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Abstract: Recent research has included the rapid development of soft classification algorithms and soft classification 

accuracy assessment beyond the traditional hard approaches. However, less consideration has been given to whether conditions 

and assumptions generated for the hard classification accuracy assessment are appropriate for the soft one. Positional error is 

one of the most significant uncertainties that need to be considered. This research examined the impacts of positional errors on 

the accuracy measures derived from the soft error matrix using NLCD 2011 as reference data and several coarser maps 

generated from NLCD 2011 as classification maps at the spatial resolutions of 150m, 300m, 600m, and 900m. Eight study 

sites, with a spatial extent of 180km×180km, of different landscape characteristics were investigated using a two-level 

classification scheme. Results showed that with existing registration accuracies achieved by current global land cover mapping, 

the errors in overall accuracy (OA-error) were 2.13% -39.98% and 2.53%-48.82% for the 8 and 15 classes, respectively and 

the errors in Kappa (Kappa-error) were 6.64%-57.09% and 7.08%-58.81% for the 8 and 15 classes, respectively if soft 

classifications were implemented based on images where spatial resolutions varied from 150m to 900m. More complex 

landscape characteristics and classes in the classification scheme produced a greater impact of the positional error on the 

accuracy measures. To keep both OA-error and Kappa-error under 10 percent, the average required registration accuracy 

should achieve 0.1 pixels. This paper strongly recommends the addition of uncertainty analysis due to positional error in future 

global land cover mapping. 
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1. Introduction 

Recent research in the fields of global warming, ecological 

modeling, and environmental monitoring has created a high 

demand for global land cover products [1, 2]. Therefore, 

many global land cover mapping projects have been 

implemented based on satellite imagery of a variety of 

spatial, spectral, and temporal characteristics [3, 4] such as 

Global Land Cover 2000 [5] and GlobCover 2009 [6]. 

Accuracy assessment is an indispensable component of 

land cover mapping [7], and it consists of both thematic and 

positional evaluation. Positional accuracy is achieved by a 

comparison of coordinates from the same sample locations 

between the land cover map and its reference data, results of 

which are measured by root mean square error (RMSE) [8]. 

In contrast, thematic accuracy is derived by a comparison of 

thematic labels between the map and a sample of reference 

data, results of which are presented as an error matrix where 

the overall accuracy (OA), Kappa, user accuracy (UA) and 

producer accuracy (PA) are estimated [8, 9]. 

As it is reported, the positional accuracy of IGBP 

DISCover, UMD Land Cover, MODIS 5, Global Land Cover 

2000, and GlobCover 2009 is ~1km, ~1km, 50-100m, 300m-

333m and 77m respectively while the thematic accuracy is 

66.9%, unknown, 74.8%, 68.6% and 67.5% respectively [5, 

10-14]. The thematic accuracy of UMD Land Cover is 

unknown as no independent validation of UMD Land Cover 

has been implemented [12]. All these thematic accuracies 

were achieved based on the underlying assumption that land 
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cover maps are seamlessly geo-registered to their reference 

data. However, no map is free of positional error, which 

brings false thematic error into the reported thematic 

accuracy [8, 15]. This issue begs the questions of how the 

positional errors affect the thematic accuracy and what is the 

required positional accuracy for validating thematic accuracy 

of land cover maps. 

Many studies have quantified the impact of positional 

errors on the thematic accuracy based on the hard 

classification accuracy assessment [8, 16, 17]. For example, 

[18] demonstrated that with a one-pixel shift in the cardinal 

direction, the overall accuracy produced a conservative bias 

of 15.3%, 23.4%, 36.7% for 5, 10, 25 map classes, 

respectively using the SPOT HRV multi-spectral images. [19] 

found that one pixel’s location error reduced the overall 

accuracy by 28%, 20%, and 12% by choosing a pixel, block, 

or polygon as the assessment unit, respectively. As the use of 

soft classification has gained increased popularity, few 

projects have assessed the positional effect on soft 

classification accuracy assessment. [20] conducted a 

simulation analysis showing that with one pixel’s locational 

error the bias of the overall accuracy ranges from 4.12% to 

34.3% whereas the error of kappa ranges from 8.47% to 

71.76% depending on the spatial characteristics. Although 

this work began the investigation of the positional effect on 

the soft classification accuracy assessment, two limitations 

existed with this research. First, the land cover maps 

analyzed in that study contained only two thematic classes, 

which is not common in land cover mapping. Second, spatial 

patterns of these maps were generated based on simulated 

imagery, some of which may not exist in the real remote 

sensing images. Both limitations have impeded the analysis 

of the connection between these results and future soft land 

cover mapping products. 

Therefore, this research continues the work from [20] to 

analyze the positional effects using existing land cover maps 

and actual registration levels when soft land cover mapping 

is implemented. The imagery selected was of MODIS scale 

or finer due to the fact that most global land cover products 

were generated at these scales and validated by Landsat or 

SPOT satellite images [21-23]. Factors including spatial 

characteristics and classification schemes were also analyzed. 

Finally, this paper determined what the required positional 

accuracy for a valid soft classification accuracy assessment 

is. 

2. Data and Methods 

2.1. Study Sites and Landscape Characteristics 

Eight study sites representing different landscape structure 

were chosen from the NLCD 2011 product. They are located 

in the central or eastern part of the United States. Each of them 

is a square region with a size of 180km×180km (Figure 1). 

 

Figure 1. Locations of eight study sites. 
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Two classification scheme levels were employed in this 

study (Table 1). Level II is the NLCD 2011 classification 

scheme with 15 classes common to all eight study sites. The 

scheme actually has other classes (e.g., Sedge/ Herbaceous in 

Alaska) which occur only in some regions of the US. Level I 

classes were generated by merging (collapsing) the thematic 

classes from level II into 8 classes. The preliminary analysis 

demonstrates that the cultivated/planted class dominates 

study sites #1 and #2. Forest and cultivated/planted are the 

primary classes in study sites #3, #5, and #6. Developed, 

forest, and cultivated/planted are most prevalent in study site 

#4. Finally, study site #7 has a great quantity of 

cultivated/planted, forest, and wetland while forest, 

shrubland, cultivated/planted, and wetland are dominant in 

study site #8 (Table 2, Table 3). 

Table 1. Two levels of legend and class scheme (The Level II is NLCD 2011 product legend and the classes names with (*) behind are not showed in the 8 

study sites). 

Level I Class name Level II Class name 

1 Water 
11 Open Water 

12 Perennial Ice/Snow (*) 

2 Developed 

21 Developed, Open space 

22 Developed, Low intensity 

23 Developed, Medium intensity 

24 Developed, High intensity 

3 Barren 31 Barren Land 

4 Forest 

41 Deciduous Forest 

42 Evergreen Forest 

43 Mixed Forest 

5 Shrubland 
51 Dwarf Scrub (*) 

52 Shrub/Scrub 

7 Herbaceous 

71 Grassland/Herbaceous 

72 Sedge/Herbaceous (*) 

73 Lichens (*) 

74 Moss (*) 

8 
Planted/ 

Cultivated 

81 Pasture/Hay 

82 Cultivated Crops 

9 Wetlands 
90 Woody Wetlands 

95 Emergent Herbaceous Wetlands 

Table 2. Percentage of each thematic class for eight study sites using the first-level classification scheme (8 classes). 

Level I 
Percentage of area (%) 

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 

1 0.61 1.05 0.80 2.37 2.80 1.82 0.62 2.07 

2 8.04 5.04 7.62 29.01 5.98 7.43 5.94 7.78 

3 0.06 0.05 0.42 0.52 0.29 0.19 0.14 0.45 

4 7.74 18.79 55.22 33.02 45.37 56.77 36.85 37.27 

5 0.02 0.87 0.69 2.43 8.09 5.33 4.03 10.71 

7 0.67 2.17 4.31 0.48 5.21 5.86 6.44 8.07 

8 82.39 70.01 30.90 23.28 23.48 19.88 32.13 15.84 

9 0.47 2.03 0.04 8.89 8.78 2.72 13.83 17.81 

Table 3. Percentage of each thematic class for eight study sites using the second-level classification scheme (15 classes). 

Level II 
Percentage of area (%) 

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 

11 0.61 1.05 0.80 2.37 2.80 1.82 0.62 2.07 

21 4.03 3.68 4.85 14.24 3.22 5.20 4.10 4.82 

22 3.23 1.18 1.84 8.08 2.29 1.58 1.33 2.02 

23 0.57 0.14 0.72 4.73 0.36 0.48 0.35 0.70 

24 0.20 0.03 0.21 1.95 0.12 0.17 0.16 0.23 

31 0.06 0.05 0.42 0.52 0.29 0.19 0.14 0.45 

41 7.71 17.95 50.67 28.30 18.87 37.62 10.79 9.71 

42 0.02 0.08 2.04 2.68 20.24 15.24 21.59 25.40 

43 0.01 0.76 2.51 2.04 6.26 3.91 4.48 2.16 

52 0.02 0.87 0.69 2.43 8.09 5.33 4.03 10.71 

71 0.67 2.17 4.31 0.48 5.21 5.86 6.44 8.07 

81 2.84 45.27 28.62 10.29 20.37 17.82 6.25 6.48 

82 79.55 24.74 2.28 12.98 3.11 2.05 25.88 9.36 

90 0.45 1.81 0.02 7.99 8.02 2.61 12.50 16.54 

95 0.02 0.22 0.02 0.90 0.76 0.12 1.34 1.26 
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The landscape characteristics of the eight study sites were 

analyzed using the following indices: landscape shape index 

(LSI), mean patch size (Area_M), mean shape index (Shape_M), 

edge density (ED), and contagion index (CON) [24, 25]. LSI 

measures the overall geometric complexity of the entire 

landscape. Area_M evaluates the mean patch size while 

Shape_M assesses the complexity of patch shape compared to a 

square shape of the same size. ED denotes the length of edges 

per unit area. CON indicates both patch type interspersion and 

patch dispersion at the landscape level. This analysis was 

accomplished using Fragstats v4.2 designed for quantification 

and analysis of landscape metrics for categorical maps [26]. 

2.2. Data 

2.2.1. Reference Data 

The reference data for the eight study sites were obtained 

from the NLCD 2011 product [27]. Two levels of the 

classification scheme were generated for the reference data, 

and the spatial resolution is 30m (Table 1). We assumed that 

the thematic accuracy of the NLCD 2011 product is one 

hundred percent for purposes of this research so that the 

impact of positional error could be evaluated. 

2.2.2. Soft Classification Data 

The soft classification maps of different spatial resolutions 

for each study site were generated by upscaling the reference 

data. Different window sizes, varying from 5×5 to 10×10, 

20×20, and 30×30 pixels, were used to create the soft 

classification maps with spatial resolutions of 150, 300, 600, 

and 900 meters, respectively (Table 4). Each pixel in the soft 

classification map contains a vector denoting the proportion 

of each class. This upscaling method was applied to all 

reference data across each study site for both levels of the 

classification scheme. 

There are several reasons that this research upscaled the 

reference data to generate soft classification maps instead of 

using other existing coarser land cover classification maps 

(e.g., land cover datasets classified from AVHRR or MODIS 

imagery). First, soft classification of coarser-resolution 

images introduces classification errors [28, 29], and various 

classification errors combined with varied positional errors 

would make the results difficult to explain. Second, it is 

nearly impossible to find such a series of soft classification 

maps for each study site with different spatial resolutions. 

Table 4. Soft classification maps and their reference data. 

N. Soft classification map Reference data 

1 NLCD-2011-150m 

NLCD-2011-30m 
2 NLCD-2011-300m 

3 NLCD-2011-600m 

4 NLCD-2011-900m 

2.3. Soft Classification Accuracy Assessment with 

Positional Errors 

Suppose that a soft classification map has � pixels and � 

of them are randomly sampled for accuracy assessment. Soft 

classification accuracy assessment with positional errors 

proceeds in the following way. The ��� sampling pixel in the 

form of a vector v�(	,�)  at the location (x, y)  in the soft 

classification map takes the cluster of pixels at location 

(x + ∆, y + ∆)  in the reference data as the validation unit 

which is in the form of a vector ��(	�∆,��∆). The error matrix 

for the ��� sampling pixel is then constructed using Eq. (1). 

������	�������,∆ = v�(	,�)	 ∩	��(	�∆,��∆)	        (1) 

In 	Eq. (1) , the construction rule ∩  is explained by a 

composite operator developed by Pontius and Cheuk [30] in 

which the diagonal and off-diagonal elements employ 

different algorithms. Generally, a minimum operator is 

calculated for the diagonal elements while the multiplication 

operator is carried out for the off-diagonal elements. The 

designing idea and details of calculation can be found in [30]. 

This composite operator has been widely accepted for its 

practical and simple characteristics [31]. # is the number of 

soft pixels shifted from its original position in the soft 

classification map and varied from 0 to 3 soft pixels with an 

addition of 0.1 soft pixels in order to measure the positional 

effect at sub-pixel level [32]. This translation model has been 

widely used to simulate positional errors [33, 34]. 

The final soft error matrix is created by averaging the soft 

error matrixes (Eq. (1)) for all sampling pixels (�) [7, 8, 35]. 

Previous research has shown that sampling introduces errors 

affecting the accuracy measures [36]. Therefore, in this 

research all soft pixels in the classification map were 

included to avoid sampling errors. 

This research was interested in the component of thematic 

error caused by positional errors. This part of the thematic 

error equals the absolute values of the accuracy measures 

without positional errors minus the counterpart with 

positional errors (Eq. (2, 3)). We calculated $%-'����  to 

indicate the part of thematic error for overall accuracy ($%), 

and (�))�-'���� for (�))� . Although a few recent have 

questioned the usefulness of kappa [37], kappa is still widely 

used in global land cover mapping such as [38-40]. Besides, 

the focus of this research is not on kappa itself, but rather the 

positional effect on (�))� . This analysis will promote 

additional and necessary attention on the impact that position 

has on soft classification accuracy assessment. 

$%-'���� = |$%∆+, − $%∆.,|                   (2) 

(�))�-'���� = |(�))�∆+, − (�))�∆.,|          (3) 

3. Results 

3.1. Landscape Characteristics and the Mixed Pixels’ 

Percentage of the Eight Study Sites 

Table 5 shows all the landscape indices calculated for the 

eight study sites with the two classification schemes at the 

landscape level. From study site #1 to #8, the LSI, Area_M, 

Shape_M, ED and CON varied from 210.30 to 557.64, from 

60.06 hectares to 9.25 hectare, from 1.81 to 1.92, from 46.51 
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to 123.65 meters/hectare, and from 77.59 to 40.71, 

respectively for the level I classification scheme. The indices 

of LSI, Area_M, and ED present a trend that landscape 

characteristics become more complex and heterogeneous 

from study site #1 to #8. This trend keeps approximately the 

same for the level II classification scheme apart from study 

sites #7 and #8. Table 5 also shows the percentage of mixed 

pixels in these soft classification maps. Obviously, a bigger 

window size (lower spatial resolution), combined with more 

heterogeneous landscape, increases this percentage. 

Table 5. Landscape characteristics and the mixed pixels’ percentage of the eight study sites for both level I and II classification schemes. 

Sites LSI Area_m Shape_m ED CON 150m 300m 600m 900m 

Level 1: (8 classes) Percentage of mixed pixels (%) 

Site 1 210.30 60.06 1.81 46.51 77.59 33.73 54.57 79.42 92.01 

Site 2 349.02 19.77 1.74 77.34 65.89 55.20 80.70 96.50 99.36 

Site 3 382.43 19.23 1.89 84.76 61.22 56.90 78.99 94.01 98.13 

Site 4 425.88 15.56 1.81 94.42 49.56 60.67 81.33 93.10 96.45 

Site 5 487.70 13.53 1.94 108.15 46.81 65.33 86.20 96.95 99.04 

Site 6 497.92 12.01 1.90 110.43 52.23 69.07 88.87 97.67 99.15 

Site 7 515.37 9.78 1.87 114.30 47.00 70.07 90.81 98.80 99.77 

Site 8 557.64 9.25 1.92 123.65 40.72 72.36 90.28 97.59 99.03 

Level 2: (15 classes) Percentage of mixed pixels (%) 

Site 1 250.66 24.29 1.96 55.56 77.63 36.72 57.29 81.07 92.87 

Site 2 446.96 12.30 1.88 99.10 60.88 65.49 89.01 98.84 99.85 

Site 3 493.54 9.96 1.88 109.45 60.80 65.80 85.36 96.51 99.08 

Site 4 717.06 6.30 1.90 159.12 41.73 80.42 92.79 97.73 99.00 

Site 5 721.54 6.05 1.97 160.12 41.53 80.22 94.36 98.83 99.48 

Site 6 746.56 5.25 1.86 165.68 46.13 85.87 97.29 99.49 99.85 

Site 7 717.38 4.83 1.86 159.20 42.49 80.52 95.33 99.61 99.93 

Site 8 717.39 5.49 1.91 159.20 40.21 82.04 95.09 98.85 99.54 

 

3.2. Impact of Positional Errors on OA and Kappa Derived 

from the Soft Error Matrix 

Figures 2-5 show the OA-errors when positional errors 

varied from 0.1 soft pixels to 3 pixels while Figures 6-9 

present the Kappa-errors accordingly when the spatial 

resolution is 150, 300, 600, and 900 meters, respectively. 

Each figure is divided into two groups by the classification 

scheme (8 classes or 15 classes). Within each group, each 

type of line represents one study site with specific landscape 

characteristics. The bottom abscissa value ranging from 0 to 

3 indicates the amount of the soft pixels associated with a 

given spatial resolution while the top value denotes the 

absolute distance in meters correspondingly. 

Figure 2 demonstrates the impact of positional errors on 

overall accuracy of eight study sites at a spatial resolution of 

150 meters. Within the group using the 8-class scheme, the 

rate of growth depends on the spatial characteristic of each 

study site. For example, the rate of growth of study site #1 is 

the lowest as a result of its most homogeneous landscape 

pattern with the simplest shapes and largest patch sizes. The 

rate of growth of study site #8 is the highest because it has 

the most heterogeneous landscape pattern with the most 

complex shapes and smallest patch sizes. The slope of each 

line is steeper at the beginning and then becomes more 

stable. The trend and shape of the lines between study site #2 

and #3 are similar. The same situation also occurs between 

study site #5 and #6, and between study site #7 and #8. At 

the positional error of 0.5 pixels, the OA-error is 9.49% for 

study site #1 and increases to 24.28% for study site #8. 

Generally, the lines in the left group are lower than the 

corresponding ones in the right group, which indicates that a 

higher number of categorical classes increases the positional 

effect. For instance, at the positional error of 3 soft pixels, the 

OA-error of study site #8 is 53.56% using the 8-class scheme 

while the OA-error is 62.94% for the 15-class scheme. It can 

also be seen that the order of lines in the right group changes 

such that the highest line is from study site #7. 

The results found in Figure 3 are very similar to Figure 2 

when the spatial resolution is 300 meters. The only difference 

is that the spatial resolution of 300 meters creates a less 

positional effect on OA-error than the spatial resolution of 

150 meters does with the same amount of absolute distance. 

The same is true for relative distance. For example, the 

positional error of 300 meters creates 49.28% of OA-error at 

study site #8 when the spatial resolution is 150 meters in the 

8-class scheme whereas the positional effect drops to 39.98% 

when the spatial resolution is 300 meters. Three soft pixels’ 

positional error creates 53.56% of OA-error at study site #8 

when the spatial resolution is 150 meters while the value 

decreases to 50.97% at the spatial resolution of 300 meters. 

The results in Figure 4 are different from what has been 

found in both Figures 2 and 3 when the spatial resolution 

becomes 600 meters. The line of study site #1 shows a trend 

becoming stable when the positional error reaches one soft 

pixel in the 8-class group as does the lines for study sites #2, 

#3, and #6. The lines of study site #1 and #3 show the same 

trend in the 15-class scheme. The relative comparison 

between the study sites stays the same except the line for 

study site #4 which is higher than the line of study site #6 

when the positional errors exceeds1.9 and 1.7 soft pixels in 

the 8 and 15 class schemes, respectively. 

Figure 4 and Figure 5 are also very similar, showing the 

same line trends. The line for study site #4 becomes higher 

than line of study site #6 when the positional error is greater 

than 0.9 and 0.8 soft pixels in the 8 and 15 class schemes, 



 American Journal of Remote Sensing 2019; 7(2): 50-61 55 

 

respectively. 

The comparison of Figure 2 to Figure 5, when holding the 

classification scheme constant, shows that the spatial 

resolution alters the impact of positional errors on the OA-

error. For example, for study site #1, the OA-error varies 

from 0 to 20.19% at the spatial resolution of 150 meters in 

contrast to the variation from 0 to 17.93% at the spatial 

resolution of 900 meters. 

The analysis performed with OA-error is same for Kappa-

error (Figures 6-9). Few differences exist between the results 

of OA-error and Kappa-error. First, compared to the 

positional effect on the overall accuracy, the impact on the 

kappa is higher. For example, with three soft pixels’ 

positional errors, the Kappa-error ranges from 0 to 76.83% 

while the OA-error varies from 0 to 64.1%. Second, the lines 

of study sites become much denser in contrast to the ones in 

the analysis of OA-error. Third, the lines in the 8 classes’ 

group are much lower than the corresponding lines in the 15 

classes’ group however the degree is not as much as they are 

showed in the OA-error analysis. Fourth, the spatial 

resolution changes the lines’ pattern more than it does in the 

OA-error analysis. For example, in the 15 classes’ group, the 

highest line is the study site #6 at the spatial resolution of 

150m, and it becomes the line of study site #1 at the spatial 

resolution of 900m. 

 

Figure 2. Impact of positional errors on OA-error of eight study sites with two levels of classification scheme at the spatial resolution of 150 meters. 

 

Figure 3. Impact of positional errors on OA-error of eight study sites with two levels of classification scheme at the spatial resolution of 300 meters. 
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Figure 4. Impact of positional errors on OA-error of eight study sites with two levels of classification scheme at the spatial resolution of 600 meters. 

 

Figure 5. Impact of positional errors on OA-error of eight study sites with two levels of classification scheme at the spatial resolution of 900 meters. 

 

Figure 6. Impact of positional errors on Kappa-error of eight study sites with two levels of classification scheme at the spatial resolution of 150 meters. 
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Figure 7. Impact of positional errors on Kappa-error of eight study sites with two levels of classification scheme at the spatial resolution of 300 meters. 

 

Figure 8. Impact of positional errors on Kappa-error of eight study sites with two levels of classification scheme at the spatial resolution of 600 meters. 

 

Figure 9. Impact of positional errors on Kappa-error of eight study sites with two levels of classification scheme at the spatial resolution of 900 meters. 
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3.3. The Required Registration Accuracy for Soft 

Classification Accuracy Assessment 

Table 6 shows the required registration accuracies (# of 

soft pixels) to keep both OA-error and Kappa-error under 

10% for eight study sites with two levels of classification 

scheme at a spatial resolution of 150, 300, 600, and 900 

meters, respectively. To retain OA-error less than 10% for 

the 8 classes’ scheme, the required registration accuracy for 

spatial resolution of 150, 300, 600, and 900meters ranges 

from 0.1 to 0.5 soft pixels, from 0.1 to 0.4 soft pixels, from 

0.1 to 0.4 soft pixels, and from 0.1 to 0.5 soft pixels, 

respectively. It is clear that half of a soft pixel is not enough 

to obtain an OA-error of less than 10%. As the spatial 

resolution becomes coarser, the required registration 

accuracy decreases from 0.20 to 0.18 for the overall 

accuracy. The 15-class scheme makes achieving the 

required registration accuracy more difficult. To keep the 

Kappa-error lower than 10%, the required registration 

accuracy should reach 0.1 soft pixels for all spatial 

resolutions and both classification schemes. 

Table 6. The required registration accuracy (# soft pixel) to keep the OA and Kappa error under 10% for eight study sites at the spatial resolutions of 150, 300, 

600, and 900 meters, respectively. (< representing “less than”). 

Sites 
Less than 10% OA-error Less than 10% Kappa-error 

150 300 600 900 150 300 600 900 

First level: 8 classes 

Site #1 0.5 0.4 0.4 0.5 0.1 0.1 0.1 0.1 

Site #2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 

Site #3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 

Site #4 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 

Site #5 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Site #6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Site #7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Site #8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Average 0.20 0.18 0.18 0.18 0.10 0.10 0.10 0.10 

Second level: 15 classes 

Site #1 0.4 0.3 0.3 0.3 0.1 0.1 0.1 0.1 

Site #2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Site #3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 

Site #4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Site #5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Site #6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Site #7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Site #8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Average 0.16 0.14 0.14 0.14 0.10 0.10 0.10 0.10 

 

4. Discussion 

Soft classification methods have provided an impetus for 

transforming the hard classification error matrix into a soft 

one. However, the assumptions applied for the hard 

classification error matrix may not be suitable for the soft 

one. This research examined the impacts of positional errors 

on the thematic accuracy measures derived from the soft 

error matrix using NLCD 2011 as reference data and several 

coarser maps generated from NLCD 2011 as classification 

maps at the spatial resolutions of 150m, 300m, 600m, and 

900m. Eight study sites, with a spatial extent of 180km × 

180km, of different landscape characteristics were 

investigated using two levels of classification scheme. The 

thematic errors caused by positional errors were reported 

using OA-error and Kappa-error. 

Our results are consistent with the results found in the 

simulation experiment [20] but have now been verified with 

actual, existing maps and not just simulations. For example, 

the positional effect becomes greater where the landscape is 

more heterogeneous. Also, the positional effect is reduced 

when the spatial resolution becomes coarser. The kappa 

values were more sensitive to positional error than overall 

accuracy. As a result, the following analysis and discussion 

focus mainly on new findings that complement what has 

been found in the previous simulation experiments. 

The use of real images allowed this research to conduct an 

uncertainty analysis using existing global land cover maps. 

Table 7 shows that most global land cover products were 

created at a spatial resolution of 1km. The positional 

accuracy of IGBP, UMD, MODIS 5, GLC 2000, and 

GlobCover 2009 is 1km, 1km, 50-100m, 300-333m, and 

77m, respectively. That is positional accuracy of 1 pixel, 1 

pixel, 0.1-0.2 pixels, 0.3-0.33 pixels, and ~0.26 pixels, 

respectively according to their spatial resolutions. Therefore, 

if global land cover maps are produced by soft classification 

methods using remote sensing imagery at spatial resolutions 

from 150m to 1km, and they achieve existing positional 

accuracies, the error in the overall accuracy would range 

from 2.13% to 39.98% while the error in the kappa would 

vary from 6.64% to 57.09% using the 8-class scheme. The 

error in the overall accuracy would range from 2.53% to 

48.82% whereas the error in the kappa would vary from 

7.08% to 58.81% using the 15-class scheme. Most OA-errors 

are higher than 10% while all Kappa-errors are higher than 
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10%. Also, most of the global land cover datasets contain 

more than 15 classes. Therefore, we can speculate that the 

errors in the overall accuracy and kappa would be higher. 

This implication raises the issue of the reliability of thematic 

accuracies reported by these global mapping projects and 

highlights the importance of uncertainty analysis of thematic 

accuracies based on positional errors. Such an analysis would 

improve the confidence level of further research based on 

these land cover datasets. This research strongly recommends 

the additional uncertainty analysis due to positional errors in 

future global land cover mapping. 

Table 7. Thematic accuracy and positional accuracy of the selected global land cover database. 

N. IGBP UMD MODIS 5 GLC 2000 GlobCover 2009 

1 Input data AVHRR AVHRR MODIS SPOT-VEGETATION MERIS 

2 Collection date 1992-1993 1992-1993 2001-2008 1999-2000 2009 

3 N. of classes 17 14 5 different classification schemes 22 22 

3 Spatial resolution 1km 1km 500m 1km 300m 

4 Thematic accuracy 66.9% unknown 74.8% 68.6% 67.5% 

5 Positional accuracy ~1km ~1km 50-100m 300m-333m 77m 

6 Reference [10, 41] [12, 42] [43, 44] [5, 45] [6, 14] 

 

Global land cover mapping made use of images at the 

spatial resolution of 1km such as MODIS and AVHRR [3, 4] 

and preferred finer images such as MERIS [6, 14]. Most of 

them were validated by Landsat images [21-23]. This paper 

determined that a half-pixel is not suitable for soft 

classification accuracy assessment at these scales using 

Landsat images as reference. To keep the thematic errors due 

to positional errors less than 10%, the required registration 

accuracy should achieve 0.14 pixels for overall accuracy and 

0.10 pixels for kappa for the 8-class scheme. This 

requirement increases to 0.10 pixels for both overall accuracy 

and kappa for the 15-class scheme. As the spatial resolution 

becomes coarser, and the classification scheme includes more 

map classes, the positional requirement increases. Therefore, 

the positional accuracy standard for the soft classification 

accuracy assessment should be updated, and the future 

requirement for registration accuracy must consider the 

spatial resolution, number of classes in the classification 

scheme and the spatial characteristics of the imagery. 

Considering more land cover and land use maps were 

produced by soft classification [46-49] and given the 

positional accuracies existing global land cover maps 

achieved, there is a great need to improve image registration 

methods or develop methods to eliminate the positional effect 

on soft classification accuracy assessment. Several 

techniques have been suggested to remove the positional 

effect for hard classification accuracy assessment such as 

spatial aggregation (e.g. 3×3 pixels) [34, 50-53] and fuzzy 

location model [54, 55]. However, whether they are 

appropriate for soft classification accuracy assessment needs 

further research. 

The results also showed that the effect of positional errors 

is higher in the 15-class scheme than in the 8-class scheme as 

indicated by both OA-error and kappa-error. This result is 

reasonable because the landscape characteristics with more 

classes become more complex (Table 5). Nevertheless, 

surprisingly this trend becomes weaker if using kappa-error 

is used as an indicator as shown in Figures 6 to 9. Besides, 

compared to the effect on overall accuracy the highest and 

lowest positional impact on kappa was not study site #8 and 

#1, respectively regardless of spatial resolution. Even worse 

is that the highest positional impact on kappa is at study site 

#1 when the spatial resolution is 900m. The underlying 

reason for these unexpected results is that user accuracy or 

producer accuracy of classes with smaller proportions caused 

by positional error seems to approximate zero, which makes 

the kappa value quite low despite the relatively high value of 

overall accuracy. This also demonstrates that kappa is 

inconsistent with overall accuracy, which is proof to confirm 

that kappa does provide discrepant accuracy information. 

5. Conclusions 

Recent research has revealed the rapid development of soft 

classification algorithms and soft classification accuracy 

assessment beyond the traditional hard approaches. However, 

less consideration has been given to whether conditions and 

assumptions generated for the hard classification accuracy 

assessment are appropriate for the soft one. This research 

examined the impacts of positional error, one of the most 

significant uncertainties that need consideration, on the 

accuracy measures derived from the soft error matrix using 

NLCD 2011 as reference data and several coarser maps 

generated from NLCD 2011 as classification maps at the 

spatial resolutions of 150m, 300m, 600m, and 900m. This 

research complements and continues the simulation work of 

[20]. New conclusions include that with the existing levels of 

registration accuracy, if a global land cover product is 

produced by soft classification method at MODIS scale or 

similar scale, the OA-error will vary from 2.13% to 39.98% 

and from 2.53% to 48.82% for the 8 and 15 class schemes, 

respectively. The Kappa-error will range from 6.64% to 

57.09% and from 7.08% to 58.81% for the 8 and 15 class 

schemes, respectively. To keep both errors in overall 

accuracy and kappa under 10%, the average required 

registration accuracy should reach at least 0.18 and 0.14 soft 

pixels for the 8 and 15 class schemes, respectively. This 

research highlights the importance of uncertainty analysis of 

thematic accuracies caused by positional errors while 

performing the global land cover mapping. The positional 

effect is inconsistent between overall accuracy and kappa and 

is greater in the classification scheme with a greater number 



60 Jianyu Gu and Russell G. Congalton:  The Positional Effect in Soft Classification Accuracy Assessment  

 

of classes. There is a great need to update the positional 

requirements for soft accuracy assessment according to the 

image spatial resolution, classification scheme, and landscape 

structure. Besides, techniques suggested to remove positional 

effect in hard classification may not be appropriate for soft 

one, which needs to be investigated further. Considering 

positional issues and analysis described in this paper will 

significantly improve soft accuracy assessment in the future. 
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