

American Journal of Software Engineering and Applications
2013; 2(4): 105-110

Published online August 20, 2013 (http://www.sciencepublishinggroup.com/j/ajsea)

doi: 10.11648/j.ajsea.20130204.11

A cohesion measure for C in the context of an AOP
paradigm

Zeba Khanam, S. A. M Rizvi

Jamia Millia Islamia, New Delhi

Email address:
zebs_khan@yahoo.co.in(Z. Khanam)

To cite this article:
Zeba Khanam, S. A. M Rizvi. A Cohesion Measure for C in the Context of an AOP Paradigm. American Journal of Software Engineering

and Applications. Vol. 2, No. 4, 2013, pp. 105-110. doi: 10.11648/j.ajsea.20130204.11

Abstract: Cohesion measures the relative functional strength of a module and impacts the internal attribute of a function

such as modularity. Modularity has become an accepted approach in every engineering discipline. The concept of modular

design has considerably reduced the complexity of software design. It represents the strength of bond between the internal

elements of the modules. To achieve effective modularity, design concepts like functional independence are considered to

be very important. Aspect-oriented software development (AOSD) has emerged over the last decade as a paradigm for

separation of concerns, which aims to increase the modularity. Therefore the presence of aspects affects the cohesiveness of

a module. Like any new technology, aspect-oriented programming (AOP) was introduced to solve problems related to

object-orientation (OO), and more in particular Java .It was noticed that AOP’s ideas were not necessarily tied to OO (and

Java) but also to less modular paradigm like imperative programming. Moreover, several metrics have been proposed to

assess aspect-oriented systems quality attributes in an object oriented context. However, not much work has been done to

assess the impact of AOP on imperative style of programming (also called procedural paradigm, such as C language).

Therefore, metrics are required to measure quality attributes for AOP used with imperative programming. Cohesion is

considered an important software quality attribute. In this context, this paper presents an approach for measuring cohesion

based on dependence analysis using control flow graphs (CFG).

Keywords: Cohesion Measures, Procedural Paradigm, Software Metrics, Aspect Oriented Programming

1. Introduction

Module cohesion is a property of a module that

represents unity of purpose. It describes the degree to

which elements of a module are associated with each other.

Aspect-oriented (AO) software development is a paradigm

that provides new abstractions and mechanisms to support

separation of concerns and the modularization of

crosscutting concerns through the software development

[Figueiredo etal 2005].Though there have been a number of

researches on the evaluation of this design technique and it

has been claimed that applying an AOSD method will

eventually lead to quality software in the field of object

oriented programming, however efficient evaluation in a

quantitative manner about the role of AOSD in the area of

procedural programming is still ignored. Moreover,

phenomenon like scattering and tangling, the usual

indicators for crosscutting concerns, equally arises in less

modular paradigms like imperative programming.

Therefore, in order to establish the significance of AOSD in

improving the software attributes: maintainability,

reusability and reliability of systems developed using

aspect oriented techniques, software measures are required.

Software engineers have assumed that the most impacted

property of an aspect-oriented system is separation of

concerns. However, some recent studies (e.g. [Garcia, A. et

al., 2005][Garcia, A. et al.2004]) have shown that other

fundamental software engineering principles, such as low

coupling and high cohesion, need to be assessed in

conjunction with separation of concerns issues. Cohesion

describes the degree to which the actions performed within

the module contribute to single behavior/function.

Module cohesion has been associated to the quality of

software. Cohesion is the measure of strength of the

association of elements within a module. Modules whose

elements are strongly and genuinely related to each other

are desired. Stevens etal. and Page-Jones claimed that

cohesion is associated with effective modularity, a desirable

quality of software, and has predictable effects on external

software quality attributes such as modifiability,

106 Zeba Khanam et al.: A Cohesion Measure for C in the Context of an AOP Paradigm

maintainability, and understandability [Yourdon and

Constantine,1978][Stevens,etal 1974]. Booch has defined

modularity as the property of a system whose modules are

cohesive and loosely-coupled .Fenton stated that

modularity is the internal quality attribute of the software

system [Melton, 2007][Fenton,1994]. Karstu indicated that

there appears to be a correlation between module cohesion

and number of changes made to a module [Karstu, 1994]

such that highly cohesive modules are less likely to need

change. Though a number of papers have addressed

different measures for evaluating the cohesion in

procedural software[BiemanandOtt.1994][Kang

&Bieman,1996] and object oriented software [Chidamber

&Kemerer,1994][Briand,1998][Kiczales,1997][Chae.etal.2

000] but not much work is done when it comes to assessing

the software components developed using aspect oriented

programming.

In order to study the impact of aspect-oriented software

development (AOSD) on evolution, one has to study its

impact on software characteristics such as evolvability,

maintainability, understandability, and quality. This paper

addresses a measure for module cohesion for procedural

software modified or refactored with Aspect oriented

design and implementation .For this purpose we have used

C language with AspectC as the AOP language for the

quality of implementations.

 The assessment of relevant attributes of aspect-oriented

design and implementation is a prerequisite for achieving

high-quality AO software, and that exploiting those

attributes will open up a broader design evaluation, which

is essential to allow the AO software engineers reason

about and make a proper trade-off analysis between

different solution alternatives.

The rest of the paper is organized as follows. Section 2

briefly describes the related work. Section 3 introduces

Aspect oriented programming and Aspect. Section 4 depicts

the application of AOP in procedural software. Section 5

presents member dependency in aspect oriented scenario.

Section 6 defines a cohesion measure suite based on the

dependence criteria. Section 6

2. Related Work

There are number of research work dedicated to measure

and analyze the complexity of software systems

[Chidamber, 1994] [Buse, 2008] [McCabe, 1976] [Halstead,

1979]. Several metrics have been proposed in the literature

in order to assess quality attributes (complexity, coupling,

cohesion, etc.)Software metrics measures the complexity of

software systems for software cost estimation, software

development control, software assurance, software testing,

and software maintenance. Several software metrics exist

based on different categories [Meyer, 2009]:

Size-related software metrics: NCLOC, Memory

footprint, Number of classes / headers, Number of methods,

Number of attributes, Size of compiled code, etc.

Quality-related software metrics: Cyclomatic complexity,

Number of states, Number of bugs in LOC, Coupling

metrics, Inheritance metrics, etc.

Process-related software metrics: failed builds, defect per

hour, requirement changes, programming time, number of

patches after release, etc.

There are currently more than 200 metrics with many

different purposes [Meyer, 2009], but currently, the existing

procedural metrics [Henryan&Kafura,

1981][McCabe,1976] are only applicable on the procedural

software not aspect oriented code therefore if the aspect

oriented constructs are intercepting the source files it is

necessary to evaluate their impact because they tend to

affect the cohesion and coupling between the modules and

the introduced advice. McCabe measures the number of

linearly independent paths through a program’s source

code.[McCabe 1976] proposed complexity measures based

on the number of local information flows entering and

exiting in each module. Presently, a number of papers have

addressed the metrics related to aspect-oriented programs

quality

[Zhao&Xu,2004][Kang&Bieman,1996][Gélinas,2006][Ce

ccato&Tonella,2004][Anna.etal.2003].One of the first

approaches in the field of cohesion measurement for AOP

was given by Zhao. It is based on a dependency model for

aspect-oriented software that consists of a group of

dependency graphs. According to Zhao and Xu’s approach,

cohesion is defined as the degree of relatedness between

attributes and modules. Zhao and Xu present, in fact, two

ways for measuring aspect cohesion based on inter-

attributes (γa), inter-modules (γm) and module-attribute

(γma) dependencies. Further, this approach was modified

by [Gélinas etal, 2006].They analyzed that the approach

was complicated and the cohesion(x) computation was

based on some arbitrary constants β1, β2, and β3.

(Where x = β1* γa + β2* γm + β3 * γma, k the number

of attributes and n the number of modules in aspect A).

[Gelinas etal 2006] deviced a measure for cohesion

computation based on data-module and module-module

connection criteria. Therefore, the Aspect cohesion (ACoh)

was computed as:

ACoh represents the relative number of connected

modules: ACoh(Aspecti) = NC(Aspecti) / NM(Aspecti) Є

[0,1].

Where NM(Aspecti) is the total number of modules pairs

in an aspect and NC(Aspecti) is the number of connections

between modules. The target AOP language was AspectJ.

In [Anna.etal, 2003] a method for the computation of

LCOM was derived from the well-known LCOM (Lack of

Cohesion in Methods) metric developed by

[Chidamber&Kemerer,1994].A more synonymous

extension of C&K metric suite [Chidamber&Kemerer,1994]

has been made in [Cecatto&Tonella,2004] but it is again a

measure for object oriented software designed using

AspectJ as the aspect oriented language. Therefore all the

measures are basically devised for aspect oriented systems

developed in an object oriented environment. We are

inspired by some approaches proposed for cohesion

 American Journal of Software Engineering and Applications 2013; 2(4): 105-110 107

measurement [Briand, 1998][Garcia

A.etal,2004][Zhao&Xu,2004][Gélinas,etal 2006]. As none

of the existing metrics tend to target the AO code in AspeCt

C we have devised a measure for computing cohesion in

AOP used with C software.

3. Aspect-Oriented Programming and

Aspect-Oriented C

In this paper we use C and AspectC as the aspect

oriented language to show the basic ideas of coupling

measurement in AO systems. AspectC is an aspect-oriented

extension to C by adding some new concepts and

associated constructs. The current ACC language design

adapts the ideas of AOP introduced by Kiczales

[Kickzales1997] to the C programming language. These

concepts and associated constructs are called join points,

pointcut, advice, intype and introduce declaration, and

aspect. The AspeCt-oriented C compiler processes the

advice declaration from the aspect file and the core

program from the core file and generates C sources that

contain information from both files. This step is referred to

as aspect compilation. That is the advice specified in the

aspect file is woven into the core to result in a program that

reflects both programs' intends.

The major construct of AspectC is the advice, which is

just like function but are executed when a join point is

matched by a pointcut defined inside the code part of a

pointcut declaration. They are different from the aspects in

AspectJ, as the aspects are just like classes that encapsulate

functionalities that crosscut other classes.

4. Applicability of AOP in Procedural

Software

We have used an example from an encryption program to

make a reusable aspect that checks the file opening result.

Below is an example to depict a simple encryption function.

In order to encrypt or decrypt the file, it needs to be opened

and the file check operation has to be done to ensure that

the file pointer doesn’t return null.

The check is done after each call to fileopen().Hence all

the operations to be carried on the file uses the above code

fragment that is almost identically scattered across the

whole system. This is a very important check that needs to

be performed but at the same time the code unnecessarily

distracts from the principal program logic. This is an

example of an aspect. This therefore reduces the

understandability of the code and also if the code needs

updation it needs to be done at several places, which

unnecessarily creates complications.

Example: It is common practice to check the return value

after opening a file for any use to ensure the return value is

non null. This code often looks as follows:

Figure 1. Code snippet from file encryption program

Thus a better option is to isolate the concern that would

improve maintainability and would also better modularize

the system. In the above example the file checking logic

would be extracted into an aspect file, as follows:

Figure 2. Aspect to handle the checking logic

Figure 3. File Encryption Code after removing the file check routine

A similar situation arises when malloc() and calloc()

functions are used for memory allocation. After each call to

malloc () it is a common practice to check if the value

returned after memory allocation is null or not null. The

memory checking concern is scattered throughout the entire

program hence crosscutting each function, therefore the

AspectC offers a good solution by the extraction of the

108 Zeba Khanam et al.: A Cohesion Measure for C in the Context of an AOP Paradigm

concern in an advice that should be invoked after each call

to these functions.

5. Member Dependency in an Aspect

Oriented Scenario

As illustrated in the previous section, different cohesion

measures have been proposed by Zhao, Ceccato and Jean.

But all these measures are specially designed for AspectJ

but AspectC has different constructs and the structure of the

procedural program too is different from the object oriented

constructs so none of these measures can be applied directly.

However, in the context of the measures defined by Zhao

we have defined the member dependencies in C and AOP

and subsequently the measure to quantify cohesion.

Our basic concepts will be illustrated using AspectC.

AspectC introduces several new language constructs such

as: join points, pointcuts, advice as well as intype

declarations. Join points are well-defined points in the

structure and dynamic execution of a system. Examples of

join points are method calls, method executions, and field

sets and reads. Pointcuts describe join points and context to

expose. Advice is a method-like abstraction that defines

code to be executed when a join point is reached. Pointcuts

are used in the definition of an advice. Inter-type

declarations define how an aspect modifies a program's

static structure, namely, the members and the relationship

between components. Pointcuts and advice dynamically

affect program flow, and inter-type declarations statically

affect a program's class hierarchy.

Since in a procedural language a program is written

using functions or procedures, therefore cohesiveness is

defined on a software module/function/procedure.

Therefore cohesion in a function is an internal software

attribute that measures the degree to which its members are

bounded together. Cohesion can be a measure to identify

the poorly designed function or advice. A function that has

probably been assigned unrelated concerns will depict a

low cohesion value. Thus such a function will be difficult

to understand, to test, to reuse and to maintain but if a

concern is extracted into an advice and is separated from

the original function then the function exhibits higher

cohesiveness and if the advice handles a single concern

then it is also supposedly highly cohesive.

The cohesion measure is defined on the basis of

dependence analysis. We define cohesion on the basis of

inter attribute dependence. Therefore we present the

dependency between the attributes defined in a function or

an advice and the dependencies are depicted using Control

flow Graph (CFG) of a module.

The associations (or relationships) between the

processing elements of a module are defined in terms of

control and data dependencies between the variables of a

module. These dependencies are computed from a directed

graph called Control Flow Graph (VDG). Control flow

analysis is defined as:

Definition 1: The control flow graph, or simply a flow

graph, of a program is a directed graph where the nodes

correspond to the basic blocks of the program and the edges

represent potential transfer of control between two basic

blocks [Aho86, Hecht77].

Dependence Definition: Consider a directed Control

Flow Graph (CFG) of a module M (i.e. a module is used for

a function or an advice) GM where the nodes

represent the basic blocks of the module and the edges

represent the control transfer between the 2 blocks. A basic

block is a group of statements such that no transfer occurs

into a group except to the first statement in that group, and

once the first statement is executed, all statements in the

group are executed sequentially [Hecht77].If there are n

attributes a1, a2,…an in the module, then any attribute a1 €

GM is said to be related to ai € GM if they both lie on the

same edge of the GM and is denoted as a1 → ai.

Therefore, the relatedness or the dependence of an

attribute ai to the other attributes of the module is computed

at every edge of the CFG GM.

Figure 4. Contror Flow Graph For Encrypt().

Figure 5. CFG for Encrypt after Refactoring

 American Journal of Software Engineering and Applications 2013; 2(4): 105-110 109

6. A Cohesion Measure

The cohesion is about tightness between attributes in a

module. Based on the introduced dependence criteria, we

define the cohesion of a module (advice/function) by the

degree of relatedness of its attributes or data. We are

inspired by some approaches proposed for aspects and class

cohesion measurement

[Zhao,2003][Zhao&Zu,2004][Gélinas, etal 2006]. To

compute the cohesion for a module, we define it as follows:

Definition: For each attribute ai of module M, a set RM(a)

contains the attributes on which ‘a’ depends or is related to

by the dependence criteria defined above. Thus

RM(a)={ai| a→ai,a≠ai} where i=1,2…..k such that k is

the number of attributes present in the module M. We

define the degree of relatedness of ‘a’ to the other

attributes of the module ‘M’ on the graph ‘GM’ with ‘E’

edges as follows:

DR (a)=1⁄e∑e
i=1 |

 RM(a)|/(k-1)

k represents the number of attributes:- e represents the

blocks that are not declarative statements.

Thus we define the cohesion measure as:

Ca(M) ={ 0 k=0 1 k=11/k ∑kj=1 DR(aj) k>1 }

The cohesion is measured on the basis of attributes

present. If the attribute is zero then the inter attribute

cohesion is 0 if there is a single attribute then the cohesion

is 1 and one attribute itself is tight.

Example 1: The degree of cohesion is computed through

the CFGs available (Fig.4 and Fig.5). For the function

encrypt, before refactoring Ca (encrypt)

is .705(.705/5=.141) based on the above definition of

cohesion. After refactoring the cohesion measure is Ca

(encrypt) =.179 and can be observed that it has increased.

As we compute the aspect cohesion for the advice we may

notice that there is a single attribute in the function so

therefore the inter attribute cohesion is 1 for the advice.

6. Conclusion

The application of a particular metrics to software is

dependant upon the system properties that are to be

assessed. Modular software has several advantages such as

maintainability, manageability, and comprehensibility. As

described many researchers, five attributes are closely

related to modularity in software systems which are

coupling / dependency, complexity, cohesion, and

information hiding.

Thus, cohesion is an important internal attribute of a

software that affects the modularity of a software and hence

the maintainability of software. This paper proposes a

cohesion measure for assessing the cohesiveness of a

module (function/advice) in C in the context of AOP

(AspectC) environment. The proposed cohesion measure is

basically defined for procedural software using an aspect

oriented environment. Cohesiveness Measure Ca(M) of a

module (advice/function) is defined on the basis of its

inter attribute dependence, as attributes form the basic

building blocks of a module and their correlation forms the

functionality of the module and is the most significant

aspect for establishing the tightness of a module. We had

also discussed the criteria of attribute dependence and have

depicted an AOP scenario with an example to compute its

cohesion measure.

Most of the metrics suites for Aspect oriented software

are defined in the context of object oriented programming.

Therefore, we believe that our approach can be a good

measure to assess the cohesion of a procedural module in

an AOSD context. In future, we intend to perform more

empirical studies in order to establish the tradeoff between

advantages and disadvantages obtained by using the AOP

approach in terms of other software attributes.

References

[1] E. Figueiredo, A. Garcia, C. Sant'Anna, U. Kulesza, and C.
Lucena, Assessing Aspect-Oriented Artifacts: Towards a
Tool-Supported Quantitative Method, Wkshp. on
Quantitative Approaches in OO Software Engineering, 2005.

[2] S.R. Chidamber and C.F. Kemerer, A Metrics suite for
object Oriented Design, IEEE Transactions on Software
Engineering, Vol. 20, No. 6, pp. 476-493, June 1994.

[3] J.Bieman and L. Ott.Measuring Functional Cohesion. IEEE
Transactions of Software Engineering.Vol.22,No.10,August
1994.

[4] L.C. Briand, J. Daly and J. Wusr, A unified framework for
cohesion measurement in object-oriented systems,
Empirical Software Engineering, Vol.3, No.1, pp. 67-117,
1998.

[5] G.Kiczales, J.Lamping, A.Mendhekar,C.Maeda,C.Videara
Lopes,J.M. Loingtier and J.Irwin,Aspect Oirented
Programming. In ECOOP,1997.

[6] H.S. Chae, Y. R. Kwon and D H. Bae, A cohesion measure
for object-oriented classes, Software Practice and
Experience, No. 30, pp. 1405-1431, 2000.

[7] Garcia, A. et al.: Modularizing Design Patterns with
Aspects: A Quantitative Study. In Proc. of the AOSD’05,
Chicago, USA, (2005), pp. 3-14.

[8] Garcia, A. et al.: Separation of Concerns in Multi-Agent
Systems: An Empirical Study. In Software Engineering for
Multi-Agent Systems II, Springer, LNCS 2940, (2004).

[9] J. Zhao, Coupling Measurement in Aspect-Oriented
Systems, Technical-Report SE-142-6, Information
Processing Society of Japan (IPSJ), July 2003.

[10] J. Zhao and B. Xu, Measuring Aspect Cohesion, Proceeding
of International Conference on Fundamental Approaches to
Software Engineering (FASE'2004), LNCS 2984, pp.54-68,
Springer-Verlag, Barcelona, Spain, March 29-31, 2004.

[11] B.Kang and Bieman, Design Level Cohesion
Measures:Derivation,Comparisons and
Applications,Computer Science Technical Report CS-96-
103,Colorado State University,1996.

110 Zeba Khanam et al.: A Cohesion Measure for C in the Context of an AOP Paradigm

[12] J.F. Gélinas, L. Badri and M. Badri, A Cohesion Measure
For Aspects, in Journal of Object Technology, vol. 5, no. 7,
September - October 2006, pp. 97 – 114
http://www.jot.fm/issues/issue_2006_09/article5.

[13] Henry, S., Kafura, Software Structure Metrics Based on
Information Flow D. IEEE Transactions on Software
Engineering Volume SE-7, Issue 5, Sept. 1981 Page(s): 510
- 518

[14] McCabe,T.,A Software Complexity Measure,IEEE
Transactions on Software Engineering,Vol 2,Issue 4,pp 308-
320,1976.

[15] Meyer B., Oriol M., & Schoeller B. (2009), "Software
engineering: lecture 17-18: estimation techniques and

[16] software metrics”, Chair of Software Engineering Website,
available: http://se.inf.ethz.ch/teaching/2008-S/se
0204/slides/15-Estimation-and-metrics-1-6x.pdf , accessed:
18 January 2009.

[17] N. E. Fenton.(1994) “Software Measurement: A necessary
scientific basis”, IEEE Trans. Software Eng., vol. 20,no. 3,
March 1994, pp. 199-206.

[18] Mariano Ceccato and Paolo Tonella,(2004) “ Measuring the
Effects of Software Aspectization”, In Cd-rom Proceedings
of the 1st Workshop on Aspect Reverse Engineering
(WARE 2004). November, 2004. Delft, The Netherlands.

[19] C. Sant‟Anna, A. Garcia, C. Chavez, A. von Staa, and C.
Lucena. On the reuse and maintenance of aspect oriented
software: An evaluation framework. In 17o. Simpsio
Brasileiro de Engenharia de Software, pages 19–34,2003.

[20] Yourdon, E. and Constantine, L. L., Structured Design,
Yourdon Press, 1978.

[21] Stevens, W. P., Myers, G. J. and Constantine, L. L.,
"Structured Design," IBM Systems Journal, Vol. 13, No. 2,
May 1974.

[22] Karstu , S., An Examination of the Behavior of Slice Base
Cohesion Measures, Master's Thesis, Michigan
Technological University, Department of Computer Science,
August 1994.

