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Abstract: The classification of aerial and satellite remote sensing data has become a challenging problem due to the recent ad-

vances in remote sensor technology that led to higher spatial and spectral resolutions. This research paper presents novel sensor 

independent algorithms and techniques for dealing with the challenges of classification of high volume remote sensor data. A fast 

unsupervised band reduction method is proposed to lower the dimensionality of the input image. The band reduced image is then 

split into two mutually disjoint pure and mixed pixel subsets by a pixel segregator built using extended mathematical morphology 

techniques. A novel hierarchical spectral-spatial support vector machine based classifier that adaptively includes the usage of ex-

pensive spatial information based on the pixel categorization is proposed. The final thematic map is obtained after merging the 

classification results of the two subsets and fixed spatial neighborhood homogenization. The accuracy, efficiency and flexibility of 

the developed system are demonstrated by evaluating the classification results using several hyperspectral and multispectral data 

sets. The obtained results demonstrate that the proposed method performs significantly better than conventional classifiers while 

alleviating the computational complexity involved in generating spatial information. 

Keywords: Morphological Profile Operators, Spectral And Spatial Classification, Vector Ordered Statistics, Support Vector 

Machine (SVM), Hyperspectral, Multispectral 

 

1. Introduction 

Conventional pixel by pixel classifiers of remote-sensing 

data are based on signal modeling where statistical signal-

based classification algorithms are applied on spectral infor-

mation of each pixel vector and the pixel is assigned to the 

class that has the most similar statistical spectral characteristics. 

High spatial resolution data contains a lot of contextual infor-

mation that can be employed to achieve higher discrimination 

of various spectrally similar classes. Many traditional classifi-

ers can be enhanced by inclusion of spatial and contextual in-

formation.  Consequently, joint spatial and spectral classifiers 

have been developed to analyze the remote sensing data better 

[1, 2]. Majority of the combined spatial and spectral metho-

dologies presented act on a single-band image [3, 4]. Linear 

extension of these grayscale techniques to multi- or hyperspec-

tral data will not be meaningful due to the problem of ordering 

relation for different band values of the same pixel and the 

computation intractability introduced due to the dimensionality 

of the multi-valued data. Various pixel vector methods, using 

Markov random fields [5], multi-channel mathematical mor-

phology [6], and textures [3, 7] for incorporating spatial and 

spectral data in to the classification process were proposed. 

The main drawback of most of these methods is the high com-

putational time even for moderate sized data sets. Most  of  the  

current  methods  available for multi or hyperspectral data 

analysis are either pure pixel techniques, where each pixel is 

considered to be spectrally homogenous, or mixed pixel tech-

niques where each pixel is treated  as  essentially  spectrally  

heterogeneous. Many a times, an image set is often a combina-

tion of heterogeneous and a vast majority of homogenous pix-

els. Limiting the application of expensive joint spectral and 

spatial feature extraction to heterogeneous areas, while using 

pure spectral techniques on homogenous areas, will likely re-

sult in significant performance boost of the classification accu-
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racy while keeping the computation cost within an acceptable 

range. 

Conventional statistical supervised classification methods 

are also hindered by limited availability of ground truth data 

and their inefficiency in handling high dimensional data. Over 

the last decade many techniques have been proposed to ad-

dress the complexity and accuracy issues [8, 9, 10]. However, 

the available techniques are still inadequate for better utility of 

high resolution data. To deal with the statistical estimation 

ineptness in the presence of unfavorable ratio between availa-

ble training samples to the features, several alternatives have 

been proposed to reduce the variance of the estimate for li-

mited training samples [11, 12], but these improvements still 

suffer from the risk of over fitting the few available training 

samples and lead to a poor approximation of statistics. This 

stresses the need for a data model that has low sensitivity to 

the number of training samples. SVMs are shown to have ca-

pabilities for handling problems related to classification of RS 

data with robustness to dimensionality, good generalization 

ability, and a non-linear decision function. Support Vector Ma-

chine (SVM) is a new and very promising classification tech-

nique developed by Vapnik and his group at AT&T Bell Labs 

[13]. Recently, researchers are focusing more on the study of 

SVM due to its useful applications in a number of areas, such 

as pattern recognition, multimedia, image processing and bio-

informatics [14, 15, 16]. 

 In the context of all the aforementioned issues, the purpose 

of this research is to develop a set of new techniques to obtain 

effective, efficient and improved classification of high resolu-

tion data collected from satellite and airborne platforms. The 

accuracy, efficiency and flexibility of the developed methods 

and software are demonstrated by evaluating the classification 

results using several hyperspectral and multispectral data sets 

with a wide variety of spatial and spectral resolutions and en-

compassing diverse contexts such as urban, semi-urban and 

agricultural scenes. The results obtained when compared with 

the results of conventional spectral-only and spectral-spatial 

classifiers indicate that higher accuracies can be achieved with 

the use of these techniques and the proposed methods also 

alleviate the computational complexity involved by adaptive 

application of expensive spatial information. 

This paper is organized in to five sections. Section II gives 

an overview of the proposed algorithms. Experimental data 

and setup are described in section III, and results are discussed 

in section IV. Section V concludes the paper. 

2. Proposed Method 

The flowchart of the proposed hierarchical hybrid classifica-

tion scheme is show in Fig. 1. The input image data set is first 

subjected to an unsupervised dimensionality reduction algo-

rithm to eliminate redundant bands. The band reduced image is 

then segregated into pure and mixed pixel subsets using ex-

tended mathematical morphological operators. Pixels identi-

fied as pure are classified using only the spectral features, 

whereas classification of pixels marked as mixed employs both 

spectral and spatial information. The mixed pixels are then 

homogenized by application of an adjacency majority marker 

algorithm to eliminate presence of any detached classified pix-

els in the thematic map. The input to the classifier is an n band 

multi- or hyper spectral image and the output will be a themat-

ic classified map assigning each pixel of the input a unique 

class label. As shown, the classification system consists of the 

following four main phases: 

• Band Reduction 

• Pure and mixed pixel segregation 

• Classification using SVMs of mixed and pure pixel 

subsets 

o Pure pixels classified using spectral fea-

ture vectors and a simple Radial basis 

function (RBF) kernel. 

o Mixed pixels classified using a hybrid 

spectral and spectral feature vector and a 

composite hybrid RBF kernel. 

• Post-classification homogenization and merging. 

Each of these phases is described in detail below. 

 
Figure 1. General architecture of the proposed classification system. 

2.1. Band Reduction 

Hyperspectral data is characterized by very high spectral 

resolution over a narrow range of observation channels that 

results in a significant number of almost redundant bands. Re-

dundancy in data can cause convergence instability of models, 

increases computational resource overhead and variations due 

to noise in redundant data could also lead to higher discrimina-

tion inaccuracy. Thus, there is a need for a methodology that 

provides sufficient, but not redundant information to the clas-

sifier subsystem. In this research work, after evaluating various 
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band selection methods for efficiency, a method based on 

Hamming distance (HD) metric is proposed. HD metric, in 

addition to being an unsupervised technique has the huge ben-

efit of computationally very fast as it does not involve any 

higher order calculations and can be applied with the need for 

any object information. HD between two image band vectors 

Bi = {pi1, pi2… pin} and Bj = {pj1, pj2… pjn}, where n is the total 

number of pixels and pix represents pixel value at offset x in 

band i, is given by the following expression. 

HD(Bi, Bj) = ∑ � ��� � ����	
�
�                          (1) 

The basic idea is that if two adjacent bands do not differ 

greatly then the underlying spectral-spatial property can be 

characterized by only one band. In general, adjacent bands that 

differ significantly should be retained, while similar adjacent 

bands can be reduced. The proposed algorithm for band reduc-

tion is presented below. In the algorithm the final Hamming 

distance threshold ϵ chosen will be arrived at by iteratively 

adjusting the threshold, starting with zero and incrementing, 

till the desired band count is achieved. The final band count 

chosen depends on the accuracy requirements and computa-

tional resources available to the user. Table 1 presents the pro-

posed band reduction algorithm. The final band count chosen 

depends on the accuracy requirements and computational re-

sources available to the user. 

Table 1. Band reduction algorithm using Hamming distance metric. 

Procedure BandReduction(Iband1...bandn, η, Є) 

Inputs: 

Orignial Image: I 

Number of bands: η 

Hamming distance threshold: Є 

Outputs: 

Reduced band image Ibr 

Begin 

i = 0, 

Ibr = {Ø}, 

j = i+1, 

while (j < η) 

forall pixel vectors p in Bandi, and pj in Bandj 

Hnet = H(Bi, Bj),  

if (Hnet < Є) then 

Ibr = Ibr 
 {Bj}, j = j+1, 

Else 

i = j, j = i+1, 

Endif 

EndWhile 

Return Ibr 

End 

2.2. Pure and Mixed Pixel Segregation 

The current methods available for multi or hyper spectral 

data analysis are inherently either pure pixel techniques, where 

each pixel is considered to be spectrally homogenous, or 

mixed pixel techniques where each pixel is treated as essential-

ly spectrally heterogeneous. Many a times, the image set is 

often a combination of heterogeneous and homogenous pixels, 

where many sites in a scene are pure materials but many others 

are mixture of multiple elements. As part of this research work, 

it is proposed and shown that segregating the input multi or 

hyper spectral image data set into pure pixels and mixed pixels 

as a pre-classification step will help improve the accuracy and 

computational expense during the classification phase. 

The segregation algorithm proposed is based on the ob-

served properties of edges. Edges in any image formation 

model correspond to changes in discontinuities of physical 

properties. Generally, edges indicate overlap of two or more 

homogenous areas and thus, majority of the mixed pixels 

should lie on the edges. Features on edges have sharp bounda-

ries. Because of the limited spatial resolution of remotely 

sensed images pixels on edges will contain a mixture of spec-

tral responses from different features. Though edge detection 

in gray valued images is well studied, the task is less well de-

fined in multi- or hyperspectral images. Techniques based on 

manifold learning [7], clustering and multivariate statistical 

approaches [17] were proposed to extract edges. Many of these 

techniques though perform satisfactorily on multispectral im-

ages, are not well suited for higher dimensional hyperspectral 

images. Also, these conventional algorithms like Sobel, Prewitt 

and Laplacian of Gaussian operator [18] are not a good fit for 

edge detection in images with multiple object boundaries, sha-

dows and noise. 

Filters based on mathematical morphology (MM) enable 

much more accurate definition of pixel neighborhoods and 

spatial structures in image scene than the conventional fixed 

closed neighborhoods at a much lower computational cost [19, 

20]. The proposed pure and mixed pixel segregation algorithm 

uses extended mathematical morphological (EMM) operators. 

Extension of mathematical morphology to multi or hyper-

spectral image data is not straightforward. Application of 

grayscale methods to each band of a multiband image is not 

recommended due to the existence of inherent correlation be-

tween the spectral components of various bands and a possible 

loss of information due to the introduction of extrinsic pixel 

data values [21]. The concept of vector-valued signals [22, 23] 

where different components of the vector contain different 

parts of the signal spectrum is commonly employed for han-

dling multi-channel data by treating the data at each pixel as a 

vector. In order to define vector MM operations, an appropri-

ate arrangement of vectors in the selected vector space is es-

sential. Distance ordering where the vectors are ordered based 

on some distance metric between a vector and all other vectors 

in the sample should prove to be a valid vector ordering tech-

nique to deal with spectral feature vectors. For defining EMM 

operations, considering a multichannel image f of N dimen-
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sions as a set of pixel vectors {x1, ..., xn} and a distance metric 

d(xi, xj)  to evaluate the ordering distance between two pixel 

vectors xi and xj, for a set of pixel vectors within a flat struc-

turing element B, dB(x) defines the cumulative distance be-

tween one particular pixel vector xi and all the other pixel vec-

tors in the spatial neighborhood defined by B. 

dB(x) = Σ(dB(x, xj)) ∀ xj ∈ B                          (2) 

dB(x) can then be used to define the supremum and infimum 

given a set of vectors. For a given set of vectors X, dB(x) is 

computed for every element in the set and the infimum is cho-

sen as that xi for which dB(xi) is the mimimum and similarly, 

the supremum is defined as the xi for which dB(xi) is maximum 

of that set. The choice of the distance metric is an important 

factor in obtaining an effective ordering relation and here a L1 

norm was used. 

Following the vector and EMM notation described in the 

previous chapter, the extended mathematical morphological 

gradient (EMMG) of an image can be obtained by computing 

the image difference between the dilated and eroded images. 

Computing the EMMG and applying a suitable threshold θ 

yields the edge contours. Pixels lying on these contours are 

most likely candidates to be marked as mixed. Additionally, 

further refinement of this likely-mixed pixel subset using ex-

tended mathematical morphological profiles (EMMP) is fur-

ther done to identify strictly mixed pixels to achieve even 

greater dimensionality reduction. EMMP construction was first 

proposed in [6] for segmentation of high resolution images. 

The algorithm for pixel segregation is given in Table 2. The 

output of the algorithm will be two mutually disjoint subset 

image of the originally image, one subset containing all the 

pure pixels and the other subset made of all the pixels marked 

as mixed, and these two subsets are used as an input to the 

classification phase. In the algorithm listed below, (p ∘/● B)
i
 

denotes a geodesic dilation/erosion repeated i iterations. To 

determine the change between EMMPs in successive iterations, 

HD operator is used as the metric. The iteration count parame-

ter k for the algorithm theoretically needs to be the value at 

which morphological idempotency is reached and, empirically 

it was found that a value of 5 to 7 provides good results. 

Table 2. Algorithm for categorizing a pixel as pure or mixed pixel. 

Procedure: PixelVectorType(I, B, θ, k, refine) 

Inputs: 

InputImage: I, Sructuring Element: B, 

EMMG threshold: θ, Max # of iterations: k, 

Additional refinement flag: refine 

Outputs: 

Pixel Type: Mixed or pure for a pixel vector 

Begin: 

# Compute EMMG 

IG = EMMG(I) 

For each pixel p(x, y) in IG 

If d(p(x, y)) > θ then 

Pixeltype = Mixed 

Elseif 

Pixeltype = Pure  

If refine == FALSE then 

Return, 

For each pixel p(x, y) in IG marked as mixed 

# Compute extended opening MP 

For i=0 to k 

EMPio(p)= (p o B)i 

# Compute extended closing MP 

For i=0 to k 

 EMPi●(p) = (p ● B)i 

# Compute the derivatives of EMMP 

For i=1 to k 

DEMPio = H(EMPio(p), EMPi-1o(p)) 

DEMPi● = H(EMPi●(p), EMPi-1●(p)) 

If ∨ DEMPio(p) > ∨ DEMPi●(p) then 

Pixeltype = Pure 

Elseif 

Pixeltype = Mixed 

Endif 

Return (PixelType) 

End 

2.3. Classification using Hybrid SVM 

SVMs with higher generalization capability, robustness to 

dimensionality, lower effort for model selection during learn-

ing phase and optimality of solution have proven to be more 

effective than the conventional parametric or non-parametric 

classifiers [24]. Due to all the benefits offered by SVM, in this 

work a hybrid classifier based on SVM method is proposed. 

SVM classifier design consists of choosing the appropriate 

feature vectors, model selection and selection of a multi-class 

classifier architecture. 

The feature vectors chosen for this work are dynamically 

adapted based on the characterization of a pixel. For the subset 

of pixels identified as pure, the feature vector is made up of the 

set of the spectral values for each of the bands in the band re-

duced image, and for those pixels marked as mixed, for each 

pixel the feature vector contains the extracted spatial informa-

tion measures combined with the associated spectral signatures 

from some or all of the bands. In this work, with an attempt to 

exploit the spatial information extracted using morphological 

profiles, an innovative way of constructing the spatial feature 

vector is proposed. The spatial feature vector is primarily 

composed of the EMMP vector with varying magnitudes of the 

vector. A hybrid spectral spatial feature vector is derived by the 

concatenation of spectral and spatial feature vectors. Model 

selection aims to tune the hyper-parameters of SVM classifica-

tion, the penalty parameter C and any kernel parameters in 

order to achieve the lowest test error. The choice of the kernel 

is a crucial issue for SVMs. Kernels introduce different nonli-
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nearities into the SVM problem and the performance of the 

resulting SVM will often hinge on the appropriate choice of 

the kernel. Though there are many kernels available in 

ture, the RBF kernel was chosen for this work. This kernel, 

unlike the linear kernel, can handle problems where the rel

tion between class labels and attributes in not linear

kernel also has the additional benefit of having fewer hyper

parameters and hence a lower model complexity

two tunable parameters: the penalty parameter 

radius parameter. A multi-class is then built using one

one approach as the training time is much smaller compared to 

other approaches [26]. 

2.4. Post-classification Processing 

The previous classification step produces two different cla

sification maps, one for the pure-pixel sub-image and one for 

the mixed-pixel sub-image, with each pixel in the map a

signed a unique class label. The post-classification processing 

contains merging the two disjoint classification maps to create 

the full image classification map, and applying contextual i

formation regularization over the local neighborhood of all the 

mixed pixels. 

Merging of the classification maps is a straight forward m

thod of performing a union of the tow classification maps. The 

thematic map obtained from the merging operation is further 

refined by the application of a fixed neighborhood majority 

vote spatial regularization procedure for each of the mixed 

pixels. The area for regularization is defined by an 8

neighborhood. For each mixed pixel in the classification map, 

the label of the pixel is replaced by the majority vote i.e. the 

label with highest frequency in the chosen neighborhood area.  

The majority vote procedure might have to be repeated for a 

few iterations until stability is reached. Application of regul

rization reduces noise in the classification map and more h

mogenous regions in the final thematic map and elimi

“salt-and-pepper” effect. The regularized classification map 

will be the final thematic map. 

3. Data and Experimental Setup

For evaluating the performance of techniques developed in 

this work a set of hyperspectral and multispectral images from 

different sensors with varying spatial and spectral resolutions 

and covering a diverse variety of contexts and different spe

tral and spatial resolutions are used. Details of the data sets are 

listed in Table 3. Performance of the proposed algorithms was 

evaluated both qualitatively and quantitatively against results 

obtained by conventional methods. The classification system 

was implemented in C and run on a Linux x86 platforms. A 

widely used SVM library libsvm [29] was used to perform 

basic SVM related tasks. 
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Table 3. Details of data sets chosen for experimental evaluation

Data set  

Name 

Sensor  

Type 

Spectral 

 Range 

# of  

Band

s 

Image 

Size in 

pixels

Indian 

Pines 

AVI-

RISa 

air-

borne 

10 nm 

covering 

 the wa-

velength 

 range 

from 0.4 

to 2.5 µm 

220  145x145

Universi-

ty  

of Pavia 

ROSISb 

air-

borne 

2.9 nm  

covering  

range 

from 400 

to 970 nm 

102  
1096x10

96 

Ananta-

pur 

IRSc-

1B 

LISSd-I 

0.46 –

0.86µm  
4 

512 x 

512 

Ujjain 

IRS-P6 

 LISS-

IV 

0.52 -

0.86 µm 
3 

512 x 

512 

a Airborne Visible/Infrared Imaging Spectrometer

b Reflective Optics System Imaging Spectrometer

c Indian Remote Sensing Satellite. 

d Linear Imaging Self Scanner. 

Figure 2. Indian Pines 220 band AVIRIS hyerspectral data set

(a) False color composite image. (b) Training ground truth mask.

ground truth file. (d) Legend for ground truth masks with test and train sample 

counts shown in parenthesis as (test_sample_count,

 25 

Details of data sets chosen for experimental evaluation. 

Image  

Size in 

pixels 

Location 
Resolu-

tion 

Groun

d  

Truth 

classes 

Refer 

Fig-

ure 

No. 

145x145 

Indian 

Pines 

 site in 

Northwes-

tern 

 Indiana, 

USA [27] 

 

20m 16 2 

1096x10

Pavia, 

northern 

Italy 

[28] 

1.3m 9 3 

512 x 

 

Anantapur 

area, 

 Andhra 

Pradesh, 

India 

72.5m 15 4 

512 x 

 

Ujjain area, 

Madhya  

Pradesh, 

India 

5.8m 9 5 

Airborne Visible/Infrared Imaging Spectrometer. 

Reflective Optics System Imaging Spectrometer. 

 
Indian Pines 220 band AVIRIS hyerspectral data set (AVIRIS, 1992). 

(a) False color composite image. (b) Training ground truth mask. (c) Test 

ground truth file. (d) Legend for ground truth masks with test and train sample 

test_sample_count, train_sample_count). 
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Figure 3. University of Pavia 103 band ROSIS sensor data set

(a) False color composite image. (b) Test ground truth mask. (c) Training 

ground truth mask. (d) Legend for the ground truth mask with test and train 

sample counts given in parenthesis as (test_sample_count,

train_sample_count). 

Figure 4. IRS-1B LISS-I 4 band Anantapur data set. (a) False color composite 

image. (b) Test ground truth mask. (c) Training ground truth mask. (d) Legend 

for the ground truth mask with test and train sample counts given in par

sis as (test_sample_count, train_sample_count).  

Figure 5. IRS-P6 LISS-IV 3 band Ujjain data set. (a) False color composite 

image. (b) Test ground truth mask. (c) Training ground truth mask. (d) Legend 

.: An efficient hybrid classification system for high resolution remote sensor dat

 
University of Pavia 103 band ROSIS sensor data set (Pavia, 2002). 

composite image. (b) Test ground truth mask. (c) Training 

ground truth mask. (d) Legend for the ground truth mask with test and train 

test_sample_count, 

 
data set. (a) False color composite 

truth mask. (c) Training ground truth mask. (d) Legend 

for the ground truth mask with test and train sample counts given in parenthe-

 
IV 3 band Ujjain data set. (a) False color composite 

ground truth mask. (d) Legend 

for the ground truth with test and train sample counts shown in parenthesis as 

(test_sample_count, train_sample_coun

4. Experimental Results

The proposed algorithms and techniques have been ev

luated for accuracy and performance with the data sets 

sented in the previous section. The results of the experiments 

are discussed in this section. 

4.1. Band Reduction Algorithm Performance

The proposed band reduction method was applied on the I

dian Pines and University of Pavia data set to evaluate the pe

formance and utility. Classification accuracy and computatio

al complexity are the metrics used for the purpose of eval

tion. The metrics are obtained on a pixel wise SVM based 

spectral classifier. Results of band reduction experiments on 

the Indian Pines data set are tabulated in Table 

bands are eliminated, the accuracy gradually increases while 

the classification time drops steeply. This increase in accuracy 

as the dimensionality decreases can be explained by the 

Hughes phenomenon. Reduction of the bands should help filter 

out redundant features that add to the confusion in the decision 

process. Though the table does not present the memory r

quirements, it can be deduced that the memory requirements 

also drop proportional to the number of bands eliminated. Fig

6 shows the plots that indicate the rate of band elimination and 

accuracy for changing values of the 

the algorithm is tightly depended on the choice of effective 

Table 4. Band reduction performance for Indian Pines data set

Epsilon ϵϵϵϵ  Band Count Avg Acc 

0.1 183 73.40% 

0.4 168 74.2% 

0.8 124 76.55% 

1.0 109 79.15% 

2.0 83 81.89% 

3.0 62 82.19% 

4.0 51 81.76% 

5.0 46 82.34% 

6.0 37 82.06% 

7.0 33 53.14% 

8.0 24 80.06% 

9.0 22 79.16% 

10.0 21 78.80% 

12.0 19 76.34% 

15.0 12 70.64% 

20.0 5 53.10% 
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. The results of the experiments 
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The proposed band reduction method was applied on the In-

dian Pines and University of Pavia data set to evaluate the per-

formance and utility. Classification accuracy and computation-

al complexity are the metrics used for the purpose of evalua-

tion. The metrics are obtained on a pixel wise SVM based 

spectral classifier. Results of band reduction experiments on 

the Indian Pines data set are tabulated in Table 4. As more 

bands are eliminated, the accuracy gradually increases while 

tion time drops steeply. This increase in accuracy 

dimensionality decreases can be explained by the 

Hughes phenomenon. Reduction of the bands should help filter 

out redundant features that add to the confusion in the decision 

le does not present the memory re-

quirements, it can be deduced that the memory requirements 

also drop proportional to the number of bands eliminated. Fig. 

shows the plots that indicate the rate of band elimination and 

accuracy for changing values of the threshold ϵ. The success of 

the algorithm is tightly depended on the choice of effective ϵ. 

Band reduction performance for Indian Pines data set 

 Overall Acc 
Classification Time 

(in secs) 

 71.92% 36.01 

 72.99% 27.10 

 72.45% 21.33 

 72.81% 17.43 

 73.94% 14.16 

 74.58% 13.21 

 74.17% 11.13 

 75.07% 11.11 

 74.41% 11.12 

 62.13% 11.01 

 70.81% 10.19 

 71.11% 7.17 

 70.93% 9.57 

 68.17% 8.48 

 62.82% 13.49 

 51.56% 6.39 
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Figure 6. The effect of ϵ on band count and the relation between band count 

and accuracy for the Indian Pines data set. 

From the curves it can be deduced that the classification pe

formance drops steeply at ϵ = 8.0. After this point, the loss of 

features due to band elimination negatively affects the classif

cation accuracy even though the classification time is greatly 

reduced. Fig. 7 plots the band count and classification time 

against ϵ. The observed unusual increase in the classification 

time even with lower band count is probably due to the add

tional overhead involved in cross-validation phase of SVM 

parameter tuning. The graphs demonstrate that the best trade

off between computation time and accuracy for 

occurs at ϵ =8.0. 

Figure 7. The effect of ϵ on band count and how the changing band count 

effects the classification time for the Indian Pines data set

Results of band reduction on the University of Pavia data set 

are tabulated in Table 5. Figure 8 gives the rate of band elim

nation and accuracy for changing values of the threshold 

Fig. 9 plots the band count and classification time against 

Similar to the results of the Indian Pines data set, the accuracy 

monotonically increases to a point after which it steeply drops 

as the number of bands eliminated increases. After the infle

tion point, a gradual decrease of accuracy can be observed as 

the classification becomes less reliable due to loss of inform

tion. The proposed method is economical and efficient as it 

relies on only self contained components without the need for 
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on band count and how the changing band count 

effects the classification time for the Indian Pines data set. 

Results of band reduction on the University of Pavia data set 

gives the rate of band elimi-

or changing values of the threshold ϵ and 

plots the band count and classification time against ϵ. 

Similar to the results of the Indian Pines data set, the accuracy 

monotonically increases to a point after which it steeply drops 

s eliminated increases. After the inflec-

tion point, a gradual decrease of accuracy can be observed as 

the classification becomes less reliable due to loss of informa-

tion. The proposed method is economical and efficient as it 

omponents without the need for 

supervised validation,  expensive optimization or exhaustive 

search based band selection processes. The experimental r

sults demonstrate that significant gains can be obtained even 

by application of coarse band reduction with

of accuracy. 

Table 5. Band reduction performance evaluation for the University of Pavia 

data set. 

Epsilon ϵϵϵϵ  Band Count Avg Acc 

0.1 103 80.59% 

0.2 93 80.69% 

0.4 70 80.98% 

0.8 43 82.55% 

1.0 37 84.71% 

2.0 19 83.37% 

3.0 13 79.69% 

4.0 9 80.00% 

5.0 7 76.38% 

6.0 5 71.99% 

10.0 3 69.52% 

Figure 8. The effect of ϵ on band count and the relation between band count 

and accuracy for the University of Pavia data set.

Figure 9. The effect of ϵ on band count and how the changing band count 

effects the classification time for the University of Pavia data set.
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expensive optimization or exhaustive 

band selection processes. The experimental re-

sults demonstrate that significant gains can be obtained even 

by application of coarse band reduction without noticeable loss 

Band reduction performance evaluation for the University of Pavia 

 Overall Acc 
Classification Time 

(in secs) 

 74.14% 181 

 74.34% 156 

 74.78% 124 

 79.57% 93 

 81.20% 84 

 82.29% 68 

 79.29% 62 

 78.46% 60 

 78.29% 54 

 70.88% 59 

 68.86% 73 

  
on band count and the relation between band count 

and accuracy for the University of Pavia data set. 

 
on band count and how the changing band count 

effects the classification time for the University of Pavia data set. 
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4.2. Classification Results 

The performance of the proposed classifier system is eva-

luated against two other conventional classifiers, the Maxi-

mum Likelihood (ML) classifier and Extraction and Classifica-

tion of Homogenous Objects (ECHO) classifier [1] and the 

original pixel-wise SVM spectral classifier. ML classifier is 

well known and powerful statistical probabilistic classifier 

used for supervised classification. ML classification is done by 

using pixel-wise spectral signatures only. ECHO classifier is 

widely used in remote sensing community for joint spectral 

and spatial classification that relies on partitioning the image 

into statistically homogenous regions and then classifies each 

region as a single object. ECHO and ML classifications were 

performed using the widely used academic hyper- or multis-

pectral image processing software MultiSpec [30]. Comparing 

results against the results produced by popular software pro-

vides for not only a complete but also a fair and bias free in-

vestigation. 

Wherever possible, the same band reduced image is used as 

input for all the various classifiers. The accuracy is measured 

using the overall accuracy, average accuracy and Kappa coef-

ficient performance measures described in a previous section. 

A small set of the available ground truth data was chosen as 

training data. Accuracies are calculated by using the trained 

model on the test ground truth data. Thematic maps are created 

for the entire data sets. 

Indian Pines Data Set 

The 220-band Indian Pines data set was first reduced to a 46 

band image using ϵ=5.0. The feature vector for spectral classi-

fication was made up of the reflectance values of each of the 

band. For the hybrid SVM, applying pixel segregation with 

θ=12.0 yielded a mixed pixel map with 51.48% of the pixels 

being marked as mixed. SVM parameters (C, λ) were tuned to 

(32, 0.5) using cross validation. Table 6 gives the class-specific 

and overall accuracies for all the classifiers applied on the In-

dian Pines data set. The classification maps and the mixed pix-

el maps are shown in Fig. 10. From the results we can see that 

for majority of the classes the ECHO classifier out performs 

both pixel–wise ML and SVM classification. For classes that 

are already homogenous, the SVM classifier performs better 

than the ML and at least as good as the ECHO classifier. This 

bolsters the idea that incorporating spatial information greatly 

enhances the classification accuracy of heterogeneous regions 

with a higher proportion of mixed pixels. The best global and 

class accuracies are obtained when applying joint spectral and 

spatial information using a hybrid SVM. The hybrid SVM sig-

nificantly out performs both the SVM and ECHO classifier 

and this confirms the effectiveness of using EMMP as feature 

vector. From visual inspection it can be observed that misclas-

sification occurs mostly between classes that are essentially 

close variants of each other (such as the corn and soya va-

riants). 

 

Table 6. Classification results for the Indian Pines data set. 

Class 
Train 

 Samples 

Test 

Samples 

Classifier Method Class Accuracies

ML ECHO SVM 
SVM Hybr-

id 

1 – Alfalfa 54 35 48.72 48.72 74.36 77.4 

2 - Corn no-till 1434 965 71.39 83.45 78.18 81.48 

3 - Corn min-till 834 467 63.01 75.13 69.64 83.93 

4 – Corn 234 178 85.87 92.39 91.85 98.37 

5- Grass Pasture 497 308 93.51 94.18 92.17 97.54 

6 - Grass tress 747 236 94.69 96.27 91.68 97.70 

7 - Grass pasture 

mowed 
26 25 36.36 100 100 100 

8 - Hay-winrowed 489 361 97.72 97.72 97.72 99.54 

9 – Oats 20 20 100 100 100 100 

10 - Soyabean-notill 968 338 79.43 90.10 82.03 98.58 

11 -  Soyabean min 

till 
2468 265 52.65 64.14 58.95 82.09 

12 - Soyabean clean 614 333 85.99 89.89 87.94 97.70 

13 – Wheat 212 109 98.15 98.15 98.77 99.38 

14 – Woods 1294 553 95.42 94.21 93.01 98.38 

15 – Bldg-Grass-

Drives 
380 127 73.03 81.52 61.52 79.70 

16 -  Stone-steel-

towers 
95 92 97.78 97.78 97.78 100 

Overall Accuracy   75.41 81.64 79.07 86.05 

Average Accuracy   79.61 83.75 82.34 90.83 

Kappa Coefficient κ    72.25 80.38 75.33 86.93 

 
Figure 10. Indian Pines data set (a) False color composite. (b) MLC classifi-

cation map. (c) ECHO classifier classification map.  (d) SVM classification 

map. (e) Mixed pixel map (dark pixels indicate mixed pixels). (f) SVM-hybrid 

classification map. 

University of Pavia Data Set 

Pavia scene’s 103 bands were reduced to a total of 37 bands 
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using band reduction algorithm with ϵ set to 1.0. SVM parame-

ters (C, λ) were tuned to (32.0, 2.0) using cross-validation. 

Table 7 reports the class and global accuracies for the Univer-

sity of Pavia data set. The classification thematic maps are 

shown in Fig. 11. Again, it is apparent from the summarized 

results that the classification accuracies reported by spatio-

spectral methods exceed spectral only methods significantly. 

Also the accuracy gain by the hybrid SVM compared to the 

ECHO classifier is higher than the Indian Pines data set. One 

probable reason for this is that this scene contains proportion-

ally more straight lines with different orientations than the 

Indian pines scene. This demonstrates that the spatial features 

using EMMP provides a final classification output that is cohe-

rent in both spectral and spatial terms for a complex real-world 

analysis scenario. 

Table 7. Classification results for the University of Pavia data set. 

Class 
Train 

 Samples 

Test 

 Sam-

ples 

Classifier Method Class Accuracies 

ML ECHO SVM SVM Hybrid 

1 - Roof 412 3834 95.75 96.22 95.64 97.60 

2 - Street 124 416 71.39 83.45 94.48 81.48 

3 - Paths 175 175 63.01 75.13 97.71 83.93 

4 - Grass 1928 313 85.87 92.39 99.53 98.37 

5- Trees 405 212 93.51 94.18 79.16 97.54 

6 - Water 1224 271 94.69 96.27 97.22 97.70 

7 - Shadow 97 45 36.36 100 100 100 

Overall Accuracy   75.41 81.64 79.17 86.05 

Average Accuracy   79.61 83.75 85.97 90.83 

Kappa Coefficient 

κ  
  72.25 80.38 75.33 86.93 

 
Figure 11. University of Pavia data set. (a) False color composite. (b) MLC 

classification map. (c) ECHO classification map. (d) SVM classification map. 

(e) Mixed pixel map (dark pixels indicate mixed pixels). (f) SVM-hybrid classi-

fication map. 

Anatapur Data Set 

For this data set no band reduction was done as the image 

has only four bands. With θ = 2, 59% of the pixels are identi-

fied as mixed. The higher proportion of mixed pixels is ex-

plained by the coarser resolution of the sensor and the hetero-

gonous composition of the land area. Using cross validation 

the SVM parameters (C, λ) were tuned to (2048.0, 2.0). Table 

8 presents the classification results and the classification the-

matic maps are shown in Fig. 12. SVM hybrid outperforms all 

the other classifiers. The conventional classifiers perform bad-

ly on some classes, this can probably be explained by the fact 

that training regions chosen are are heterogeneous spanning 

across boundaries, and the possibility of incorrectly labeled 

training samples. ML and ECHO classifiers could not classify 

class 10 as the scarcity of training samples leads to covariance 

matrix inversion failure. SVM and SVM-hybrid classifiers 

were able to handle this situation and this demonstrates the 

robustness of the SVM based classifiers in the presence of a 

small training set. SVM based classifiers, unlike conventional 

classifiers also performed significantly better even with mixed 

training samples. 

Table 8. Classification results for Anantaupur data set. 

Class 
Test 

Samples 

Train 

 Samples 

Classifier Method Class Accuracies 

ML ECHO SVM 
SVM Hybr-

id 

1 – Class1 45 9 37.8 67.8 77.78 75.9 

2 – Class2 78 12 94.9 94.9 96.15 98.71 

3 – Class3 100 12 44.0 44.0 99.00 99.0 

4 – Class4 384 20 26.6 26.6 89.06 88.54 

5 – Class5 84 30 85.7 88.1 86.90 89.2 

6 – Class6 75 12 80.0 80.0 77.33 80.0 

7 – Class7 132 9 36.5 36.5 59.85 62.88 

8 – Class8 105 16 89.5 89.5 86.67 85.7 

9 – Class9 186 44 80.6 80.6 74.73 76.13 

10 – Class 10 40 4 0 0 37.5 47.5 

11 –Class 11 318 25 37.7 37.7 72.33 73.9 

12 – Class 12 35 12 38.0 38.0 31.43 37.14 

13 – Class 13 99 97 97.0 97.0 97.98 98.9 

14 – Class 14 91 81 89.0 95.6 89.01 94.5 

15 – Class 15 144 20 53.5 55.6 47.22 51.38 

Overall Accuracy   54.4 56.1 77.92 81.54 

Average Accura-

cy 
  67.81 83.15 74.86 82.72 

Kappa Coeffi-

cient κ 
  51.6 74.5 75.6 78.65 
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Figure 12. Anantapur data set. (a) False color composite. (b) MLC classific

tion map. (c) ECHO classification map. (d) SVM classification map. (e) Mixed 

pixel map. (f) SVM-hybrid classification map. 

Ujjain Data Set 

This data set is made up of only three channels and 

band reduction procedure was applied to this data set.  With θ 

= 2.5, 36.4% of the pixels are marked as mixed and the SVM 

parameters (C, λ) were tuned to (32, 0.5). Table 

classification results with various classifiers. Fig

classification thematic maps. Comparing the results it can be 

observed that SVM did only marginally better t

and both methods have similar problems of misclassification 

of built-up land and agricultural area. SVM performs slightly 

worse than the MLC for certain agricultural classes, though on 

average the SVM performs better. This is probably due to th

small deviation of the spectral data from normal distributions. 

The use of spatial information and homogenization of solitary 

pixels results in much better results for the ECHO classifier 

and SVM hybrid classifier. 

Table 9. Classification results for Ujjain data set.

Class Test 

Samples 

Train  

Samples 

Classifier Method Class Accuracies

ML ECHO

1 – Class1 648 238 93.7 94.7 

2 – Class2 948 266 87.6 87.7 

3 – Class3 384 180 90.9 99.2 

4 – Class4 435 100 68.0 77.7 

5 – Class5 415 187 96.9 96.9 

6 - Class6 3371 432 91.3 91.3 

7 – Class7 1263 330 91.7 91.7 

8 – Class8 1820 416 73.0 73.0 

9 – Class9 400 143 84.3 84.3 

Overall Accuracy   86.5 87.2 

Average Accuar-

cy 

  86.3 86.9 

Kappa Coefficient 

κ  

  83.7 84.5 
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Anantapur data set. (a) False color composite. (b) MLC classifica-

classification map. (e) Mixed 

This data set is made up of only three channels and hence no 

band reduction procedure was applied to this data set.  With θ 

s mixed and the SVM 

parameters (C, λ) were tuned to (32, 0.5). Table 9 shows the 

classification results with various classifiers. Fig. 13 shows the 

classification thematic maps. Comparing the results it can be 

observed that SVM did only marginally better than the MLC 

and both methods have similar problems of misclassification 

up land and agricultural area. SVM performs slightly 

worse than the MLC for certain agricultural classes, though on 

average the SVM performs better. This is probably due to the 

small deviation of the spectral data from normal distributions. 

The use of spatial information and homogenization of solitary 

pixels results in much better results for the ECHO classifier 

Ujjain data set. 

Classifier Method Class Accuracies 

ECHO SVM SVM Hybr-

id 

 95.04 95.12 

 89.76 89.76 

 92.97 99.61 

 41.72 81.33 

 96.90 96.90 

 98.96 99.82 

 88.04 92.01 

 75.34 75.34 

 84.51 86.11 

 88.29 91.13 

 88.41 90.67 

 86.11 89.28 

Figure 13. Ujjain data set. (a) False color composite. (b) MLC classification 

map. (c) ECHO classification map. (d) SVM

pixel map. (f) SVM-hybrid classification map.

The results demonstrate that the SVM

more suitable and efficient for the classification of data sets 

with high dimensions as well as multispectral images. As was 

observed from the results of all the classifiers, it is quite appa

ent that the incorporating spatial inform

homogenization using some form of inter

measures results in visually and qualitatively better classific

tion maps. The hybrid SVM, by use of EMMG includes the 

boundary information in the yields classification maps with

accurate borders. Lowering of the dimensionality by a fast and 

efficient band reduction method resulted in huge computatio

al expense savings. Also, in particular, as majority of the i

ages are composed of homogenous regions, limiting the appl

cation of spatial information only for pixels identified as 

mixed decreased the computational needs of the hybrid class

fication. On average, the proposed methodology resulted in 5

10% increase in classification accuracies without incurring any 

significant computational overhead.

5. Conclusions 

This paper presented new algorithms and a system for 

sor independent effective and efficient classification of hyper

or multispectral images. The proposed algorithms include a 

fast unsupervised dimensionality reduction 

computationally economical algorithm for segregating pixels 

in the image into mixed and pure pixel categories and an ada

tive hybrid classification method that selectively applies the 

spatial information along with spectral information. 

tive of this work was the need for incorporating spatial and 

spectral information in multi- or hyperspectral image classif

cation process without incurring a huge overhead in terms of 

computational performance. The proposed methodology su

ceeds in satisfying this need by taking advantage of the fact 

that tradeoff between accuracy and computation cost is ma

imized by limiting the extraction and use of spatial features 
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Ujjain data set. (a) False color composite. (b) MLC classification 

map. (c) ECHO classification map. (d) SVM classification map. (e) Mixed 

hybrid classification map. 

The results demonstrate that the SVM method is technically 

more suitable and efficient for the classification of data sets 

with high dimensions as well as multispectral images. As was 

observed from the results of all the classifiers, it is quite appar-

ent that the incorporating spatial information and performing 

homogenization using some form of inter-pixel dependency 

measures results in visually and qualitatively better classifica-

tion maps. The hybrid SVM, by use of EMMG includes the 

boundary information in the yields classification maps with 

accurate borders. Lowering of the dimensionality by a fast and 

efficient band reduction method resulted in huge computation-

al expense savings. Also, in particular, as majority of the im-

ages are composed of homogenous regions, limiting the appli-

patial information only for pixels identified as 

mixed decreased the computational needs of the hybrid classi-

fication. On average, the proposed methodology resulted in 5-

10% increase in classification accuracies without incurring any 

nal overhead. 

This paper presented new algorithms and a system for sen-

effective and efficient classification of hyper-

or multispectral images. The proposed algorithms include a 

fast unsupervised dimensionality reduction scheme, an elegant 

computationally economical algorithm for segregating pixels 

in the image into mixed and pure pixel categories and an adap-

tive hybrid classification method that selectively applies the 

spatial information along with spectral information. The objec-

tive of this work was the need for incorporating spatial and 

or hyperspectral image classifi-

cation process without incurring a huge overhead in terms of 

computational performance. The proposed methodology suc-

satisfying this need by taking advantage of the fact 

that tradeoff between accuracy and computation cost is max-

imized by limiting the extraction and use of spatial features 
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only for the subset of pixels which mostly benefit by the use of 

this information in the classification process. Evaluation of the 

proposed techniques against existing methods has demonstrat-

ed that, on average, an increase of 5-10% overall accuracy has 

been observed with less than 40% computational cost increase. 

Following the direction of current research for effective han-

dling of high spatial and spectral resolution data, some of the 

issues that remain open and conducive for further research are 

identified. Application of a fast search based scheme to further 

optimize the proposed band reduction scheme might result in 

improved performance. As many of the tasks in the classifica-

tion scheme lend themselves to be parallelizable both within 

and across modules, attempt at splitting and concurrent han-

dling of these actions will result in reduction of overall classi-

fication time. 
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