I→He4

II transition (see 

section A.3. in appendix [A]). 
In the following the effects of the quantum pseudo 

potential energy onto the BEC temperature as well as on the 
sign of dTλ /dP are derived. 

2. The SQHA Equation of Motion 

The QHA-equations are based on the fact that the 
Schrödinger equation, applied to a wave function 

]
S

iexp[A
)t,q(

)t,q()t,q(
ℏ

=ψ , is equivalent to the motion of a 

fluid with particle density 22n ||A )t,q()t,q( ψ== and a 

velocity 
m

S
q

)t,q(q∇
=

• , governed by the equations [11] 
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m

pp
H += •
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Where m is the mass of the structureless particles of the 

system and quV  is the quantum pseudo-potential that 

originates the quantum non-local dynamics and reads 

2121 nn 
2

2
//

qqqu )
m

(V ∇∇−= •
−ℏ .       (10) 

When fluctuations are considered into the hydrodynamic 
quantum equation of motion, the resulting stochastic QHA 
dynamics preserve the quantum behavior on a scale shorter 
than the theory defined quantum coherence length λc [10]. 
Moreover, in the case of non-linear systems, on very large 
scale the local classical behavior can be achieved when the 
quantum pseudo potential has a finite range of interaction 
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given by the non-locality length λL [10] (with λL > λc). 
Following the procedure given in reference [10], with 

pd n
t),(q,p(q,t)

3n ρ∫∫∫= , where t),(q,pρ is the 

probability density function (PDF) of the system (whose 
spatial density )t,q(n represents the squared wave function 

modulus) , the SQHA equation of motion can be established 
to read  

),t,q(q(q,t)q(q,t)t )q( Θ+∇−∇=∂
•

• αηnn ,   (11) 
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where Θ  is a measure of the noise amplitude. 
Moreover, given that (for the mono-dimensional case) the 

quantum potential range of interaction qλ  reads [10] 

)q(
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qu
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Where the origin (0, 0) is the point of minimum 
Hamiltonian potential energy that is the rest mean position 

of the particle, for  cλ ∪ qλ  << ∆Ω (where is the phase 

space discrete minimal resolution cell) equations (11-13) 
acquire the classical stochastic form 
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The reader who is interested in more detail about the 
SQHA picture of a gas phase can refer to the Appendix A. 

3. Determination of the Quantum 

Potential at the He4I→→→→He4II 
Transition  

In order to calculate the experimental outputs of the 

He4
I→He4

II superfluid transition we make use of the 

well-established statistical method of the Virial expansion 
that fits very fine for van der Waals fluids. This is possible in 
the stochastic hydrodynamic analogy since the presence of 
the quantum pseudo potential brings in the Virial expansion 
the quantum contribution to the system energy. A central 
point to derive the thermodynamic quantity by means of the 
Virial approach is the knowledge of the interaction in the 
pair of molecules (quantum potential included). Therefore, 

we firstly calculate the features of the He4 - He4 couple 
interaction.   

As shown in ref. [19], the He4 -He4 interaction can be 
approximated by means of a square well potential of depth 
U* and width 2∆ such as 

V(x) = ∞ x < σ                (18)  

V(x) = − U*   σ < x < σ + 2∆         (19)  

V(x) = 0  x > σ + 2∆              (20)  

(where σ + ∆ is about the mean molecular (half) distance) and 
by introducing the self states wave functions   

ψ = B sin[Κn (x − σ)]              (21) 

for σ < x < σ + 2∆  En > − U* and  

ψ = B sin[ Κn (2∆)]] exp[−Γn (x− (σ + 2∆))]    (22) 

for x > σ + 2∆ En < 0 where Γn = (−2mEn/ℏ
2
)

½
 , Κn = 

(2m(U* + En)/ ℏ
2
)

½
 , into relation (10), the quantum 

potential reads 

quV
=  − (ℏ

2
/2m) Γn

2
= En            (23)

 

for x > σ + 2∆, and  

quV = (ℏ
2
/2m) Κn

2
= (U*+En)          (24) 

for σ < x < σ + 2∆, where the values En are given by the 

trigonometric equation 

tan [Κn (2∆)] = − Κn / Γn= − (− (U* + En) / En)
½ En < 0  (25)  

and hence  

∆ = (ℏ
2
/ 8km)

½
 arctan [− (− (U*+ E0) / E0)

½
 ] / (U*/k + E0/k)

½
  

=1.231 x 10
-10

{arctan [−(− (U* + E0) / E0)
½
]}/(U*/k + E0/k)

½
  (26)  

Moreover, by evaluating that the value of the energy E0 of 
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the fundamental state at the transition is about 

− E0/k ~ Tcr = 5.19 °K               (27)  

and by choosing U* to obtain the value for “a” given by (B.5) 
(see appendix B) it follows that  

U*/ k ≅ [Vcr /NA((σ +2∆)
3
− (σ)

3
)] U / k = 0.82 U / k = 8.9 °K, (28) 

where U is the L-J potential deepness measured to be U/k ≅ 
10.9 °k [16,17], it follows that 

∆ ~ 1.54x 10
-10

 m = 2.9 Bohr          (29) 

and that the mean He4
2 atomic distance 

σ + ∆ ≅ 3.82 x 10
-10

 m = 7.2 Bohr         (30) 

that well agrees with the values 7.1 Bohr given in ref. [16].  

Reaching the lambda point (let’s suppose by He4 - He4 
cooling), the mean half atomic distance decreases to the 
value σ + ∆ of the fundamental state and the wave function 

variance decreases to 2∆ (the He4 atoms lie almost inside the 
potential well). Therefore, assuming that at the lambda-point 

the quantum coherence length cλ  becomes of order of the 

dimension of space domain where the wave function of the 

couple of He4 - He4 atoms is physically different from zero 

(i.e., a little bit larger than the He4 - He4 atoms  distance σ 
+ 2∆) and it reads 

∆+≅
Θ

= 2
2 21

σπλ
/)mk(

c
ℏ

   

(31)

 

for the couple of He4 - He4 atoms, at lambda point by (28) 
it follows that  

K   072 °≅Θ ,λ
                 (34) 

Even if Θ is not exactly the thermodynamic temperature T, 
the result (34) is satisfying since it correctly agrees with the 
transition temperature of the lambda point. The fact that Θ is 
close to T can be intuitively understood with the fact that 
going toward the absolute null temperature, correspondingly, 
Θ must decrease since the systems fluctuations must vanish 
in both cases.  

As shown in [10] a relation between Θ and T can be 
established for an ideal gas at equilibrium. In this case, the 
thermodynamic temperature T converges to the vacuum 
fluctuation amplitude Θ in going toward the to absolute zero. 
In the case of a real gas and its fluid phase, a bit of difference 
between Θ and T may exists for Θ ≠ 0. 

The result (34) definitely says that below a temperature of 
about 6,3°K degrees Kelvin the quantum potential enters 

more and more in the He4
I−He4

I pair interaction. As it is 

shown in the following section, this well agrees with the 
features of the He lambda point that show how the increase 

of He4 density (consequence of the quantum potential 

interaction) starts before the transition He4
I→He4

II takes 

place. 

3.2. The Sign of (Tλλλλ 
– T

B
)
 
and that one of dTλλλλ/dP at He4 

Lambda Point  

The above equation (22) holds for normal fluid phases at a 
temperature above the superfluid transition one. Below the 
superfluid transition temperature, as shown by (31, 47) the 

quantum coherence length cλ  becomes larger than the 

inter-atomic He4 - He4 distance and hence the quantum 
potential contributes to the molecular energy and it must be 
taken into account in the calculation of the mean 
inter-molecular potential energy  “a” that reads 

a ≡ – 2 π 

0r

∞

∫  (V(r) + quV  ) r2 dr 

= – 2 π{

0r

∞

∫  V(r) r
2 dr  + 

0r

∞

∫ quV   r2 dr } 

= acl + aqu                      (35) 

where 

aqu = – 2 π 

0r

∞

∫ quV  r2 dr = – 2 π (U*+E0) ∫
∆+σ

σ
r2 dr 

= – ⅔π (U*+E0) [(σ +∆  )3– 2½(σ)3] < 0. (36) 

From (36) we can observe that aqu is negative since from 
(24) quV  = (U*+E0) is positive. Therefore, below the 

superfluid transition temperature, the state equation (B.3) 
(see appendix B) reads: 

{P + acl n2 /V2 + aqu n2 / V2} (V – n b) 

= {P + acl n2 /V2 + ∆Pqu} (V – n b)            

= n k T                                 (37) 

where ∆Pqu = aqu n2 / V2, so that the pressure for He4
I  and 

He4
II respectively reads 

P
I (He4I)

  ≅ {n k T/ (V – n b)} – acl n2 /V2)  (38) 

P
II( He4II)

 = {n k T/ (V – n b)} – acl n2 /V2 – ∆Pqu  (39) 

Where it is posed V ≅ V
I
 ≅ V

II 
since the fluid phase is 

poorly compressible. By using the same criterion of (7) we 
can end with the result that the variation ∆Tλ = Tλ 

– T
B 

due to 
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the presence of quantum potential has the same sign of the 
pressure difference to read 

 ∆P = (P
I
– P

II
) = ∆Pqu = aqu n2 / V2 < 0    (40) 

and the sign of dTλ /dP is the same of the derivative 

d∆Pqu /dP = aqu n2 d (V−2)/dP < 0.      (41) 

given that d(V−2)/dP is positive.  
Therefore, the quantum potential of the SQHA leads to 

both ∆Tλ and dTλ /dP negative.  

Finally, in order to show that the result obtained above is a 
direct consequence of the convex (repulsive) harmonic 
quantum potential, we use the more precise expression given 

in appendix C, where the interaction of a couple of He4 - 

He4 atoms is approximated by a harmonic well (as given by 
the atomic Lennard-Jones potential) and coherently found to 
be 

quV
= −(ℏ

2
/2m)|ψ| -1∂2|ψ|/∂q∂q                 

 = − (2ℏ
2
/2m) Κ0

4 (q - q)
2
+ (ℏ

2
/m) Κ0

2,   (42) 

where Κ0 = (2m(U + E0)/ℏ
2
)

½
 and q = σ + ∆  is the mean  

He4 - He4 inter-atomic (half) distance. 

4. Discussion 

The negative sign of both ∆Tλ = Tλ 
–  T

B
 and of dTλ /dP 

are the direct consequence of the convex harmonic quantum 
potential that leads to a repulsive inter-atomic force so that 

the pressure of the superfluid He4
II is higher of that one it 

would assume the He4
I at the same temperature. Due to the 

repellent quantum potential energy, the passage from the 

He4
II state to the equivalent He4

I one (submitted to a lower 

pressure) needs less kinetic energy to happen and hence Tλ is 

smaller than the condensation temperature T
B (He4I)

. 

Moreover, since a higher pressure in He4
II than in He4

I is 

needed to maintain the same atomic distance, when the 
temperature is lowered at constant pressure near the lambda 
point (crossing Tλ) a decrease in density is produced. 

Therefore, during the cooling process the He4 shows a 

maximum in its density just above the He4
I→He4

II 

transition as confirmed by the experimental outputs.  
It must be noted that for the realization of the maximum 

density, the crossover between the rate of He4
I thermal 

shrinking and that one of the He4
II quantum dilatation is 

needed.  
Moreover, since the density maximum is at 2.2 °K while 

Tλ =2.17 °K, we can infer  that the quantum interaction 

starts before the transition temperature as (37) signals (a 

larger and large fraction of He4 atoms fall in the quantum 
interaction closer and closer we get to Tλ).  

Moreover, it is worth mentioning that the SQHA model 
does not exclude the possibility of similar maximum density 
phenomena close to liquid-solid transitions  since, in this 
case, the quantum interaction between the atoms in a crystal 
is also set by the quantum potential whose interaction range 
λq becomes larger than the typical inter-atomic distances 

(see appendix [C]). This fact well agrees with the similarity 

between the He4
I→He4

II and the water-ice transitions 

widely accepted by the scientific community. Nevertheless, 
in order to have the maximum density at the liquid solid 
transition, the quantum dilation must overcomes the thermal 
shrinking velocity. The van der Waals approach describing 

the He4
I→He4

II transition has also proposed by in a recent 

paper [23].  

5. Conclusion 

The finite range the quantum interaction in the SQHA is 
able to explain the controversial aspect of negative dTλ/dP at 

the He4 lambda point without the introduction of a 
non-physical repulsive atomic potential that would hinder 
the gas-liquid phase transition [20,21].  The quantum 
pseudo-potential of the SQHA model is exactly the required 
potential: it is repulsive as widely requested by the scientific 

community to explain the maximum density of He4 lambda 
point, but it also has the property to disappear in the classical 
phase and to not hinder the liquid-gas phase transition as any 
Hamiltonian potential would do. 

The pseudo-potential of the SQHA approach also explains 
both why the lambda transition temperature Tλ is smaller 

than the BE one T
B
 and why the liquid He4 has a maximum 

in its density just above the lambda point in agreement with 
the experimental measurements. The model puts in evidence 
that the perfect BE condensation is a phenomenon that 
happens between an ideal gas and its condensed quantum 

phase while the He4
I→He4

II transition happens between a 

real gas (in the fluid phase) and its quantum condensed 
phase (so that the transition temperature Tλ  is smaller). The 

SQHA approach show the theoretical connection between 

the He4
I→He4

II maximum density and that one at the 

water-ice transition.  

Appendix A  

The SQHA Model for Gas and Condensed Phases 

A.1. Analysis of the Quantum Potential of Localized Free 

Particles 



American Journal of Physical Chemistry 2013; 2(6): 122-131 127 
 

In order to elucidate the particle PDF evolution, in a 
classical phase (i.e., the mean inter-particle distance bigger 
than λq) we inspect the interplay between the Hamiltonian 
potential and the quantum potential that define the quantum 
non-locality length.  

Fixed the PDF at the initial time, then the Hamiltonian 
potential and the quantum one determine the evolution of the 
PDF that on its turn modifies the quantum potential. 

A Gaussian PDF has a parabolic repulsive quantum 
potential, if the Hamiltonian potential is parabolic too (the 
free case is included), when the PDF wideness adjusts itself 
to produce a quantum potential that exactly compensate the 
force of the Hamiltonian one, the Gaussian states becomes 
stationary (eigenstates). In the free case, the stationary state 
is the flat Gaussian (with an infinite variance) so that any 
Gaussian PDF expands itself following the ballistic 
dynamics of quantum mechanics [12, 24].  

From the general point of view, we can say that if the 
Hamiltonian potential grows faster than a harmonic one, the 
wave equation of a self-state is more localized than a 
Gaussian one, and by (10) leads to a stronger-than -linear 
quantum potential (also at large distance).  

On the contrary, a Hamiltonian potential that grows 
slower than a harmonic one will produce a less localized 
(stationary) PDF  that decreases slower than the Gaussian 
one [see Appendix D], so that the quantum potential grows 
less-than-linearly and may lead to a finite quantum 
non-locality length by (15).  

As shown in ref. [10], the large distances 

exponential-decay of the PDF such lim|q| → ∞ |n½ | ≈ 

exp[-P
h

(q)] with h < 3/2 is a sufficient condition to have a 
finite quantum non-locality length.  

Thence, we can enucleate three typologies of quantum 
potential interactions: 

(1) h > 2 strong quantum potential that leads to quantum 

force ∂Vqu(q) /∂q that grows faster than linearly 
and  λq is infinite (super-ballistic free particle PDF 

expansion)  

limq→∞  ∂
quV ∂q  q1+ε.  (ε > 0)        (A.1) 

(1) h = 2 strong quantum potential that leads to 

quantum force ∂ quV /∂q that grows linearly and 

 λLis infinite (ballistic free PDF enlargement)  

limq→∞ | ∂ quV /∂q |  ∝ q1                (A.2) 

(2) 2 > h ≥ 3/2 middle quantum potential; the integrand 
of (15) as well as the quantum force may be 
vanishing at large distance to read  

Const ≥  limq→∞ |q−1 ∂ quV /∂q | q−1     (A.3) 

but λq may be still infinite (under-ballistic free PDF 

expansion). 

(3) h < 3/2 week quantum potential leading to quantum 
force that becomes vanishing at large distance 
following the asymptotic behavior  

limq→∞ |q−1 ∂Vqu (q) /∂q |  ≈  q−(1+ε), (ε > 0)   (A.4)  

with a finite λq for Θ ≠ 0 (asymptotically vanishing 

free PDF expansion). 

A.2. Free Pseudo-Gaussian Particles in a Gas Phase In 

Presence of Noise 

Gaussian particles generate a quantum potential that has 
an infinite range of interaction and hence they do not admit 
macroscopic local dynamics. 

Nevertheless, imperceptible deviation by the perfect 
Gaussian PDF may possibly lead to finite quantum 
non-locality length [see Appendix D]. Particles that are 
inappreciably less localized than the Gaussian ones (let’s 

name them as pseudo-Gaussian) own ∂Vqu (q) /∂q that can 
sensibly deviate by the linearity so that the quantum 
non-locality length may be finite. 

In the case of a free pseudo-Gaussian particle we can say that λq 

extends itself at least up to the Gaussian core (where the 
quantum force is linear). At a distance much bigger than λq 

for h < 3/2, the expansive quantum force becomes vanishing. 
On short distance, for q << λc , the noise is progressively 

suppresses (i.e., the deterministic quantum dynamics is 
established). Therefore, it follows that: 
(1) For q << λc < λq, the evolution is quantum ballistic. 

(2) For q >> λq > λc  the evolution is classically stochastic. 

(3) For <∆q2>½ << λc < λq, the quantum deterministic state 

with h = 2 is approached by the free pseudo-Gaussian 
particle.  

(4) For <∆q2>½ >> λq >λc and for h < 3/2 the expansion 

dynamics of the free pseudo-Gaussian PDF are almost 
diffusive.  

If at the initial time, we have the pseudo Gaussian PDF 

confined on a micro-scale (i.e., <∆q2>½ << λc < λq), the 

expansion of the particle PDF is always very fast (ballistic).  

For λc << ∆q2>½ < λq the noise will add diffusion to the 

PDF ballistic enlargement.  

Then, when <∆q2>½ >> λq, the expansion dynamics slow 

down toward the diffusive one.  
When the (pseudo-Gaussian) PDF has reached the 

mesoscopic scale (<∆q2>½ ~ λq), we can infer that its core 

expands ballistically while its tail diffusively.  
Since the outermost expansion is slower than the 

innermost, there is an accumulation of PDF (ρ is a conserved 
quantity) in the middle region (q ~ λq) generating, as time 

passes, a slower and slower (than the Gaussian one) PDF 
decrease so that (for a free particle) the quantum potential 
and λq decrease (and cannot increase) in time.  
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In force of these arguments (i.e., the core quantum 
ballistic enlargement is faster than the diffusive outermost 
classical one), the free pseudo-Gaussian states (with h < 3/2) 
are self-sustained and remain pseudo-Gaussian in time.  

As far as it concerns the particle de-localization at very 
large times, the asymptotically vanishing quantum potential 
does not completely avoid such a problem since the 
(Θ-noise driven) diffusion spreading of the molecular PDF 
remains (even if it is much slower than the quantum 
ballistic one).  

If the particle PDF confinement cannot be achieved in 
the case of one or few molecules, on the contrary, in the 
case of a system of a huge number of structureless particles 
(with a repulsion core as in the case of the Lennard-Jones 
(L-J) potentials) the PDF localization can come from the 
interaction (collisions) between the molecules.   

More analytically, we can say that in a rarefied gas phase 
at the collision, when two particles get at the distance of 
order of the L-J potential minimum r0, the PDF is squeezed 
by the harmonic L-J potential well and the quantum 
non-locality length increases and becomes bigger than the 
inter-particle distance of interaction r0 (since for a L-J well 

the potential is approximately quadratic, the associated 
state largely Gaussian) [24] 

After the collision, when the molecules are practically 
free, the PDF starts to expand again and λqdecreases again. 

It will never reach the flat Gaussian configuration since, in 
a finite time, the molecule undergoes another collision 
taking a bit of PDF squeezing leading to a new increase of 
the λq.  The overall effect of this process is that the 

random collisions among the huge number of free particles 
in a gas phase, with L-J type intermolecular potential, 
maintain their localization.  

A.3. Condensed Phase and He4
I→→→→He4

II Transition 

When both the lengths λc and λq are much smaller than 

the smallest physical length of the system (so that the 
resolution of the descriptive scale can be of order or bigger 
than λq) the macroscopic classical description arises. This 

for instance happens in a rarefied gas phase of L-J 
interacting particles where λq as well as λc are very small 

compared to the intermolecular mean distance (except for 
few colliding molecules). 

On the contrary, when the mean inter-particle distance 
becomes comparable with the quantum non-locality length, 
the classical description may break down because the 
quantum potential enters in the particle interaction. 
Furthermore, if the wave function of the interacting 
particles is localized on a length of order or smaller than 
the quantum coherence length λc, the quantum deterministic 
description takes place for the bounded states of the 
couples of molecules. 

In the classical regime, the Virial expansion furnishes an 
elegant conceptual understanding for passing from a gas to 
a condensed phase for molecules having finite range of 
interaction even in non-equilibrium condition [21]. 

In the classical treatment of the Virial expansion, the 

energy function does not include the quantum potential and 
hence converges to the classical value failing, for instance, 
to predict the law of the specific heat for solids where the 
quantum dynamics enters in the atoms interaction.  

In the frame of the QHA description, the quantum 
potential energy (that changes at each stationary state) 
added to the classical value of the energy, leads to the 
variety of the quantum energy eigenvalues. This is very 
clearly shown in Ref. [9], the energy of the quantum 
eigenstates is composed by the sum of the two terms: one 
steams from the classical Hamiltonian while the other one 
by the quantum potential, leading to the correct eigenvalue 
En. Therefore, in principle the Virial approach can be 

applied (in the SQHA model) both for quantum as well 
classical molecular interactions  

Since in a crystal the atoms fall in the linear range of 
interaction, the quantum non-locality λq is larger than the 
inter-molecular distance [24] and the system shows 
quantum characteristics (in those properties depending by 
the molecular state). 

Usually, for crystalline solids the inter-atomic distance 
lies in the harmonic range of the L-J interaction even at 
temperature higher than the room one due to the great 
deepness of the potential well [see Appendix C].  

When, at higher thermal oscillations, the mean molecular 
distance starts to increases by the equilibrium position r0 

toward the non-linear range of the L-J inter-molecular 
potential, we have a transition from the solid phase to the 
liquid one [22, 24]. During this process, the inter-particle 
wave function extends itself more and more in the 
non-linear L-J zone so that the quantum potential weakens 
and λq decreases [see Appendix C]. 

For deep L-J intermolecular potential well, this happens 
at high temperature and we have a direct transition from the 
solid to the classical fluid phase.  

For small potential well, the liquid phase can persist down 
to a very low temperature. In this case, even if λq may result 

smaller than the inter-particle distance (so that the liquid phase 
is maintained), decreasing the temperature (the amplitude Θ of 
fluctuations and λc grow and become of order of the mean 
molecular distance and even bigger than λq (see appendix C)) 

the liquid phase may acquire quantum properties (about those 
depending by the molecular interaction such as the viscosity). 
The fluid-superfluid transition can happen if the temperature 
of the fluid can be lowered up to the transition point before the 
solid phase takes place. 

Therefore, the mechanism that brings to the quantum 
atomic interaction in a solid is different from that one in a 
superfluid: in the former the linearity of the interaction 
leads to a quantum non-locality length λq larger than the 

typical atomic distance while in the latter is the decrease of 
Θ, by lowering the temperature, that increases λc up to the 
inter-atomic distance.  

Even if the relation between the PDF noise fluctuations 
amplitude Θ and the temperature T of an ensemble of 
particles is not straight [10], it can be easily acknowledged 
that when we cool a system toward the absolute zero (with 
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steps of equilibrium) also the noise amplitude Θ reduces to 
zero since the energy fluctuations of the system must 
vanish. Thence, even there is not a fix linear relation 
between the fluctuation amplitude Θ and the temperature 
we expect lower values of Θ for lower values of the 
temperature [10]. 

Appendix B 

The Virial Expansion Applied to the He Fluid 

From the standard Virial expansion [13] the state equation 
of (classical) real gas accounting only for double collisions, 
reads: 

P V = n k T {1 – (n (a/kT – b)/ V)}     (B.1) 

that under the standard substitution [14]  

{1 + n b / V} ≅  {1 – n b / V}-1       (B.2) 

leads to the van der Waals equation 

{P + a n2 /V2 } (V – n b) = n k T      (B.3) 

where P is the pressure, V the volume, n the number of 
molecules, 

b = ⅔ π r0
3= Vcr / 3NA            (B.4) 

is the fourfold atomic volume [15], where NA is the 

Avogadro’s number and Vcr is the critical molar volume, 

and  

a = –2 π 

0r

∞

∫ V(r) r2 dr             (B.5) 

is the mean inter-molecular potential energy. By using the 
rigid sphere approximation [13] that reads 

V(r) = ∞,             r < r0             (B.6) 

V(r) = VLJ(r) = 4U [(σ/r)12 − (σ/r)6] , x > r0   (B.7) 

where U= −VLJ(r0) is the well depth of the L-J 

intermolecular potential, we obtain that 

a ≅ 4π r0
3
U /3 = 2U Vcr / 3NA        (B.8) 

that, by using the relation[15] 

a = 9 k TcrVcr / 8 NA     (B.9) 

for He4 reads to 

U / k = 27 Tcr  / 16 = 8.77°K    (B.10) 

satisfactory close to the value U / k = 10.9 given by 
quantum Monte Carlo models [16] and to the value U / k = 

11.07 given by He4 -He4 scattering [17]. 
Moreover, by using for helium [18] the value of  

Vcr = 5.7 x 10-5 m
3
/mole         (B.11) 

it follows that 

r0 ≅ 2.56 x 10
-10

m = 4.8 bohr      (B.12) 

where  

r0=21/6σ                  (B.13) 

is the point of minimum for the L-J intermolecular potential 
with 

σ =2−1/6 r0= 2.32 x 10
-10

m ≅ 4.35 Bohr. 

Appendix C  

Quantum non-Locality Length λλλλq of L-J Bounded States 

In order to calculate the quantum potential and its 
non-locality length for a L-J potential well, we can assume 
the harmonic approximation  

VLJ(q) = ½ k (q- r0)2 + C,        (C.1) 

where  

k = 4 Κ0
4
ℏ

2
/m             (C.2) 

where Κ0 = (2m(U + E0)/ℏ
2
)

½
, and where the constant C 

can be calculated by the energy eigenvalue of the 
fundamental state  

C = E0 − quV  0 (q-q=0) ,            (C.3) 

leading to a Gaussian wave function whose series 
expansion at second order coincides with that one of eqs. 
(21-22) having the same eigenvalue E0 and mean position q 

= σ + ∆ that reads 

ψ0 = B exp[−Κ0
2(q− q)2] ≅ B [1−Κ0

2(q − q)2] 

≅B sin[Κ0(q−σ)]   |q − r0|<<2∆/π.       (C.4) 

The convex quadratic quantum potential associated to the 
wave function ψ0 reads 

quV
= −(ℏ

2
/2m)|ψ| -1∂2|ψ|/∂q∂q                

= − (2ℏ
2
/m) Κ0

4 (q - q)
2
+ (ℏ

2
/m) Κ0

2  (C.5) 

that leads to the quantum force  

−∂ Vqu /∂q = 2 Κ0
4 (ℏ

2
/m ) (q - q)      (C.6) 
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and to  

C = E0 − 
quV (q=0) = ½ℏ (k /m)½ − (ℏ

2
/m) Κ0

2  = 0. 

Given the simple exponential PDF decrease of (21-22) for 
x > σ +2∆ (that leads to a vanishing quantum potential as 
well as to vanishing small quantum force), we can disregard 
the contribution to the quantum non-locality length for x > σ 
+ 2∆. 

Thence, by (13) it follows that, 

)q(
qu

qu

cq

c
|

dq

dV
|

dq|
dq

dV
q|

λ

λλ

=

−
∫
∞

=
 

 
0

1
      

(C.7)

 

|d
quV /dq |= 2 Κ0

4 (ℏ /2m ) λc 

|−q-1∂ quV /∂q |= |2 Κ0
4 (ℏ /2m )| 

∆+=≅ ∫
∆+

2 
2

0

σλ
σ

dqq
           (C.8) 

so that, since for T < Tλ ∆+> 2σλc , it follows that 

qc λλ >  

Since for distances smaller than cλ the quantum 

deterministic dynamics take place and even vanishing 

quantum potentials must taken into account [10, 24], cλ  

becomes the reference length for quantum behavior. 

Appendix D  

Pseudo-Gaussian PDF 

If a system admits the large-scale classical dynamics, the 
PDF cannot acquire an exact Gaussian shape because it 
would bring to an infinite quantum non-locality length.  

In appendix A we have shown that for h < 3/2 the PDF 
decreases slower than a Gaussian and a finite quantum 
non-locality length is possible.  

The Gaussian shape is a physically good description of 
particle localization but irrelevant deviations from it, at large 
distance, are decisive to determine the quantum non-locality 
length.  

For instance, let’s consider the pseudo-Gaussian function 
type  

n= exp[− (q-q)2 /<∆q2>[1 + [(q-q)2/Λ2f(q-q)]]],   (D.1) 

where Λ here f(q-q) is an opportune regular function obeying 
to the conditions 

Λ2 f(0) >> <∆q2> 

and 

lim|q-q |→∞  f(q-q) << (q-q)2 / Λ2. 

For small distance (q-q)2 << Λ2 f(0)  the above PDF is 
physically indistinguishable from a Gaussian, while for 
large distance we obtain the behavior  

lim(q-q )→∞ n(q,t) = exp[−Λ2 f(q- q)/<∆q2>].  (D.3) 

For instance, we may consider the following examples 
a)  f(q- q) = 1  

lim|q-q0|→∞ n(q,t)  
= exp[−Λ2/<∆q2>] ;   (D.4) 

b)  f(q- q) = 1+(|q - q|/Λ) 

lim|q-q0|→∞ n(q,t) 
∝ exp[−Λ|q- q |/<∆q2>] ;   (D.5) 

c)  f(q- q) = 1 + ln[1+ (|q - q|/Λ)
h

]      (0< h <2) 

lim|q-q0|→∞ n(q,t)  
∝ Λ

−1
|q - q|

−h Λ2/<∆q2>
 ;   (D.6) 

d)  f(q- q) = 1 +  (|q - q|/Λ)
h

    (0<h<2)  

lim|q-q0|→∞ n(q,t)  
∝ exp[− Λ(2-k) |q- q|

h

/<∆q2>].  (D.7) 

All cases (D.4-D.7) lead to a finite quantum non-locality 
length λq. Given that for the PDF (D.7) 

lim|q-q|→∞  | ψ | = lim|q-q|→∞  n½            

= exp[− Λ(2-k) (q- q)
h
/2<∆q2>],  

the quantum potential for |q| >> |q| reads: 

lim(q-q)→∞ (2mℏ
2
)

quV
= −|ψ| -1∂2|ψ|/∂q∂q            

=− [(Λ(2-k)2 
h

2
(q-q)

2(h−1)
/4<∆q

2
>

2
)−h(h−1) (q-q)

(h−2)
],  (D.9) 

leading, for h ≠2, to the quantum force 

lim(q-q0)→∞ (2m/ℏ
2
)∂Vqu/∂q               

=−[(Λ4(2h−1)h
2
(q-q)

2h−3
/4<∆q

2
>

2
)                

−Λ2h(h−1)(h−2)(q-q)
(h−3)

/2<∆q2>],           (D.10) 

that for h < 3/2 gives lim(q-q)→∞  ∂ quV /∂q = 0. 

 



American Journal of Physical Chemistry 2013; 2(6): 122-131 131 
 

References 

[1] F. London, Nature 141 (1938) 643. 

[2] P. Papon, J. Leblon, P.H.E. Meijer, The Physics of Phase 
Transition, Springer-Verlagh, Berlin, 2002. 

[3] A. M. Guenault, Statistical Physics, Kluwer Academic, 
Dordrecht, 1995. 

[4] R.P. Feynman, Phys. Rev, 91 (1953) 1291. 

[5] S.T. Butler, M.H. Friedman, Phys. Rev. 98 (1955) 287. 

[6] ibid [5] p. 294. 

[7] D. ter Haar, Phys. Rev. 95 (1954) 895. 

[8] F.A: Deeney, J.P.O’Leary, P. O’Sullivan, Phys. Lett. A 358 
(2006) 53. 

[9] Weiner, J.H., Statistical Mechanics of Elasticity (John Wiley 
& Sons, New York, 1983), p. 317. 

[10] P.Chiarelli, “Can fluctuating quantum states acquire the 
classical behavior on large scale?” J. Adv. Phys. 2013; 2, 
139-163 ; arXiv: 1107.4198  [quantum-phys] 2012. 

[11] Ibid [9] p. 315. 

[12] Ibid [9] p. 406. 

[13] Y. B. Rumer, M. S. Ryvkin, Thermodynamics, Statistical 
Physics, and Kinetics (Mir Publishers, Moscow, 1980), p. 
333. 

[14] ibid [13] p. 334.  

[15] ibid [13] p. 56. 

[16] J. B. Anderson, C. A. Traynor and B. M. Boghosian, J. Chem. 
Phys. 99 (1), 345 (1993). 

[17] R.A. Aziz and M.A. Slaman, Metrologia 27, 211 (1990). 

[18] Teragon Research 2518 26th Avenue San Francisco, CA 
94116, http://www.trgn.com/database/cryogen.html;  

[19] S. Noegi and G.D. Mahan, arXiv:0909.3078v1 (2009). 

[20] R. J. Donnelly and C. F. Barenghi, “The observed properties 
of liquid Helium at the saturated vapor pressure”; 
http://darkwing.uoregon.edu/~rjd/vapor1.htm.  

[21] ibid [13] p. 325. 

[22] ibid [13] p. 260.  

[23] F. A. Deeney, J.P O'Leary, 2012; Eur. J. Phys. 33 677 
doi:10.1088/0143-0807/33/3/677; 

[24] Chiarelli, P.,” Quantum to Classical Transition in the 
Stochastic Hydrodynamic Analogy: The Explanation of the 
Lindemann Relation and the Analogies Between the 
Maximum of Density at He Lambda Point and that One at 
Water-Ice Phase Transition”, Physical Review & Research 
International, 2013; 3(4): 348-66. 

 

 


