
 

American Journal of Software Engineering and Applications 
2013; 2(3): 92-104 
Published online July 20, 2013 (http://www.sciencepublishinggroup.com/j/ajsea) 
doi: 10.11648/j.ajsea.20130203.12  

 

A discussion of software reliability growth models with 
time-varying learning effects 

Chiu, Kuei-Chen 

Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan 

Email address: 
ckj0214@ms24.hinet.net 

To cite this article: 
Chiu, Kuei-Chen, A Discussion of Software Reliability Growth Models with Time-Varying Learning Effects. American Journal of 

Software Engineering and Applications. Vol. 2, No. 3, 2013, pp. 92-104. doi: 10.11648/j.ajsea.20130203.12 

 

Abstract: Over the last few decades, software reliability growth models (SRGM) has been developed to predict software 
reliability in the testing/debugging phase. Most of the models are based on the Non-Homogeneous Poisson Process (NHPP), 
and an S or exponential-shaped type of testing behavior is usually assumed. Chiu et al. (2008) provided an SRGM that 
considers learning effects, which is able to reasonably describe the S and exponential-shaped behaviors simultaneously. This 
paper considers both linear and exponential-learning effects in an SRGM to enhance the model in Chiu et al. (2008), 
assumes the learning effects depend on the testing-time, and discusses when and what learning effects would occur in the 
software development process. This research also verifies the effectiveness of the proposed models with R square (Rsq), and 
compares the results with these of other models by using four real datasets. The proposed models consider constant, linear, 
and exponential-learning effects simultaneously. The results reveal the proposed models fit the data better than other 
models, and that the learning effects occur in the software testing process. The results are helpful for the software 
testing/debugging managers to master the schedule of the projects, the performance of the programmers, and the reliability 
of the software system. 

Keywords: Software Reliability, Non-Homogeneous Poisson Process (NHPP), Learning Effects,  
Time-Varying Learning Effects 

 

1. Introduction 

Recently, various software reliability growth models 
(SRGM) have been proposed, and there has been a gradual 
but marked shift in the balance between acceptable software 
reliability and affordable software testing cost. Chiu et al. 
(2008) provided an SRGM that learning effects, which is 
able to reasonably describe the S and exponential-shaped 
types of behaviors simultaneously, and has good 
performance in fitting various data. However, the learning 
effects in this model are assumed be a constant, even 
though, in some cases they will vary. This research thus 
added time-varying learning effects to Chiu’s model (2008), 
using both linear and exponential functions to explain these 
in the software testing process. This paper also presents 
numerical examples to verify the effectiveness of the 
proposed models, and compares other models by using four 
actual datasets. 

 

2. Literatures Review 

For the last few decades a number of SRGM have been 
developed based on the Non-homogeneous Poisson Process 
(NHPP).  These models generally assume that each time 
an error occurs the fault that caused it can be immediately 
removed, leading to no new problems, which is usually 
called perfect debugging, although imperfect debugging 
has also been discussed (Ohba, 1984b). Gokhale and 
Trivedi (1999) stated that the assumption of statistical 
independence for the number of events occurring in 
disjointed time intervals is constantly violated when SRGM 
based on NHPP are used, and proposed an enhanced NHPP 
model to allow the time-varying failures in the debugging 
process. 

In some cases, due to different testing/debugging 
strategies or resource allocation processes, software 
reliability may non-monotonically increase or decrease, due 
to the change-point in SRGM. Zhao (1993) identified the 
change-point problem, and stated that effect on software 
reliability should be estimated. Shyur (2003) developed a 



 American Journal of Software Engineering and Applications 2013; 2(3): 92-104 93 
 

generalized reliability growth model by incorporating 
imperfect debugging with change-points, while Huang 
(2005) incorporated both a generalized logistic 
testing-effort function and the change-point parameter into 
an SRGM. 

Another important issue in the field of SRGM is 
discovering the confidence intervals of software reliability. 
Yamada and Osaki (1985) stated that the maximum 
likelihood estimates (MLE) concerning the confidence 
interval of the mean value function can be estimated using 

as / 2( ) Z ( )CRm T m T± , where CR  denotes the 

critical region, and / 2ZCR  denotes the value providing an 

area 2CR  of the standard normal distribution. Yin and 

Trivedi (1999) presented the confidence bounds for the 
model parameters via the Bayesian approach by using the 
estimation method in Yamada and Osaki (1985). Huang 
(2005) also employed the method in Yamada and Osaki 
(1985) to draw a graph to illustrate the confidence intervals 
of the mean value function. 

Some researchers in the field of software reliability 
consider that variations in the mean value function stem 
from the error detection process, and deduce the mean 
value function by using  stochastic differential equations 
(SDE) (Lee et al., 2004; Tamura and Yamada, 2006). 
Although SDE is recognized as a more effective method in 
evaluating the mean value function and the software testing 
costs, the existing models still have some problems. For 
instance, Yamada et al. (1994) proposed a simple SRGM by 
applying an Itô type of SDE where the error detection rate 
is constant, although in practice the error detection rate 
would vary over time. Lee et al. (2004) developed an 
SRGM by using an Itô type SDE based on the delayed 
S-shaped and the inflection S-shaped models proposed by 
Yamada et al. (1983) and Ohba (1984), respectively, 
without considering the variation in mean value function, 
which is a crucial factor for measuring testing costs and the 
variation in software reliability during the testing phase. 
Tamura and Yamada (2006) derived a flexible SDE model 
to describe the fault-detection process during the system 
testing phase of a distributed development environment by 
using an inflection S-shaped SRGM and an Itô type SDE 
(Karatsas and Shreve, 1997), but this model improperly 
presents the prediction and variance of the mean value 
function, and there is no complete process for obtaining the 
parameters in the model. 

Furthermore, the notion of learning as an explicit 
feedback process has found its way into many areas of the 
social and management sciences. Learning effects usually 
occur when staff are involved in a production or service 
activity, and it is important to investigate how these will 
affect task times and costs. In recent years, several studies 
have noted that learning effects exist in the process of 
software testing/debugging, but few have succeeded in 
identify them (Smiarowski, 2006; Kapur, 2007; Chiu, 2008, 
2009, 2011, 2012). 

3. Method 

3.1. Notations 

Chiu et al. (2008) presented an SRGM that considers 
constant learning effects, while this paper provides an 
SRGM which assumes learning effects vary with testing 
time. 

Software reliability growth models are mathematical 
functions that describe the error detection and removal 
process.The following notations will be used throughout 
this study: 

a  : the expected number of all potential errors in 
the software system 

α  : the autonomous errors-detected factor 

η  : the learning factor 

1( )tη  : the learning effect function with linear 
learning effect  

2 ( )tη  : the learning effect function with exponential 
learning effect  

ξ  : the accelerative factor with time of learning 
effect 

τ  : the negligent factor, which means the testing 
staff would cause another error when 
removing potential errors 

( )f t  : the intensity function that denotes the 
fraction of the errors detected at time t  

( )F t  : the cumulative function that denotes the 
fraction of the errors detected within time (0,
t ) 

( )m t  : the mean value function of the software error 
detection process, which is the expected 
number of errors detected within time (0, )t  

1( )m t  : the mean value function with linear learning 
effects 

2( )m t  : the mean value function with exponential 
learning effects 

( )tλ  : the intensive value function of the software 
error detection process, which is the expected 
number of errors detected at time t  

1( )tλ  : the intensive value function with linear 
learning effects 

2( )tλ  : the intensive value function with exponential 
learning effects 

( )d t  : the error detection rate per error at time t 

1( )d t  : the error detection rate per error at time t 

with linear learning effects 

2 ( )d t  : the error detection rate per error at time t 

with exponential learning effects 

( / )R x t  : the conditional software reliability, which is 
defined as the probability that no error is 
detected within the time interval ( , )t t x+  

Generally, the software testing/debugging process is 
modeled as an error counting process. A counting process 
{ ( ), 0}N t t ≥  is said to be an NHPP with intensity 



94 Chiu, Kuei-Chen: A discussion of Software Reliability Growth Models with Time-Varying Learning Effects 
 

function ( )tλ , where ( )N t  follows a Poisson distribution 
with mean function ( )m t , this probability can be 
formulated as: 

( )
( )[ ( )]

Pr ( ) , 0,1,2,...
!

k m tm t e
N t k k

k

−

= = =  (3.1) 

The mean value function ( )m t , which is the expected 
number of errors detected within time (0, )t , and can be 
expressed as: 

0
( ) ( )

t

m t x dxλ= ∫  (3.2) 

The conditional software reliability ( / )R x t  is defined 
as the probability that no error is detected within the time 
interval ( , )t t x+ , given that an error occurred at time

( 0, 0)t t x≥ > . Therefore ( / )R x t  can be 
formulated as: 

[ ( ) ( )]( / ) m t x m tR x t e− + −= . (3.3) 

Note that the value of conditional software reliability is 
approximated to 1 when t → ∞ . 

3.2. Model development 

In this paper, we describe the learning effect that occurs 
in a software testing/debugging task and discuss the 
time-varying learning effects of this. Further, we explain 
how the time-varying learning effects influence the process 
of software reliability growth. 

In the proposed model, the influential factors considered 
for finding errors in software system include the 
autonomous errors-detected factorα , the negligent factor
τ  , the learning factorη , and the accelerative factorξ . In 
Chiu’s model (2008), which supposes that ( )f t  is the 
intensity function that denotes the percentage of the errors 
detected at time t , ( )F t  is the cumulative function that 
denotes the percentage of the errors detected within time (0,
t ), and 1 ( )F t−  is the percentage of the errors as  
undetected yet at time t . In Chiu’s model (2008), the 
interrelationships among the factors can be formulized as a 
differential equation, and which is given by: 

( )( )( ) ( ) 1 ( )f t F t F tα η τ= + − − . (3.4) 

Where, 0α > and 0α τ> ≥  to specify that a 
constructive debugging activity is in process. 

Equation (3.4) implies that imperfect debugging and 
learning effects may exist. The autonomous errors-detected 
factor α indicates that the testing staff/software 
developers spontaneously find software errors of which 
they were unaware. Meanwhile, the learning factor η  
indicates that the testing staff/software developers 
deliberately set out to find software errors from patterns 
which were previously detected. The negligent factor τ
indicates that new software errors are generated while 
correcting the program code. The first two factors can 
improve the efficiency of software debugging, but the third 
cannot. ( )F t  and ( )f t  can be derived from Equation 

(3.4) by using differential equation analysis to solve 
Equation (3.5): 

2( )
( ) ( ) ( ) ( ) ( )

dF t
f t F t F t

dt
η α η τ α τ= = − − − − + − , (3.5) 

, and the explicit solution is given by: 

))((

))((

1
)(

ct

ct

e

e

tF +−+

+−+

+

−−
= τηα

τηα

η
τα

. (3.6) 

Note that the number of system errors found should be 
zero when a system’s debugging task begins, but ( )F t  is 
not equal to zero when t=0. In view of this, we utilize the 
constant c to adjust the function ( )F t , so as to let

(0) 0F = . Based on the above discussion, the constant c  
can be inferred as: 

ln

c

α τ
η

α η τ

 −
 
 =
+ −

, (3.7) 

To simplify the model, we define 'α α τ= − , and thus 
( )F t  and ( )f t  can be rearranged as follows:  

te

tF
)'(

'

'
1

1)(
ηα

α
η

α
η

++

+
−=

, 
(3.8) 

2 ( ' )

2

( ' )

( ' )
( )

'
'

t

t

e
f t

e

α η

α η

α η
ηα
α

+

+

+=
 + 
 

. 

(3.9) 

Furthermore, we need to estimate the total potential 
errors in the software system before the testing/debugging 
task starts. Here, a  represents the expected number of all 
potential errors before the debugging task starts, which can 
be estimated by the size of the software system along with 
experience of previous testing/debugging tasks. 
Accordingly, the mean value function of the software error 
detection process can be written as: 

( ' )

1
'( ) ( ) 1

'
t

m t aF t a

e α η

η
α

η
α

+

 + 
= = − 

 +
 

, 
(3.10) 

the intensity function at time t is given by: 

2 ( ' )

( ' ) 2

( ' )
( ) ( )

'( )
'

t

t

e
t af t a

e

α η

α η

α ηλ ηα
α

+

+

 
 += =  
 +
 

. 
(3.11) 

In order to find the variation of the error detection rate 
per error at time t, we identify the error detection rate as: 

( ' )

( )
( ) ( ' ) 1

( ) ' t

t
d t

a m t e α η
λ ηα η

α η+

 = = + − − + 

. (3.12) 

Note that the boundary of the error detection rate is 
between 'α  and 'α η+  at any testing time. However, 
the way to distinguish the exponential and the S-shaped 
behaviors is whether the value of the inflection point is 
greater than zero or not. The proposed model behaves as 
S-shaped if 'η α>  (the value of an inflection point is 



 American Journal of Software Engineering and Applications 2013; 2(3): 92-104 95 
 

positive); otherwise it behaves as exponential-shaped. The 
inflection point implies that learning effects exist in the 
process of testing/debugging, and inflection time is given 
by:  

inflection

ln( ) ln( ')
0

'
t

η α
α η

−= >
+

. 
(3.13) 

However, in some special cases, the learning factor η  
may not be constant, but instead vary over time. In this 
study, we adopt two functions to deal with the time-varying 
situation, and these functions are given as (3.14), (3.15), to 
represent the linear and exponential growth of learning 
effects with time. 

1( )t tη η ξ= + , and (3.14) 

2 ( ) tt eξη η= , (3.15) 

Where ξ  is the coefficient of the accelerative factor. 
The mean value function in Chiu’s model (2008) could be 
improved with these two different learning styles as given 
by:   

2
1

'

1
'( ) 1

'
t t t

t

m t a
t

eα η ξ

η ξ
α

η ξ
α

+ +

+ + 
= − + +

 

, and 
(3.16) 

2
( ' )

1
'( ) 1

'

t

t

t
e t

e

m t a
e

e
ξ

ξ

ξ
α η

η
α

η
α

+

 
+ 

= − 
 + 
 

, 
(3.17) 

The learning effects will be constant while 0ξ = , and 
the mean value functions (3.16), (3.17) will degenerate to 
Equation (3.10), flexibly. 

The intensity functions with these two different learning 
styles are given by: 

( ) 2

22

1 2

1 2

( )

t t t

t t tt t t

t
t e

t a
tt ee

α η ξ

α η ξα η ξ

η ξ ξ α η ξ
ξα αλ

η ξη ξ α
αα

′ + +

′ + +′ + +

  +  ′+ + + +    ′ ′    = − 
 + +  ′ ++     ′  ′   

 

, and 

(3.18) 

( )
2 2

1

( )

t

t
t

t t
t t t te

tt
t tet te

e e
e te e

t a
ee ee

ξ

ξξ

ξ ξ
ξ ξ α η

ξξ
α ηα η

η ξ α η ηξ
α α ξλ

ηη α
αα

′ +

′ +′ +

    +
 ′+ + + +   ′ ′    = −   + + ′ ++    ′ ′     

 

(3.19) 

, and the functions of the error detection rate with the 
two different learning styles are given by: 

( ) ( )( )( )( )
( ) ( )( )

'

1 '

' ' ' 2
( )

' '

t t

t t

e t t
d t

t e t

α η ξ

α η ξ

α α η ξ α η ξ ξ ξ

α η ξ α η ξ

+ +

+ +

+ + + + − +
=

+ + + +
,  

(3.20), and 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

' ' ' 22 2

2
'

' ' ' 2 1
( )

' '

t t t

t

e t e t e tt

e tt t

e e e t e t

d t

e e e

ξ ξ ξ

ξ

α η α ξ η α ξ ηξ

α ηξ ξ

α α ξη η α ξ ξ ξ η

α η α η

+ + + + +

+

+ + + − + +
=

+ +

                                    

(3.21) 

Since the learning effects can change over time, the 
proposed model can provide more flexibility in the graphic 
mapping of the mean value function. 

3.3. Parameter estimation 

Least squares estimation (LSE) is adopted to validate the 
proposed model as this is effective when the corresponding 
equations are complex and must be solved numerically. 
Fitting the proposed models to actual error data involves 
estimating the model’s parameters from the datasets. The 
parameters  , ', ,a andα η ξ  can be obtained by using 
numerical methods. 

4. Results 

4.1. Model comparisons 

Chiu et al. (2008) evaluated the effectiveness of the 
SRGM from the perspective of constant learning effects by 
using eight datasets from eight published papers, and 
compared the proposed model with six others by using the 
MSE, MAE, AE, and Rsq comparison criteria. This paper 
improved Chiu’s model (2008) by including time-varying 
learning effects, as in equations (3.14) and (3.15), and 
evaluated its effectiveness by using the recent four datasets 
in Zhang and Pham (1998), Pham (2003), Bai, Hu, Xie, and 
Ng (2005), and Jeske and Zhang (2005) (see Table 4.1). 

Table 4.1. Sources of the datasets 

Reference Dataset 

Zhang and Pham (1998) Failure data of Misra system 

Pham (2003) Failure data of a real-time control system 

Bai, Hu, Xie, and Ng (2005) Failure data of space program 

Jeske and Zhang (2005) 
Failure data of wireless data service 
system 

Furthermore, this study compared the proposed models 
with three others (see Table 4.2) using the Rsq comparison 
criteria.  

Table 4.2. Summary of m(t) for the various models 

Model Mean value function 

Huang (2005) 

*( )( ) (1 )rW tm t a e−= − ; 

( )
1 t

N
W t

Ae
κ ακ−

=
+

, 

*( ) ( ) (0)W t W t W= −  



96 Chiu, Kuei-Chen: A discussion of Software Reliability Growth Models with Time-Varying Learning Effects 
 

Pham and Zhang 
(2003) 

1
( ) ( )(1 ) ( )

1
bt t bt

bt

ab
m t a c e e e

e b

α

β α
− − −

−
 = + − − − + − 

 

Chiu (2008) 
( )

1
( ) ( ) 1

t

m t aH t a

e
α η

η
α

η
α

+

 + 
= = − 

 +
 

 

Proposed linear 
learning model 
 

2
1

'

1
'( ) 1

'
t t t

t

m t a
t

eα η ξ

η ξ
α

η ξ
α

+ +

+ + 
= − + +

 

 

Proposed exponential 
learning model 2

( ' )

1
'( ) 1

'

t

t

t
e t

e

m t a
e

e
ξ

ξ

ξ
α η

η
α

η
α

+

 
+ 

= − 
 + 
 

 

4.2. Data analysis 

The results of parameters estimated for the proposed 
models and other models with these four datasets presented 
as Table 4.3 and the results showed better fitting than other 
models (see Table 4.4). 

Table 4.3. Parameters estimated for different datasets and models 

The Sources of Datasets 
The comparison models 

Pham and Zhang 

(2003) 

Huang 

(2005) 

Zhang and Pham (1998) 

a =120.98 

b =0.139304 
c =14.883203 
α =0.13856 

β =0.01 

a =145.67 
κ =1.02074 
r =0.987034 
α =0.04297 

A =0.163192 
N =27.37 

Pham (2003) 

a =131.14 

b =0.04507 
c =1E-12 
α =1E-12 

β =1E-12 

a =132.21 
κ =1.055028 
r =0.256651 
α =0.015564 

A =0.2127 
N =88.23 

Bai, Hu, Xie, and Ng 
(2005) 

a =20.17 

b =0.30462 
c =0.000001 
α =0.30462 

β =0.000001 

a =20.62 
κ =1 
r =3.44794 
α =0.173252 

A =0.029234 
N =24.35 

Jeske and Zhang (2005) 

a =21.73 

b =0.717 
c =0.562066 
α =0.178759 

β =0.41241 

a =23.45 
κ =1.14 
r =0.657484 
α =0.540129 

A =3.556583 
N =6.37 

 

The Sources of Datasets 

The proposed models 

Linear 
Learning model 

Exponential 
Learning model 

Zhang and Pham (1998) 

a =135.97 
α =0.138257 

η =3.36E-10 

ξ =0.00001 

a =135.97 
α =0.138257 

η =3.36E-10 

ξ =1 

Pham (2003) 

a =131.2 
α =0.045059 
η =1E-13 

ξ =0.00001 

a =131.2 
α =0.045059 
η =1E-13 

ξ =0.35 

The Sources of Datasets 

The proposed models 

Linear 
Learning model 

Exponential 
Learning model 

Bai, Hu, Xie, and Ng 
(2005) 

a =19.11 
α =0.0001 
η =0.35186 

ξ =0.00001 

a =19.11 
α =0.0001 
η =0.35186 

ξ =0.03 

Jeske and Zhang (2005) 

a =22.25 
α =0.4922166 

η =0.333534 

ξ =0.002 

a =22.25 
α =0.4922166 

η =0.333534 

ξ =0.007 

The Rsq increase to 0.975, 0.987, 0.976, and 0.989 with 
linear-learning effects as in Equation (3.14), and to 0.986, 
0.989, 0.968, and 0.989 with the exponential-learning 
effects, as in Equation (3.15) (see Table 4.4). Figure 4.1 
shows the predicted and actual data for cumulative errors, 
Table A.1~A.4 presented the actual data and the predicted 
values of the models. More detail data of model 
comparisons show in Appendixes A. 

Table 4.4. The models fitting results with the Rsq 

 The Sources of Datasets 

Model 

Zhang 

and 

Pham 

(1998) 

Pham 

(2003) 

Bai 

(2005) 

Jeske 

and 

Zhang 

(2005) 

Pham and Zhang (2003) 0.966 0.975 0.914 0.988 

Huang (2005) 0.973 0.982 0.953 0.988 

Chiu (2008) 0.966 0.975 0.930 0.989 

Proposed linear learning 
model 

0.975 0.987 0.976 0.989 

Proposed exponential 
learning model 

0.986 0.989 0.968 0.989 

 

 

(1) The fitting results of proposed linear learning model for the dataset 
in Zhang and Pham (1998) (R2=0.975) 

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30

actual_data proposed_model_1



 American Journal of Software Engineering and Applications 2013; 2(3): 92-104 97 
 

 

(2) The fitting results of proposed exponential learning model for the 
dataset in Zhang and Pham (1998) (R2=0.986) 

 

(3) The fitting results of proposed linear learning model for the dataset 
in Pham (2003) (R2=0.987) 

 

(4) The fitting results of proposed exponential learning model for the 
dataset in Pham (2003) (R2=0.989) 

 

(5) The fitting results of proposed linear learning model for the dataset 
in Bai (2005) (R2=0.976) 

 

(6) The fitting results of proposed exponential learning model for the 
dataset in Bai (2005) (R2=0.968) 

 

(7) The fitting results of proposed linear learning model for the dataset 
in Jeske and Zhang (2005) (R2=0.989) 

 

(8) The fitting results of proposed exponential learning model for the 
dataset in Jeske and Zhang (2005) (R2=0.989) 

Figure 4.1. Fitting results for different datasets 

 

5. Conclusion 

This study improved Chiu’s model (2008) by including 
time-varying learning effects, including linear and 
exponential functions to describe the time variation of 
learning effects, which described the software testing 
behavior more reasonably. This paper evaluated the 
effectiveness of the proposed models using various 
published datasets, and compared with other models by 
using the Rsq comparison criteria. The results enhanced 
with both the linear and exponential-shaped learning effects. 
These proposed models only added one parameter, the 
accelerative factorξ , in the original model and enhanced 
the Rsq to fitting better for actual datasets, event the Rsq 

shows good outcome in the original model and shows 
better fitting than other models, and the proposed models 
can still present the suitable region of the original model 
when 0ξ = . 

This research predicted errors occurred in software 

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30

actual_data proposed_model_2

0

50

100

150

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

actual_data proposed_model_1

0

50

100

150

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

actual_data proposed_model_2

0

5

10

15

20

25

0 5 10 15 20 25

actual_data proposed_model_1

0

5

10

15

20

25

0 5 10 15 20 25

actual_data proposed_model

0

5

10

15

20

25

0 1 2 3 4 5 6 7

actual_data proposed_model_1

0

5

10

15

20

25

0 1 2 3 4 5 6 7

actual_data proposed_model_2



98 Chiu, Kuei-Chen: A discussion of Software Reliability Growth Models with Time-Varying Learning Effects 
 

testing process with two mean value functions, individually. 
We will refine the proposed models by taking account of 
the change-point problem, which is concerned with a change 
in the factors that affect software debugging, resulting in 
variations in the software error intensity function and the 
subsequent precision of the model prediction to consider 

two mean value functions, simultaneously. By model 
comparisons, the results show better fitting than those 
others, and the results are helpful for the managers 
managing the schedule of the software testing/debugging 
projects, the performance of the programmers, and the 
reliability of the software system.

Appendix 

The results of model comparisons 

Table A.1. Model comparisons of partial Misra failure data (the dataset in Zhang and Pham (1998)) 

Testing time 
(per hour) 

Defects 

found 

Total defects predicted by the following models 

Pham and Zhang 

(2003) 

Huang 

(2005) 

Chiu 

(2008) 

Proposed 

linear learning model 

Proposed 

exponential learning 

model 

1 27 17.515178 18.753639 17.527226 17.527305 17.527226 

2 43 32.789511 34.611824 32.795171 32.795691 32.795171 

3 54 46.105543 48.073478 46.095057 46.096522 46.095057 

4 64 57.711199 59.544218 57.680570 57.683470 57.680571 

5 75 67.823776 69.354962 67.772696 67.777430 67.772700 

6 82 76.633546 77.776637 76.563933 76.570776 76.563948 

7 84 84.306973 85.031825 84.221968 84.231067 84.222016 

8 89 90.989586 91.304011 90.892873 90.904255 90.893015 

9 92 96.808530 96.744969 96.703889 96.717483 96.704300 

10 93 101.874820 101.480660 101.765860 101.781512 101.767016 

11 97 106.285370 105.615980 106.175330 106.192839 106.178534 

12 104 110.124690 109.238530 110.016420 110.035532 110.025130 

13 106 113.466510 112.421750 113.362390 113.382835 113.385768 

14 111 116.375100 115.227370 116.277050 116.298563 116.339097 

15 116 118.906460 117.707460 118.816010 118.838314 118.978846 

16 122 121.109420 119.906050 121.027700 121.050527 121.449567 

17 122 123.026490 121.860500 122.954300 122.977408 124.023841 

18 127 124.694700 123.602620 124.632560 124.655724 127.209285 

19 128 126.146320 125.159520 126.094480 126.117512 131.484050 

20 129 127.409420 126.554440 127.367970 127.390682 135.255654 

21 131 128.508460 127.807290 128.477290 128.499548 135.971130 

22 132 129.464730 128.935240 129.443630 129.465296 135.974000 

23 134 130.296760 129.953060 130.285400 130.306378 135.974000 

24 135 131.020680 130.873580 131.018670 131.038874 135.974000 

25 136 131.650520 131.707870 131.657420 131.676788 135.974000 



 American Journal of Software Engineering and Applications 2013; 2(3): 92-104 99 
 

Table A.2. Model comparisons of the real-time control system failure data (the dataset in Pham (2003)) 

Testing time 
(per 1000 hours) 

Defects 

found 

Total defects predicted by the following models 

Pham and Zhang 

(2003) 

Huang 

(2005) 

Chiu 

(2008) 

Proposed 

linear learning model 

Proposed 

exponential learning 

model 

0.0030 1 0.017736 20.532290 0.017734 0.017734 0.020000 

0.0330 2 0.194966 20.587930 0.194943 0.194942 0.190000 

0.1460 3 0.860387 20.798600 0.860285 0.860280 0.860000 

0.2270 4 1.335288 20.950680 1.335132 1.335122 1.340000 

0.3420 5 2.006560 21.168110 2.006326 2.006305 2.010000 

0.3510 6 2.058948 21.185200 2.058708 2.058686 2.060000 

0.3530 7 2.070587 21.189000 2.070345 2.070323 2.070000 

0.4440 8 2.599045 21.362460 2.598743 2.598706 2.600000 

0.5560 9 3.246486 21.577500 3.246111 3.246047 3.250000 

0.5710 10 3.332949 21.606420 3.332565 3.332496 3.330000 

0.7090 11 4.125672 21.874010 4.125199 4.125079 4.130000 

0.7590 12 4.411676 21.971610 4.411172 4.411028 4.410000 

0.8360 13 4.850864 22.122570 4.850311 4.850124 4.850000 

0.8600 14 4.987442 22.169790 4.986874 4.986672 4.990000 

0.9680 15 5.600220 22.383260 5.599585 5.599306 5.600000 

1.0560 16 6.097319 22.558380 6.096631 6.096276 6.100000 

1.7260 17 9.818094 23.926760 9.817020 9.815605 9.820000 

1.8460 18 10.472720 24.178420 10.471580 10.469867 10.470000 

1.8720 19 10.614090 24.233210 10.612930 10.611153 10.610000 

1.9860 20 11.231990 24.474550 11.230770 11.228666 11.230000 

2.3110 21 12.976210 25.172530 12.974830 12.971595 12.970000 

2.3660 22 13.268870 25.292100 13.267460 13.264002 13.270000 

2.6080 23 14.547970 25.823260 14.546450 14.541899 14.550000 

2.6760 24 14.904890 25.973980 14.903330 14.898440 14.900000 

3.0980 25 17.095570 26.923790 17.093820 17.086445 17.090000 

3.2780 26 18.017380 27.336480 18.015550 18.006919 18.020000 

3.2880 27 18.068380 27.359540 18.066540 18.057834 18.070000 

4.4340 28 23.762520 30.094030 23.760240 23.740384 23.760000 

5.0340 29 26.628490 31.597540 26.626020 26.598015 26.630000 

5.0490 30 26.699150 31.635750 26.696670 26.668446 26.700000 

5.0850 31 26.868550 31.727580 26.866050 26.837283 26.870000 

5.0890 32 26.887350 31.737800 26.884860 26.856025 26.880000 

5.0890 33 26.887350 31.737800 26.884860 26.856025 26.880000 

5.0970 34 26.924950 31.758230 26.922450 26.893499 26.920000 

5.3240 35 27.986180 32.341620 27.983610 27.951070 27.980000 

5.3890 36 28.288060 32.509930 28.285480 28.251860 28.290000 

5.5650 37 29.101040 32.968480 29.098400 29.061780 29.100000 

5.6230 38 29.367540 33.120480 29.364890 29.327243 29.360000 

6.0800 39 31.443210 34.333490 31.440440 31.394149 31.440000 

6.3800 40 32.782730 35.144360 32.779900 32.727366 32.780000 

6.4770 41 33.211990 35.408970 33.209130 33.154485 33.210000 

6.7400 42 34.366440 36.132330 34.363520 34.302917 34.360000 

7.1920 43 36.318820 37.395260 36.315820 36.244158 36.320000 

7.4470 44 37.402860 38.118510 37.399810 37.321459 37.400000 



100 Chiu, Kuei-Chen: A discussion of Software Reliability Growth Models with Time-Varying Learning Effects 
 

Testing time 
(per 1000 hours) 

Defects 
found 

Total defects predicted by the following models 

Pham and Zhang 

(2003) 

Huang 

(2005) 

Chiu 

(2008) 

Proposed 

linear learning model 

Proposed 

exponential learning 

model 

7.6440 45 38.231840 38.682430 38.228760 38.145018 38.230000 

7.8370 46 39.036880 39.239190 39.033770 38.944562 39.030000 

7.8430 47 39.061800 39.256570 39.058680 38.969304 39.060000 

7.9220 48 39.389220 39.485720 39.386090 39.294420 39.390000 

8.7380 49 42.703860 41.892110 42.700630 42.583457 42.700000 

10.0890 50 47.930660 46.019710 47.927330 47.760892 47.930000 

10.2370 51 48.484140 46.481510 48.480800 48.308457 48.480000 

10.2580 52 48.562380 46.547170 48.559040 48.385845 48.560000 

10.4910 53 49.425480 47.278000 49.422130 49.239406 49.420000 

10.6250 54 49.917770 47.700140 49.914410 49.726097 49.910000 

10.9820 55 51.214880 48.830920 51.211520 51.007928 51.210000 

11.1750 56 51.907480 49.445750 51.904120 51.692037 51.900000 

11.4110 57 52.746250 50.200660 52.742880 52.520205 52.740000 

11.4420 58 52.855760 50.300060 52.852400 52.628311 52.850000 

11.8110 59 54.147660 51.487300 54.144300 53.903139 54.140000 

12.5590 60 56.701470 53.913600 56.698130 56.420691 56.700000 

12.5590 61 56.701470 53.913600 56.698130 56.420691 56.700000 

12.7910 62 57.476220 54.670480 57.472900 57.183772 57.470000 

13.1210 63 58.564380 55.749780 58.561080 58.254988 58.560000 

13.4860 64 59.749250 56.946440 59.745970 59.420671 59.750000 

14.7080 65 63.577210 60.961880 63.574040 63.181228 63.570000 

15.2510 66 65.211680 62.743390 65.208580 64.784319 65.210000 

15.2610 67 65.241410 62.776140 65.238300 64.813460 65.240000 

15.2770 68 65.288950 62.828550 65.285840 64.860059 65.290000 

15.8060 69 66.841450 64.557480 66.838420 66.381192 66.840000 

16.1850 70 67.931200 65.790510 67.928220 67.448034 67.930000 

16.2290 71 68.056510 65.933300 68.053530 67.570665 68.050000 

16.3580 72 68.422470 66.351420 68.419520 67.928743 68.420000 

17.1680 73 70.672390 68.957900 70.669570 70.128328 70.670000 

17.4580 74 71.458160 69.881820 71.455380 70.895756 71.460000 

17.7580 75 72.260290 70.831660 72.257560 71.678750 72.260000 

18.2870 76 73.648550 72.490310 73.645920 73.032909 73.650000 

18.5680 77 74.372630 73.362180 74.370060 73.738701 74.370000 

18.7280 78 74.780840 73.855570 74.778300 74.136448 74.780000 

19.5560 79 76.846930 76.370680 76.844550 76.147877 76.840000 

20.5670 80 79.267310 79.345450 79.265150 78.500589 79.260000 

21.0120 81 80.298200 80.617880 80.296140 79.501457 80.300000 

21.3080 82 80.972550 81.450970 80.970570 80.155783 80.970000 

23.0630 83 84.791210 86.157540 84.789660 83.855222 84.790000 

24.1270 84 86.963490 88.805080 86.962220 85.955305 86.960000 

25.9100 85 90.378070 92.875650 90.377290 89.250153 90.380000 

26.7700 86 91.929480 94.673240 91.928950 90.744732 91.930000 

27.7530 87 93.630680 96.596960 93.630430 92.381941 93.630000 

28.4600 88 94.808460 97.895650 94.808410 93.514447 94.810000 

28.4930 89 94.862520 97.954560 94.862480 93.566413 94.860000 



 American Journal of Software Engineering and Applications 2013; 2(3): 92-104 101 
 

Testing time 
(per 1000 hours) 

Defects 

found 

Total defects predicted by the following models 

Pham and Zhang 

(2003) 

Huang 

(2005) 

Chiu 

(2008) 

Proposed 

linear learning model 

Proposed 

exponential learning 

model 

29.3610 90 96.256040 99.450350 96.256260 94.905360 96.260000 

30.0850 91 97.377400 100.620500 97.377830 95.982089 97.380000 

32.4080 92 100.738000 103.927200 100.739100 99.205639 100.740000 

35.3380 93 104.504500 107.230900 104.506500 102.814533 104.510000 

36.7990 94 106.204700 108.568900 106.207200 104.443146 106.210000 

37.6420 95 107.136000 109.259300 107.138700 105.335318 107.140000 

37.6540 96 107.149000 109.268800 107.151700 105.347776 107.150000 

37.9150 97 107.430100 109.471000 107.432900 105.617088 107.430000 

39.7150 98 109.281100 110.732600 109.284500 107.391262 109.280000 

40.5800 99 110.118600 111.262800 110.122200 108.194536 110.120000 

42.0150 100 111.438000 112.046400 111.442000 109.460999 111.440000 

42.0450 101 111.464700 112.061600 111.468700 109.486627 111.470000 

42.1880 102 111.591300 112.133400 111.595400 109.608322 111.600000 

42.2960 103 111.686500 112.187000 111.690600 109.699723 111.690000 

42.2960 104 111.686500 112.187000 111.690600 109.699723 111.690000 

45.4060 105 114.236600 113.499000 114.241600 112.153850 114.240000 

46.6530 106 115.162900 113.917400 115.168200 113.047836 115.170000 

47.5960 107 115.829600 114.199500 115.835100 113.692421 115.840000 

48.2960 108 116.306500 114.391600 116.312200 114.154161 116.310000 

49.1710 109 116.881800 114.612800 116.887700 114.712049 116.890000 

49.4160 110 117.038900 114.671100 117.044900 114.864524 117.050000 

50.1450 111 117.496100 114.836100 117.502300 115.308833 117.500000 

52.0420 112 118.617800 115.210400 118.624500 116.402030 118.630000 

52.4890 113 118.868500 115.288200 118.875200 116.646996 118.880000 

52.8750 114 119.080900 115.352500 119.087800 116.854817 119.090000 

53.3210 115 119.321800 115.423600 119.328700 117.090739 119.330000 

53.4430 116 119.386800 115.442400 119.393800 117.154501 119.400000 

54.4330 117 119.901700 115.586800 119.908900 117.659911 119.920000 

55.3810 118 120.373600 115.711500 120.381100 118.124480 120.390000 

56.4630 119 120.888200 115.839200 120.895900 118.632572 120.910000 

56.4850 120 120.898400 115.841700 120.906100 118.642666 120.920000 

56.5600 121 120.933100 115.850000 120.940800 118.677006 120.960000 

57.0420 122 121.153400 115.901800 121.161200 118.895147 121.180000 

62.5510 123 123.359000 116.338000 123.368000 121.101578 123.470000 

62.6510 124 123.394200 116.343700 123.403200 121.137185 123.510000 

62.6610 125 123.397800 116.344300 123.406700 121.140737 123.510000 

63.7320 126 123.764700 116.402400 123.773800 121.512953 123.930000 

64.1030 127 123.887800 116.421100 123.897000 121.638151 124.070000 

64.8930 128 124.143000 116.458400 124.152300 121.898543 124.380000 

71.0430 129 125.847800 116.662100 125.858100 123.666055 127.320000 

74.3640 130 126.589700 116.727400 126.600500 124.455703 129.710000 

75.4090 131 126.801100 116.743600 126.812100 124.683715 130.390000 

76.0570 132 126.927300 116.752700 126.938400 124.820530 130.720000 

81.5420 133 127.859900 116.809300 127.871600 125.851762 131.200000 

82.7020 134 128.029200 116.817600 128.041100 126.043632 131.200000 



102 Chiu, Kuei-Chen: A discussion of Software Reliability Growth Models with Time-Varying Learning Effects 
 

Testing time 
(per 1000 hours) 

Defects 
found 

Total defects predicted by the following models 

Pham and Zhang 

(2003) 

Huang 

(2005) 

Chiu 

(2008) 

Proposed 

linear learning model 

Proposed 

exponential learning 

model 

84.4000 135 128.283500 116.828900 128.295500 126.309827 131.200000 

88.6820 136 128.774800 116.847000 128.787200 126.910967 131.200000 

Table A.3. Model comparisons of Space program failure data (the dataset in Bai (2005)) 

Testing time 
(per 100 hours) 

Defects 

found 

Total defects predicted by the following models 

Pham and Zhang 

(2003) 

Huang 

(2005) 

Chiu 

(2008) 

Proposed 

linear learning model 

Proposed 

exponential learning 

model 

0.020 1 0.020000 0.020000 0.020000 0.134009 0.134009 

0.060 2 0.060000 0.060000 0.060000 0.399217 0.399217 

0.150 3 0.150000 0.150000 0.150000 0.982463 0.982463 

0.270 4 0.270000 0.270000 0.270000 1.731950 1.731949 

0.410 5 0.410000 0.410000 0.410000 2.567288 2.567286 

0.580 6 0.580000 0.580000 0.580000 3.527846 3.527841 

0.830 7 0.830000 0.830000 0.830000 4.840065 4.840052 

1.160 8 1.160000 1.160000 1.160000 6.404571 6.404540 

1.520 9 1.520000 1.520000 1.520000 7.916391 7.916333 

2.000 10 2.000000 2.000000 2.000000 9.656157 9.656050 

2.560 11 2.560000 2.560000 2.560000 11.347247 11.347074 

3.140 12 3.140000 3.140000 3.140000 12.780608 12.780362 

3.900 13 3.900000 3.900000 3.900000 14.266173 14.265837 

4.980 14 4.980000 4.980000 4.980000 15.798014 15.797580 

6.330 15 6.330000 6.330000 6.330000 17.050816 17.050322 

7.850 16 7.850000 7.850000 7.850000 17.904163 17.903672 

10.150 17 10.150000 10.150000 10.150000 18.573490 18.573088 

13.040 18 13.040000 13.040000 13.040000 18.916101 18.915842 

16.240 19 16.240000 16.240000 16.240000 19.047183 19.047047 

19.650 20 19.650000 19.650000 19.650000 19.091105 19.091042 

23.680 21 23.680000 23.680000 23.680000 19.105433 19.105410 

Table A.4. Model comparisons of failure data on wireless data service system (the dataset in Jeske and Zhang (2005)) 

Testing time 
(per 10000 hours) 

Defects found 

Total defects predicted by the following models 

Pham and Zhang 

(2003) 

Huang 

(2005) 

Chiu 

(2008) 

Proposed 

linear learning model 

Proposed 

exponential learning 

model 

0.1340 1 1.521959 3.772587 1.454990 1.455015 1.455020 

0.2350 2 2.625657 4.238855 2.522079 2.522206 2.522228 

0.3360 4 3.690907 4.747994 3.562210 3.562564 3.562624 

0.3690 5 4.030500 4.923709 3.897220 3.897680 3.897758 

0.6380 6 6.640963 6.524091 6.512037 6.514079 6.514426 

0.6720 7 6.950800 6.746603 6.822095 6.824428 6.824825 

0.8060 9 8.128076 7.662513 8.024262 8.027967 8.028599 

1.1090 10 10.536260 9.907183 10.501810 10.509663 10.511013 

1.3810 11 12.410300 11.997960 12.439310 12.451716 12.453862 

1.5160 12 13.245140 13.010750 13.309990 13.324786 13.327354 

1.5500 14 13.445870 13.259970 13.517680 13.533075 13.535749 

1.6180 15 13.836150 13.749470 13.921290 13.937882 13.940769 



 American Journal of Software Engineering and Applications 2013; 2(3): 92-104 103 
 

Testing time 
(per 10000 hours) 

Defects found 

Total defects predicted by the following models 

Pham and Zhang 

(2003) 

Huang 

(2005) 

Chiu 

(2008) 

Proposed 

linear learning model 

Proposed 

exponential learning 

model 

2.0930 16 16.175690 16.714350 16.331870 16.356094 16.360353 

2.2350 18 16.755810 17.418800 16.925040 16.951144 16.955746 

3.3050 20 19.782540 20.380550 19.917420 19.949350 19.955094 

5.0120 21 21.711430 21.294340 21.662110 21.684046 21.688088 

5.0850 22 21.751920 21.303590 21.696310 21.717669 21.721608 

5.3410 22 21.877470 21.329520 21.801240 21.820601 21.824182 

6.4390 22 22.204640 21.376840 22.068540 22.080424 22.082643 

 
 

References 

[1] Achcar, J.A., Dey, D.K., and Niverthi, M. (1997) “A 
Bayesian approach using nonhomogeneous Poisson Process 
for software reliability models”, In Frontiers in Reliability, 
Basu et al. (Eds). 

[2] Adam Smiarowski , Jr. , Hoda S. Abdel-Aty-Zohdy , Mostafa 
Hashem Sherif , Hemal Shah (2006) “Wavelet Based RDNN 
for Software Reliability Estimation”, 11th IEEE Symposium 
on Computers and Communications (ISCC'06), 
iscc,pp.312-317. 

[3] Bai, C.G. (2005) “Bayesian network based software 
reliability prediction with an operational profile”, The 
Journal of Systems and Software, 77: 103-112. 

[4] Bai, C.G., Hu, Q.P., Xie, M., and Ng, S.H. (2005) “Software 
failure prediction based on a Markov Bayesian network 
model”, The Journal of Systems and Software, 74: 275-282. 

[5] Bunea, C., Charitosb, T., Cooke, R. M., and Beckerd, G. 
(2005) “Two-stage Bayesian models—application to ZEDB 
project”, Reliability Engineering and System Safety, 90: 
123-130. 

[6] Chin-Yu Huang, Sy-Yen Kuo, Michael R. Lyu, (2000) 
"Effort-Index-Based Software Reliability Growth Models 
and Performance Assessment," Computer Software and 
Applications Conference, Annual International, The 
Twenty-Fourth Annual International Computer Software and 
Applications Conference, 0:454. 

[7] Chiu, K.-C., Huang, Y.-S., and Lee, T.-Z. (2008) “A Study of 
Software Reliability Growth from the Perspective of 
Learning Effects,” Reliability Engineering and Systems 
Safety, Vol. 93, No. 10, pp. 1410-1421. 

[8] Chiu, K.-C., Ho, J.-W., and Huang, Y.-S. (2009) “Bayesian 
Updating of Optimal Release Time for Software Systems,” 
Software Quality Journal, Vol. 17, No. 1, pp. 99-120. 

[9] Cid, J.E.R. and Achcar, J.A. (1999) “Bayesian inference for 
nonhomogeneous Poisson processes in software reliability 
models assuming nonmonotonic intensity functions”, 
Computational Statistics & Data Analysis, 32: 147-159. 

[10] Dietmar Pfahl (2001) “An Integrated Approach to 
Simulation-Based Learning in Support of Strategic and 
Project Management in Software Organisations” , PhD 
Theses in Experimental Software Engineering, 
Fraunhofer-Institut für Experimentelles Software 
Engineering, 8:27-40. 

[11] Goel, A.L. and Okumoto, K. (1979) “Time-varying fault 
detection rate model for software and other performance 
measures”, IEEE Transactions on Reliability, 28: 206-211. 

[12] Gokhale, S. S. and Trivedi, K. S. (1999) “A time/structure 
based software reliability model”, Annals of Software 
Engineering, 8: 85-121. 

[13] Ho, J.W., Fang, C.C. and Huang, Y.S. (2008) “The 
Determination of Optimal Software Release Times at 
Different Confidence Levels with Consideration of Learning 
Effects,” Software Testing, Verification and Reliability, 18(4): 
221-249. (SCI) 

[14] Hossain, S.A. and Dahiya, R.C. (1993) “Estimating the 
Parameters of a Non-homogeneous Poisson-Process Model 
for Software Reliability”, IEEE Transactions on Reliability, 
42: 604-612. 

[15] Hu, Q.P., Xie, M., Ng, S.H. and Levitin, G. (2007) “Robust 
recurrent neural network modeling for software fault 
detection and correction prediction”, Reliability Engineering 
& System Safety, 92: 332-340. 

[16] Huan-Jyh Shyur (2003),”A stochastic software reliability 
model with imperfect-debugging and change-point”,The 
Journal of Systems and Software, 66,p.135–141 

[17] Huang, C.-Y. (2005) “Performance analysis of software 
reliability growth models with testing-effort and 
change-point”, Journal of Systems and Software, 76: 
181-194. 

[18] Jeske, D.R. and Zhang, X. (2005) “Some successful 
approaches to software reliability modeling in industry”. 
Journal of Systems and Software, 74: 85-99. 

[19] Jing Zhao, Hong-Wei Liu, Gang Cui and Xiao-Zong Yang 
(2006),”Software reliability growth model with change-point 
and environmental function”. Journal of Systems and 
Software, Volume 79, Issue 11, November ,P. 1578-1587 

[20] Kapur, P.K. and Bhalla, V.K. (1992) “Optimal release 
policies for a flexible software reliability growth model”, 
Reliability Engineering & System Safety, 35: 49-54. 

[21] Karatsas, I., Shreve, S. (1997) Brownian Motion and 
Stochastic Calculus, 2nd ed. Springer-Verlag: New York. 

[22] Katrina Maxwell, Luk Van Wassenhove, and Soumitra Dutta 
(1999) “Performance Evaluation of General and Company 
Specific Models in Software Development Effort 
Estimation”, Management Science , 45: 787-803. 

[23] Kimura, M., Toyota, T. and Yamada, S. (1999) “Economic 



104 Chiu, Kuei-Chen: A discussion of Software Reliability Growth Models with Time-Varying Learning Effects 
 

analysis of software release problems with warranty cost and 
reliability requirement”, Reliability Engineering & System 
Safety, 66: 49-55. 

[24] Kuo, L., Lee, J.C., Choi, K., and Yang, T.Y. (1997) “Bayes 
inference for S-shaped software reliability growth models”, 
IEEE Transactions on Reliability, 46: 76-80. 

[25] Kuo, L. and Yang, T.Y. (1996) “Bayesian computation for 
nonhomogeneous Poisson processes in software reliability”, 
Journal of the American Statistical Association, 91: 763-773. 

[26] Lee, C.H., Kim, Y.T., Park, D.H. (2004) “S-shaped software 
reliability growth models derived from stochastic differential 
equations”, IIE Transactions, 36: 1193-1199. 

[27] Littlewood, B. (2006) “Comments on ‘Evolutionary neural 
network modeling for software cumulative failure time 
prediction”, Reliability Engineering & System Safety, 91: 
485-486. 

[28] Melo, A.C.V. and Sanchez, A.J. (2008) “Software 
maintenance project delays prediction using Bayesian 
networks”, Expert Systems with Applications, 34: 908-919. 

[29] Moran, P.A.P. (1969) “Statistical inference with bivariate 
gamma distribution”, Biometrika, 56: 627-634. 

[30] Nalina Suresh, A.N.V. Rao, A.J.G. Babu (1996) “A software 
reliability growth model”, International Journal of Quality & 
Reliability Management, 13:84-94. 

[31] Ohba, M. (1984a) “Inflexion S-shaped software reliability 
growth models”, in Stochastic Models in Reliability Theory, 
Osaki, S. and Hatoyama, Y., Eds. Berlin, Germany: 
Springer-Verlag, 144-162. 

[32] Ohba, M. (1984b) “Software reliability analysis models”, 
IBM Journal of Research and Development, 28: 428-443. 

[33] Özekici, S. and Soyer, R. (2003) “Reliability of software with 
an operational profile”, European Journal of Operational 
Research, 149: 459-474. 

[34] P.K. Kapur, D.N. Goswami, and A. Bardhan (2007) “A 
General Software Reliability Growth Model with Testing 
Effort Dependent Learning Process”, International Journal 
of Modeling and Simulation, 205:4401 

[35] Pham, H. and Zhang, X. (1999) “A software cost model with 
warranty and risk costs”, IEEE Transactions on Computers, 
48: 71-75. 

[36] Pham, H. and Zhang, X. (2003) “NHPP software reliability 
and cost models with testing coverage”, European Journal of 
Operational Research, 145: 445-454. 

[37] Pham, H. (2003) “Software reliability and cost models - 

Perspectives, comparison, and practice”, European Journal 
of Operational Research, 149: 475-489. 

[38] Shyur, H.-J. (2003) “A stochastic software reliability model 
with imperfect debugging and change-point”, The Journal of 
Systems and Software, 66: 135-141. 

[39] T. P. Wright. (1936) “Factors Affecting the Cost of 
Airplanes”, Journal of the Aeronautical Sciences, February:3 

[40] Tamura, Y., Yamada, S. (2006) “A flexible stochastic 
differential equation model in distributed development 
environment”, European Journal of Operational Research, 
168: 143-152. 

[41] Tian, L. and Noore, A. (2005) “Evolutionary neural network 
modeling for software cumulative failure time prediction”, 
Reliability Engineering & System Safety, 87: 45-51. 

[42] William J. Stevenson. (1999) “Production Operations 
Management”, Irwin/McGraw-Hill, 349-358. 

[43] Yamada, M. Kimura, H. Tanaka and S. Osaki. (1994) 
“Software reliability measurement and assessment with 
stochastic differential equations”, IEICE Transactions on 
Fundamentals of Electronics, Communications and 
Computer Sciences E77-A: 109-116. 

[44] Yamada, S., Ohba, M., and Osaki, S.(1983). “S-shaped 
software reliability modeling for software error detection”.  
IEEE Transactions on Reliability, 32: 475-484. 

[45] Yamada, S., Osaki. S. (1985) “Software reliability growth 
modeling: Models and applications”, IEEE Transactions on 
Software Engineering, 11: 1431-1437. 

[46] Yamada, S., Tokuno, K. and Osaki, S. (1992) “Imperfect 
debugging models with fault introduction rate for software 
reliability assessment”, International Journal of Systems 
Science, 23: 2241-2252. 

[47] Yin, L., Trivedi, K.S. (1999) “Confidence Interval Estimation 
of NHPP-Based Software Reliability Models”, Proceedings 
of the 10th International Symposium on Software Reliability 
Engineering, November: 6-11. 

[48] Zhang, X. and Pham, H. (1998) “A software cost model with 
warranty cost, error removal times and risk costs”, IIE 
Transactions, 30: 1135-1142. 

[49] Zhang, X. and Pham, H. (2006) “Software field failure rate 
prediction before software deployment”, The Journal of 
Systems and Software, 79: 291-300. 

[50] Zhao, M. (1993) “Change-point problems in software and 
hardware reliability”, Communications in Statistics Theory 
and Methods, 22: 757-768.

 


