

American Journal of Software Engineering and Applications
2015; 4(1): 15-22

Published online April 14, 2015 (http://www.sciencepublishinggroup.com/j/ajsea)

doi: 10.11648/j.ajsea.20150401.12

ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

Metrics for Quantification of the Software Testing Tools
Effectiveness

Pawan Singh
*
, Mulualem Wordofa Regassa

School of Informatics, IOT, Hawassa University, Awassa, Ethiopia

Email address:
pawansingh3@yahoo.com (P. Singh), dr_pawansingh@hu.edu.et (P. Singh), jimpowerdire@gmail.com (M. W. Regassa)

To cite this article:
Pawan Singh, Mulualem Wordofa Regassa. Metrics for Quantification of the Software Testing Tools Effectiveness. American Journal of

Software Engineering and Applications. Vol. 4, No. 1, 2015, pp. 15-22. doi: 10.11648/j.ajsea.20150401.12

Abstract: An automated testing tool helps the testers to quantify the quality of software by testing the software automatically.

To quantify the quality of software there is always a requirement of good testing tools, which satisfy the testing requirement of

the project. Although there is a wide range of testing tools available in the market and they vary in approach, quality, usability and

other characteristics. Selecting the appropriate testing tool for software there is a requirement of a methodology to prioritize them

on the basis of some characteristics. We propose a set of metrics for measuring the characteristics of the automated testing tools

for examination and selection of automated testing tools. A new extended model which is proposed provides the metrics to

calculate the effectiveness of functional testing tools on the basis of operability. The industry will be benefited as they can use

these metrics to evaluate functional tools and they can further make selection of tool for their software required to be tested and

hence reduce the testing effort, saving time and gaining maximum monetary benefit.

Keywords: Software Testing, Software Metrics, Automated Testing Tools, Tool Evaluation

1. Introduction

Testing is a tedious part of the software development

process. There are lots of different automated software

testing tools currently available in the market. Some of these

tools are only able to perform specific kind of testing and

other products support a wide range of applications and offer

more features and functionality. Automated testing tools help

the testers to quantify the quality of software by testing the

software. To quantify the quality of software, there is always

a requirement of appropriate testing tool, which satisfy the

testing requirement of the project. Although there is a wide

range of testing tools available in the market and they vary in

approach, quality, usability and other characteristics.

Selecting a right testing tool is very cumbersome. To select

the appropriate testing tool there is a requirement of a way to

prioritize them on the basis of characteristics. Through this

paper we proposed a set of metrics for measuring the

characteristics for examination and selection of automated

testing tool. This set of metrics will help to quantify the

quality of automated software tools. Using this set of metrics

the evaluation of effectiveness of testing tools can be done.

With the help of the metrics the comparison of characteristics

of different available testing tools can be performed to select

the best suited for the corresponding project. In the

development process the evaluation of software testing tools

effectiveness has become an important factor to be

considered for software testing and assessment, especially for

critical software. A new extended model which is proposed

provides the metrics to calculate the effectiveness of

functional testing tool on the basis of operability. Students

are studying only the traditional metrics to evaluate the

software quality but this set of metrics will help them to

understand the fundamentals of selection of exact and

suitable tool for software testing. The industry will also be

benefited; they can use the metrics to evaluate tools and

reduce the testing effort hence saving time and extracting

maximum benefits.

2. Metrics

In software engineering, any sort of quality can be

quantified in terms of metrics. Software metric a measurable

property, is an indicator of one or more of the quality criteria

that we are seeking to measure. There are a number of

conditions that a quality metric must meet. The history of

software metrics began with counting the number of line of

codes. It was assumed that more line of codes implied more

complex programs, which shows a possibility of having more

16 Pawan Singh and MulualemWordofa Regassa: Metrics for Quantification of the Software Testing Tools Effectiveness

errors. However software metrics have evolved well beyond

the simple measures introduced in the 1960s.

2.1. Traditional Metrics

The traditional metrics are those which is been taught to the

students from a long period of time and it only quantifies the

quality of the software.

2.1.1. Cyclomatic Complexity (CC)

It measures the amount of decision logics in a single

software module. The use of CC [1] is in two related purposes

in the structured testing methodology. First, it provides the

number of optional tests for software. Second, the use of CC is

during all phases of the software development lifecycle,

starting with design, to maintain software reliable,

manageable and testable. The structure of software’s control

flow graph is the basis of Cyclomatic complexity. The word

“cyclomatic” derives from the number of fundamental or basic

cycles in connected, undirected graphs. More essentially, CC

also provides the number of independent paths through

strongly connected directed graphs. In strongly connected

graph each node can be reached from any other node by

following directed edges in the graph. The cyclomatic number

in graph theory is defined as:

CC = e - n + 2P (1)

Program control flow graphs (CFG) are not strongly

connected, but they become strongly connected by adding a

virtual edge connecting the exit node to the entry node. The

CC definition for program control flow graphs is resultant

from the cyclomatic number formula by merely adding one to

represent the contribution of the virtual edge. According to

this definition the cyclomatic complexity equals the number of

independent paths through the standard control flow graph

model, and avoids explicit declaration of the virtual edge.

M = V(G) = e – n + 2P (2)

Where V(G) is the cyclomatic number of G, e is the number

of edges, n is the number of nodes, and p is the number of

unconnected parts of G.

2.1.2. Function Point (FP)

It is a metric that may be applied independent of a specific

programming language, in fact, it can be determined in the

design stage prior to the commencement of coding. To

determine FP, an Unadjusted Function Point Count (UFP) is

calculated [2]. UFP is found by counting the number of

external inputs (user input), external outputs (program output),

external inquiries (interactive inputs requiring a response),

external files (inter-system interface), and internal files

(system logical master files). Each member of the above five

groups is analyzed as having either simple, average or high

complexity, and a weight is associated with that member based

upon a table of FP complexity weights. UFP is then calculated

via:

��� = ∑ (number of items of variety i) ∗ (weight of i)15�=1 (3)

Next, a Complexity Adjustment Factor (CAF) is

determined by analyzing fourteen contributing factors. Each

factor is assigned a score from zero to five based on its

criticality to the system being built. The CAF is then found

through the equation:

CAF = 0.65 + 0.01 % Fi
&'

()&
 (4)

FP is the product of UFC and CAF. FP has been criticized

due to its reliance upon subjective ratings and its foundation

on early design characteristics that are likely to change as the

development process progresses.

2.1.3. Halstead

Halstead [3] created a metric founded on the number of

operators and operands in a program. His software-science

metric (a.k.a. halted length) is based on the enumeration of

distinct operators and operands as well as the total number of

appearances of operators and operands. With these counts, a

system of equations is used to assign values to program level

(i.e., program complexity), program difficulty, potential

minimum volume of an algorithm and other measurements.

2.2. Object Oriented Software Metrics

Object-oriented design and development has turn out to be

popular in present software development environment. There

exists wide recognition of benefits of object-oriented software

development. Object-oriented development needs not only

diverse approaches to design and implementation; it also

requires different approaches to software metrics [4]. The

metrics for object-oriented systems are different from

structured system due to the difference in program paradigm

and language itself [5]. An object-oriented program paradigm

and structure are different from procedural languages; it uses

localization, inheritance, information hiding, encapsulation,

object abstraction and polymorphism. There are quite a few

sets of proposed metrics for object-oriented software in the

literature. The definition of six different metrics is specified in

this text.

2.2.1.Weighted Methods per Class (WMC)

WMC is a sum of complexities of methods of a class.

Consider a Class C1 with Methods M1…Mn that is defined in

the class. Let c1…cn be the complexity of the methods. Then:

+,- = % .(
/

()&
 (5)

WMC measures size as well as the logical structure of the

software. The number of methods and the complexity of the

involved methods are predictors of how much time and effort

is required to develop and maintain a class. The bigger the

count of methods within a class larger the potential impact on

inheriting classes. Consequently, more effort and time will be

needed for maintenance and testing. Furthermore, classes with

large number of complex methods are likely to be more

application specific, limiting the possibility of reuse [4], [7],

 American Journal of Software Engineering and Applications2015; 4(1): 15-22 17

[8], [9]. Estimation of usability and reusability of the class can

be done using WMC. If all method complexities are

considered to be unity, then WMC equals to Number of

Methods (NMC) metric.

2.2.2. Depth of Inheritance Tree (DIT)

The depth of a class inside the inheritance hierarchy is the

largest length from the class node to the root of the tree,

calculated by the number of ancestor classes [4], [8] and [10].

The deeper a class is in the hierarchy, the larger the number

of methods it is likely to inherit, making it more difficult to

forecast its behavior. Deeper trees constitute higher design

complexity, since more methods and classes are concerned.

The deeper a particular class is in the hierarchy, the larger

prospective reuse of inherited methods. The longest path is

usually considered for languages that allow multiple

inheritances. The large DIT is as well associated to

understandability and testability. The complexity can be

decreased using inheritance by reducing the count of

operations and operators, but this abstraction of objects can

create maintenance and design complicated.

2.2.3. Number of Children (NOC)

Number of children metric equals to number of immediate

subclasses subordinated to a class in the class hierarchy.

Greater the number of children, greater the reuse, since

inheritance is a form of reuse [4], [7], [8], [9]. If greater the

number of children than more is likelihood of improper

abstraction of the parent class. If a class has a large number of

children, it may be a case of misuse of sub classing. The

number of children gives an idea of the potential influence a

class has on the design. If a class has a large number of

children, it may require more testing of the methods in that

class. In addition, a class with a large number of children must

be flexible in order to provide services in a large number of

contexts.

2.2.4. Coupling between Object Classes (CBO)

CBO for a class is a count of the number of other classes to

which is coupled. CBO relates to the notion that an object is

coupled to another object if one of them acts on the other, i.e.,

methods of one uses methods or instance variables of another

[4], [9], [10], [11]. Excessive coupling between object classes

is detrimental to modular design and prevents reuse. The more

independent a class is, the easier it is to reuse it in another

application. In order to improve modularity and promote

encapsulation, inter-object class couples should be kept to a

minimum. Direct access to foreign instance variable has

generally been identified as the worst type of coupling. The

larger the number of couples, the higher the sensitivity to

changes in other parts of the design, and therefore

maintenance is more difficult. A measure of coupling is useful

to determine how complex the testing of various parts of a

design is likely to be. The higher the inter-object class

coupling, the more rigorous the testing needs to be.

2.2.5. Response for a Class (RFC)

The response set of a class is a set of procedures that can

potentially be executed in response to a message established

by and object of that class. RFC evaluate both external and

internal communication, but particularly it comprises

procedures called from outside the class, so it is also a gauge

of the potential communication between the class and other

classes [4], [8], [9]. RFC is more perceptive evaluation of

coupling than CBO since it take into account procedure

instead of classes. If a huge count of procedures can be

invoked in account to a message, the testing and debugging of

the class turn out to be more problematical since it requires a

greater level of perceptiveness required on the part of the tester.

The greater the count of routines that can be invoked from a

class, the greater the complication in the class. A worst-case

value for possible reaction will assist in suitable allocation of

testing time.

2.2.6. Lack of Cohesion in Methods (LCOM)

The LCOM is a calculation of the number of procedure

pairs whose resemblance is “0” minus the count of procedure

pairs whose resemblance is non zero. The larger the count of

number of alike procedures, the greater cohesive the class,

which is consistent with conventional notions of cohesion that

calculate the inter-relatedness between segments of a program

[4], [7], [10]. If none of the procedure of a class reflects any

instance performance, i.e., do not use any instance variables,

they consists no resemblance and the LCOM value for the

class will be zero. Cohesiveness of procedures inside a class is

desirable, since it encourages encapsulation. Short of cohesion

indicates classes should most likely be divided into two or

more subclasses. Any calculation of disparateness of

procedure helps recognize flaws in the design of classes. Low

cohesion augments complication; thereby it increases the

probability of errors at some stage in the development process.

3. Prior Work on Metrics

The Institute for Defense Analyses (IDA) made available two

survey information on tools for testing software. Although the

tool explanations provided in those reports are dated, the

examination provide a historical frame of reference for the

current progress in testing tools and recognize a great count of

quantity that may be utilized in evaluating testing tools [12],

[13]. For every tool, the report specifies diverse types of

analysis carried out. Software Technology Support Center

(STSC) works with Air Force software organizations to

recognize assess and accept technologies to advance product

quality, augment production effectiveness, and hone cost and

schedule forecast capability [14]. Section four of the report tells

about numerous issues that should be addressed when

examining testing tools and offers a model tool-scoring matrix.

Brett Daniel [6] has provided a broad summary of the process

he suggested to calculate effectiveness of an automatic test

production tool. The method has two parts: instructing a

decision tree by means of code with identified coverage

characteristics and using the tree to forecast coverage on new

code. It starts with a big amount of source code, which we say

as the training code. It provides two data sets from the training

18 Pawan Singh and MulualemWordofa Regassa: Metrics for Quantification of the Software Testing Tools Effectiveness

code. First, extract many metrics that characterize method

structure. Second, run the automatic testing tool to produce a

suite.

A thorough analysis was conducted by J. Thatcher in

Evaluation and repair tools [15]. His examination of six

accessibility testing tools was focused at calculating the

cost/benefit ratio and supporting probable customers to

choose the most suitable tool. In submission to allowing for

costs, availability, and accuracy, the examination scope was

quality of use. The procedure he used is highly influenced by

manual and methodical inspection of the results formed by the

tools on chosen test pages, and is consequently less generally

relevant than the procedure suggested in his paper, as it needs

carefully generated test files and a lengthy and subjective

analysis of the results.

In a current paper, Ivory and her colleagues focused at

examining quality of use of testing tools [16]. They carry out

an experiment where web designers were required to use

testing tools and to amend web sites as a result to what tools

suggested. Afterward in second experiment, the authors

extract how effective such modifications were for disabled

web site visitors.

The criteria proposed by Poston and Sexton [17] aimed on

company precise criteria or on criteria demanding an intense

effort to be evaluated e.g. test effort or test quality, these

criteria do not narrate for a pre-selection of the test tools. In

addition to it, criteria precise to test tools is stated without a

validation for their derivation. The criteria stated by Poston

and Sexton signify a subset of the criteria methodologically

derived in our approach.

4. Our Approach

The project suggests some of the metrics which can be used

to discover the suitable automated software testing tool. These

metrics are been derived on the functional and operational

basis. The metrics are designed so they produced different

values when applied to different testing tools. They can

produce similar values also for different metrics and different

testing tools. The suite of metrics to evaluate and select

software testing tools carries the following properties: the

metrics reveal smoothness in that they generate unlike values

when applied to different testing tools. The metrics is finite in

count and in very few cases they may provide similar values

for few tools; usually they provide different values when

applied to unlike testing tools.

4.1. Operational Metrics

These metrics are used to quantify the effectiveness of

testing tools on the basis of the capability of and ease to

operate. The testing tools are desired to be easy to use in all

terms and it must be popular if it is giving good results in

terms of working. The vendor’s responsibility includes

making it simple and informative as well. On the basis of

some of the operational properties there are few metrics

provided by us which can help the tester to select the

appropriate tool for his projects:

4.1.1. Toughness of Interface (ToI)

To start testing with automated software testing tool one

need to configure it first. If any tool is designed in a proper

manner than the human interface with the tool will lead to

simple, efficient and correct setting of tool configuration but if

the design is inadequate then the number of keyboard to

mouse switches will be large, number of input fields provided

will be large with long input strings and required output fields

will also be large in number.

ToI = 1
∑ F 2% 3SKM

t 7 + %8(IF ∗ TLIF) + OF;< − BBF
(6)

In (1) SKM / t is the number of switches from keyboard to

mouse per unit time, IF is the average number of input fields,

TLIF is the total string length of input fields, OF is the number

of output field required, BBF is the number of buttons based

functions. The values of SKM, IF, TLIF, OF is calculated per

function. A large value of ToI indicates the toughness in

learning the tool due to complicated interface. This can also

lead to possibility of errors if we use the tool for a long time. A

tool with lesser value of ToI must be selected.

4.1.2. Customers Affection and Tool Age (CATA)

There exist a number of designers of automated testing

tools carrying different approaches and experiences. If the tool

is properly designed and having good customer satisfaction of

testing their software on the tool, then this satisfaction level

can be used to motivate other users to use that testing tool. The

maturity of a software counts to suggest the same tool as it

shows customers having trust on that tool from a long period

of time.

CATA = CA + TA (7)

In (7) CA customer affection is the number customers of

that tool and they are using tool from more than one year. TA

tool age is the number of years the tool is in use including its

previous versions. A tool with a larger value of CATA is

selected for testing software.

4.1.3. Projects Handled (PH)

There In making the decision to select a testing tool for a

software of known expected size the major factor will be the

experience of tool in dealing with similar sort of project with

same size and different size. The tool having good experience

of dealing with similar size will be the preferred one but the

tool having experience in dealing with big in size project will

also be better than the tool dealing with small projects.

PH = α * STSS + β * STBiS + γ * STSiS (8)

In (8) α < β < γ, STSS is the number of projects of same type

and same size tested previously on that tool, STBiS is the

count of projects with same type and big in size tested

previously on that tool and STSiS is the count of projects with

same type and small in size tested previously on that tool. A

tool having a large value of PH is the suggested.

 American Journal of Software Engineering and Applications2015; 4(1): 15-22 19

4.1.4. Inconvenience of Use (IU)

An automated testing tool is desired to be easy in terms of

using it first time and in subsequent attempt. The tool which is

better to learn in first will be given preference to the tool easy

to use in subsequent attempts. The desired property of a

testing tool is its retainability of use means the procedure of

using can be easily remembered by either a casual user or by

the frequent user. If the time required using a tool for testing

by either a casual user or frequent user is less it will be the

preferred one.

IU = (0.75 * LTFTU + 0.25 * LTExUPV) – (RoPc + RoPf)

 + (AOTc + AOTf) (9)

In (9) LTFTU is the learning time for first users in days,

LTExUPV is the learning time for the experienced user of

previous version in days, RoPc is the retainability of

procedure knowledge for casual users, RoPf is the

retainability of procedure knowledge for frequent users, AOTc

is the average operational time for casual users in hours and

AOTf is the average operational time for frequent users in

hours. The tool having a less value of IU is better.

4.1.5. Documentation Support (DS)

To have the efficient implementation and use of tool a

proper documentation must be provided. A user of a tool may

need certain information at different time for reference this

information is usually provided by the vendor in the form of

documentation. The tools effectiveness is influenced by the

time required to search some information and by the number

of ways the information can be accessed. It is negatively

supported if the documentation is inadequate.

DS = WIA – (ID + ASTD) (10)

In (10) ASTD is the average search time of documentation,

WIA is the number of ways the information can be accessed

and ID stands for the inadequacy in documentation which is

measured as the number of unsuccessful searches of

documentation. The higher value of DS is expected for a good

tool.

4.1.6. Tools Reliability (TR)

Tool reliability of any system is defined as inverse of

number of failure per unit time. Lesser the value of number of

failure better the tool is as reliable tool.

TR = 1
N TA (11)

In (11) TR is tool reliability, N is the number of failure of

testing software and T is the total time. It is expected that the

tool must be with high value of TR.

4.2. Functional Metrics

These metrics are used to quantify the effectiveness of

testing tools on the basis of the capability of testing the

software programs. The operational simplicity and

informativeness are not the only factors which must be

included in the decision to select the testing tool but there are

some more functional properties required to be included.

Functional metrics incur some cost in terms of some sort of

pre testing required to analyze the tools. The functional testing

may be better utilized to prepare the data regarding the tools

for the further projects to be evaluated. On the basis of

functional properties there are some metrics provided by us

which can help the tester to select the appropriate tool for his

projects:

4.2.1. Tool’s Completeness (TCm)

Tool’s Completeness is a computation of how many

accessibility defects present in the software are noticed and

revealed to the user. Completeness is associated to how well

the tool is capable to seize defects. Completeness is a complex

property to distinguish operationally. In fact it requires

knowing the true problems in advance. Therefore determining

the true problems means accurate usability investigations

through some means of testing.

TCB = DCS TDP ⁄ (12)

In (12) DCS is the number of defects of software caught and

shown by the tool to the user. TDP is the total number of

defects actually present in the software. The value of TCm is

required to be high for a better selection.

4.2.2. Tool’s Correctness (TCr)

Tool’s Correctness is the fraction of problems reported by the

tool that are certainly true problems and the actual total number

of defects actually present in the software. Correctness is

associated to how well a tool reduces actual defects. It requires

the potential and knowledge of true and false defects shown by

the tool otherwise it may lead to wrong decision.

TCF = (DCS − FDCS) TDP ⁄ (13)

In (13) DCS is the number of defects of software caught and

shown by the tool to the user. FDCS stands for false defects of

software caught and shown by the tool to the user. TDP is the

total number of defects actually present in the software. TCr

value must be bigger for a tool to be selected.

4.2.3. Tool’s Coverage (TCv)

Tool’s Coverage is defined as the number of different types

of defects possible to detect and described by a tool. The larger

this set the more capable is the tool of providing specific

warnings and suggestions, and therefore the more useful it is

for the developer. It is not an easy property to be determined

and not necessarily related to the tool effectiveness. It is good

to have high value of TCv.

5. Experimental Setup

To validate our proposed set of metrics for examination and

selection of software testing tools, we have selected two

automated software testing tools QTP 9.0 and WinRunner 7.6

to apply our metrics. In the following section we have

described the working of these tools.

20 Pawan Singh and MulualemWordofa Regassa: Metrics for Quantification of the Software Testing Tools Effectiveness

5.1. Quick Test Professional 9.0 (QTP 9.0)

It is an automated functional Graphical User Interface based

testing tool generated by HP subsidiary Mercury Interactive

that permit the automation of user actions on the web or client

based and desktop computer application. It is principally used

for functional regression test automation QTP requires a

scripting language built on top of VBScript to indicate the test

method and to update the object and control of application

under test.

As a part of functional test suite, it performs together with

Mercury Interactive Winrunner and HP Quality Centre and

support project Quality Assurance.

Quick Test Professional 9.0 is an automated functional

testing tool for diverse environments. It is having graphical

point and click interface to record and play tests, add

synchronization points and verification steps as well as create

multiple action tests. As Quick Test runs test it simulates a

human user by moving the cursor in a webpage or application

window, clicking GUI objects and entering keyboard inputs;

however Quick Test does this faster than any human.

5.2. WinRunner 7.6 (WR 7.6)

It offers an organization a power full tool for

enterprise-wide functional and regression testing. Mercury

WinRunner captures, verifies and replay user interactions

automatically to identify defects and ensure that business

processes work flawlessly upon deployment and remains

reliable. Its intuitive recording process allows us to produce

robust functional tests.

To create a test it simply records a typical business process

by emulating user actions, such as ordering an item or opening

a vender account. It executes tests and operates the application

automatically, as though a real user is performing each step in

business process. Its interactive reporting tool helps us

interpret results by providing detailed, easy to read report that

lists errors and their origination. It enables to build reusable

tests to use throughout an application lifecycle.

For validation of our metrics we have selected 1047 small

projects (codes) for testing using the two tools. For every code

we have generated 20 to 73 test cases depending on the size of

code and its complexity. The sizes of codes are ranging from

37 to 109 lines of codes.

In calculating the metrics the average values of the factors

involved in the metrics are considered. The values calculated

for different factors and finally the metrics are shown in the

tables 1 to 7.

Table 1. Calculation for ToI.

Factors QTP 9.0 WR 7.6
1 ∑ FA %(GH,/J) 4.3 6.4

1 ∑ FA %(K� ∗ LMK�) 32 47

% N� 2 2

BBF 6 5

ToI 32.3 50.4

In the tables from 1 to 7 different factors are calculated and

the metrics for both the tools QTP 9.0 and WR 7.6. In table 1

ToI metric value for QTP is less means it is less tough in using

its interface by all types of users.

Table 2. Calculation for CATA.

Factors QTP 9.0 WR 7.6
CA 25 15

TA 14 19

CATA 39 34

In table 2 the tool age of WR is shown more even then the

customer of QTP is more than the WR so the overall value of

CATA is greater and reflects preference of QTP.

Table 3. Calculation for PH.

Factors QTP 9.0 WR 7.6
α * STSS 7.5 3

β * STBiS 2 1.25

γ * STSiS .5 1

PH 10 5.25

As it is suggested that the project experience of same type

and same size is better than the project of same type and big in

size as well as project of same type and small in size so the

values considered of α= .5, β= .25 and γ= .25. This gives the

PH high value (as shown in table 3) to QTP hence upper hand

with respect to WR.

Table 4. Calculation for IU.

Factors QTP 9.0 WR 7.6
0.75 * LTFTU 5.25 7.5

0.25 * LTExUPV .75 .75

RoPc .25 .20

RoPf .78 .66

AOTc .75 .75

AOTf .33 .416

IU 6.05 8.556

The high value of IU indicated in table 4 for WR shows that

it not easy to learn, operate and remember the working of WR

than QTP.

Table 5. Calculation for DS.

Factors QTP 9.0 WR 7.6
WIA 4 4

ID 0 0

ASTD 1 2

DS 3 2

As per the value of DS computed in the table 5 it is clear

that the information provided and ease in access of

information is better supported in the QTP than WR so any

one will wish to have QTP for his project.

Table 6. Calculation for TR.

Factors QTP 9.0 WR 7.6
N 3 3

T 2 2

TR .66 .66

 American Journal of Software Engineering and Applications2015; 4(1): 15-22 21

The statistics of table 6 indicates that both tools are

similarly good in terms of reliability.

Table 7. Calculation forTCm AND TCr.

Factors QTP 9.0 WR 7.6
TDP 76 76

DCS 61 56

FDCS 3 4

TCm .8026 .7368

TCr .7631 .6842

The high values computed for QTP in table 7 for the metrics

tools completeness and tools correctness gives an idea of

better functionality of QTP and it suggest to use QTPunless

until not specified or mandatory for tester to use WR.

Figure 1.Comparison of metrics for tools QTP and WR.

From Fig. 1 it is shown that the metrics computed for both

the tools indicates the high hand of QTP over WR.

6. Summary and Future Scope

In the current trend most of the software is required to be

evaluated for two reasons. One the customer wants to get

satisfied from the quality of the product which he will be

going to use because he has invested a lot of amount to get the

product. Two the developers want to quantify the quality so

that his effort in further stages and in maintenance must not

increased due to low quality. The testing is required to be fast

and with less effort that is through the automated testing tools.

The setback is confusion of way of selection of tool. The

positive side of the paper is that it helps the developer in

deciding the best testing tool as per his project by calculating

the metrics value for the available tools in hand. The weakness

of the proposed work is that it required a bit of time and effort

in doing calculations for evaluating the tools and some data

may also be needed in calculation of metrics.

As per the experience we have during the work, we would

like to mention our view for the further extension of this

work. The upper and lower bound of the tools metrics must

be investigated. The more number of tools must be exposed

to metrics to have the further empirical analysis. The

categorization of the tools on the basis of functionality is

required and the specification of particular metric for that

type may be suggested. An algorithmic approach may be

generated to have the fast automated evaluation of metrics

which may reduce the effort to calculate the metrics and

automated suggestion for the better tools may also be a work

piece.

7. Conclusion

To evaluate a tool it is highly required to check its

functionality and operational potential. In our presented work

the metrics are working on the operational and functional

factors. The operational factors indicate the capability and

easiness of handling the tool. The functional metrics are the

reflection of ability of tool in tackling the software testing, its

function. The operational metrics are almost static in nature

as they can be calculated without performing any testing on

tools to be selected, whereas the functional metrics needed

some basic efforts to evaluate the tool’s effectiveness.

In our work, the metrics proposed are applied on two tools

QTP and WinRunner, here by comparing the calculated

values of the metrics for the tools we came to have two

conclusion. As per the first conclusion QTP is better tool with

respect to WinRunner. The second conclusion is about our

metrics which clearly discriminate the tools on different basis

and these metrics are useful for developers as well as

researchers to quantify the effectiveness of tools to get the

help in decision of tool’s selection. Using these metrics will

help the tester to select the appropriate tool for his project it

will save his time and removes his confusion.

References

[1] J. T. McCabe, “A complexity measure,” IEEE Trans. Software
Eng. SE-2, 4, pp. 308-320, Dec 1976.

[2] C. Dekkers, “Demystifying Function point: Lets
understandsome terminology,” IT metrics strategies, Oct 1998.

[3] M. H. Halested, “Elements of software science, ” New York:
Elsevier Science, 1977.

[4] S. R. Chidamber and R. F. Kemerer, “Ametrics suite for
object-oriented design,” IEEE Trans. Software Eng.vol. 20, 6,
pp. 476-493,June1994.

[5] W. Li and S. Henry, “Object oriented metrics that predicts
maintainability,” Journal of System and Software, vol. 23, 2, pp.
111- 122, Nov 1993.

[6] B. Daniel and M. Boshernitsan, “Predicting and explaining
automated testing tool effectiveness,” University of Illiois at
Urban- Campaign, Tech. Rep. UIUCDCS-R-2008-2956, April
2008.

[7] M. Lorenz and J. Kidd, “Object Oriented Software Metrics,”
Printice Hall Publishing, 1994.

[8] McCabe & Associates, McCabe Object Oriented Tool Usre’s
Instruction, 1994.

[9] Linda H. Rosenberg, “Metrics for Object Oriented
Environment,” EFAITP/AIE Third Annual Software Metrics
Conference, December 97.

22 Pawan Singh and MulualemWordofa Regassa: Metrics for Quantification of the Software Testing Tools Effectiveness

[10] R. Hudli, C. Hoskins and A. Hudli, “Software Metrics for
Object Oriented Design,” IEEE, 1994.

[11] Y. Lee, B. Liang and F. Wang, “Some Complexity Metrics for
Object Oriented Program Based on Information Flow,”
Proceedings: CompEuro, pp. 302-310, March 1993.

[12] C. Youngblut and B. Brykczynski, “An examination of selected
software testing tools: 1992,” IDA Paper, Inst. For Defense
Analyses, Alexandria, Va., pp -2925, Oct. 1993.

[13] C. Youngblut and B. Brykczynski, “An examination of selected
software testing tools: 1993,” Supp. IDA Paper, Inst. For
Defense Analyses, Alexandria, Va., pp -2769, Dec. 1992.

[14] G. T. Daich, G. Price, B. Ragland, and M. Dawood, “Software
test technologies report,” Software Technology Support Center,
Hill AFB, Utah, Aug. 1994.

[15] J. Thatcher, “Evaluation and Repair Tools,” posted on
http://www.jimthatcher.com, June 2002.

[16] M. Y. Ivory, R. R. Sinha and H. A. Hearst, “Empirically
validated web page design metrics,” In Proceedings of the
Conference on Human Factors in Computing Systems, pp.
53-60, New York, NY, ACM press, 2001.

[17] R. M. Poston and M. P. Sexton, “Evaluating and selecting
testing tools,” IEEE Software, vol. 9, 3, pp. 33-42, May 1992.

