

American Journal of Software Engineering and Applications
2017; 6(1): 5-12

http://www.sciencepublishinggroup.com/j/ajsea

doi: 10.11648/j.ajsea.20170601.12

ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

Towards a Platform Independent Graphical User Interface

Abdessamad Belangour
*
, Said Sadik, Amina Abbar

Department of Mathematics and Computer Science, Faculty of Sciences Ben M’Sik, Casablanca, Morocco

Email address:
belangour@gmail.com (A. Belangour), said.sadik.fsb@gmail.com (S. Sadik), amina.abbar@gmail.com (A. Abbar)
*Corresponding author

To cite this article:
Abdessamad Belangour, Said Sadik, Amina Abbar. Towards a Platform Independent Graphical User Interface. American Journal of Software

Engineering and Applications. Vol. 6, No. 1, 2017, pp. 5-12. doi: 10.11648/j.ajsea.20170601.12

Received: October 29, 2016; Accepted: November 25, 2016; Published: February 24, 2017

Abstract: In classical software development processes, graphical user interfaces cannot be reused across development

platforms. In addition, in MDA-based processes, they are integrated only after making the transformation of the PIM to the

PSM since they belong to the target platform and hence have the same problem. They are considered part of the PSM, which

deprives us from reusing them as we do for the business logic. In this paper, we aim at proposing a common platform

independent graphical user interface library that represents the presentation logic in terms of inputs and outputs. This is

achievable through proposing a generic metamodel for basic GUI controls that focus on getting and presenting data rather than

those of ergonomic purposes. This metamodel will enable us to build generic graphical interfaces that can be transformed to

any of the market libraries such as AWT, SWING, WinForms, Tkinter. That is why we built metamodels for those libraries and

defined mappings between the generic metamodel and those libraries metamodels. Finally, the generic GUI library is used to

make PIM-GUIs that are kept with business-PIMs and that can together be reused in a way that is independent from any

development platform. Final mappings transforms these PIM-GUIs into platform bound GUIs or PSM-GUIs such those we

mentioned earlier or any future graphical library.

Keywords: Model Driven Architecture, Model Driven Engineering, Graphical User Interface, Metamodel, Generic,

Platform Independent

1. Introduction

The OMG (Object Management Group) has defined the

Model Driven Architecture or MDA™ [1] as part of its

response to the increasing complexity, heterogeneity and

evolutivity issues of information systems.

It tackled these issues through the rising of the level of

abstraction by adopting models instead of objects as a first

measure and the separation of the business logic of an

information system from the implementation of that logic on

a specific technological platform (CORBA, C#/DotNet,

Java/EJB, XML/SOAP, etc.) as a second one. Thus, the

simple principle of MDA is the elaboration of platform

independent models (known as PIMs) and their

transformation into platform specific models for a given

platform (known as PSMs). The techniques used are

essentially modeling techniques and model transformation

techniques [2].

While most of the proposed approaches focused on

extracting logic business in form of PIMs, as the logic

business is the most important part of an information, system,

presentation logic has been ignored to a certain extent and

thus their elaboration still belongs to the post-PSM stage. As

a direct consequence, a waste of effort is made to rewrite

code for graphical user interfaces when shifting platforms

even though this shift is made in scale of many years. Instead,

it would be simple to have those GUIs also as PIMs and to

automatically generate PSM-GUIs for new platforms.

To achieve this goal, we propose in this paper a metamodel

that represents a platform Independent Graphical User

Interface library that can be used to make PIM-GUIs as well

as a transformation tool that transforms them into known

PSM-GUIs such as Java AWT and SWING, .Net Winforms

and Python Tkinter.

6 Abdessamad Belangour et al.: Towards a Platform Independent Graphical User Interface

2. A Platform Independent Model GUI

Library

2.1. Elements to Capture

Common applications interact with end-user through

Graphical User Interfaces. They rely on these GUI interfaces

to get or to present information to the end user. While these

GUI interfaces can differ in design and richness of graphical

widgets they contain, basic input and output widgets remain

the same. Therefore, in the various existing platform-bound

GUI libraries on the market, graphical elements such as

textboxes, checkboxes, buttons, etc., represent the same

concepts regardless of the names given to these elements in

different technological frameworks. Thus, for example, a text

box is called a TextField in Java AWT library, JTextField in

Java SWING or simply Textbox in. Net WinForms, etc...

Classes whose members (properties and methods) deliver

similar functionality although having quite different names

and parameters represent these graphical elements.

To build a platform independent graphical user interface

library, basic common graphical elements across platform-

bound GUI libraries need to be examined in terms of inputs

or outputs rather that of ergonomic purposes. The purpose is

to cross those GUIs from the PSM space to the PIM space.

Consequently, an application can have a quite complete

platform independent description and guaranteed against

technological obsolescence.

2.2. Proposition of a GUI-Independent Metamodel

After studying different GUI libraries, we were able to

identify the following basic platform independent graphical

user interface elements: Frame, Panel, GroupBox, TextField,

Button, ListBox, RadioButton, ComboBox, Image, Label,

and TextArea.

3. A Generic Metamodel

In the interest of making PIM to PSM transformations

possible, we went through many PSM graphical user

interface frameworks: precisely the very code used to create

the graphical user interface, some of which are AWT,

SWING, .NET WinForms and Tkinter so as to create an

abstract metamodel which is framework free. This

metamodel can be changed in any given time to include new

generic basic components we might find later on.

We were able to extract the most common I/O

components, such as TextField and Button. These

components are mainly divided into two sections: Containers

and widgets. Containers are the main UI components in

which widgets are put together to form a single window

while widgets are controls used to collect or present

information to the user. Menus are also included as a mean to

navigate the offered business functionality.

There are, however, some controls found only in certain, if

not in only one framework, such as the DataGrid in

Winforms, for this specific component for example, a custom

transformation is possible, if we take Java SWING for

instance, we can create a JTable, include some hyperlinks,

and the necessary commands for each hyperlink (the CRUD

operations in the DataGrid component).

The metamodel relied on Composite Design Pattern to

avoid unnecessary compositions and thus having a simple,

clean metamodel.

Fig. 1. Generic Metamodel.

 American Journal of Software Engineering and Applications 2017; 6(1): 5-12 7

4. A Metamodel for Java AWT Library

4.1. Description of the AWT Library

AWT [3] stands for Abstract Window Toolkit. It is

graphical user interface library for the Java SE platform.

AWT was Java’s first GUI framework [8], and it was

included in Java since version 1.0. It allows the user to create

windows and simple controls through its various classes and

methods. AWT contains a set of classes for creating user

interfaces and for painting graphics and images. A user

interface object such as a button or a Textbox is known as a

component in AWT terminology. There are mainly to kind of

components: containers and contained components. A

container is a component that can contain components and

other containers. Examples of containers are Frame and

Window classes. Examples of contained components are

Button and TextField …etc.

4.2. AWT Metamodel

Oracle stores its AWT Graphical user interface library in a

file named “rt. jar”. As a first step and in order to match the

exact classes in AWT we used reverse-engineering to get its

complete hierarchy. As a second step, we got rid of all

components that are not basic or are not part of graphical

components. Finally, we build our metamodel with

metaclasses names prefixed with AWT prefix to distinguish it

from other graphical metamodels.

Fig. 1. AWT Metamodel.

5. A Metamodel for Java Swing Library

5.1. Description of the SWING Library

Java Swing [4, 14] is a Java Graphical User interface

Widget toolkit which contains a rich set of components and

widgets to build a GUI with a native look but still having the

advantage of platform independence (meaning it can run

similarly in every OS).

Swing is the response to AWT problem [8], the use of the

native peers for each component or container, as a result, the

UI varies depending on the operating system, and it may

even act differently. AWT can also run its bugs [10] more

often because its peer-based approach relies heavily on the

underlying platform.

Swing includes built-in controls such as trees, image

buttons, tabbed panes, sliders, toolbars, color choosers,

tables, etc. Swing components are written entirely in Java

and thus are platform-independent. It provides a set of

"lightweight" (all-Java language) components that, to the

maximum degree possible, work the same on all

platforms.

5.2. SWING Metamodel

Just like the previous metamodel, SWING classes (which

would eventually become metaclasses since we are creating a

metamodel) were found in the same rt. jar, precisely under

“javax”.

Much like the AWT metamodel, SWING metamodel

contains the widely used containers and components,

some of which are already present in AWT, normal since

SWING inherits from the original graphical user interface

library, but has more sophisticated controls than AWT,

which in turn can be made through combining some of

AWT components.

8 Abdessamad Belangour et al.: Towards a Platform Independent Graphical User Interface

Fig. 3. SWING Metamodel.

6. A Metamodel for DotNet Winforms

Library

6.1. Description of the DotNet Winforms Library

Windows Forms [5] is a smart client technology for the.

NET Framework. It is a set of libraries that enables creating

graphical user interfaces with ease, compared to AWT and

SWING since the IDE (Visual Studio) gives a quick and

simple way to create GUIs using drag and drop –of course,

we can still do that for Java in NetBeans but it is much easier

in Visual Studio.

Since it is a windows product, it can take advantage of the

windows authentication [12], to keep things simple and

straightforward, using Windows login remains the best way

to authorize a user.

In Windows Forms, a form is a visual surface on which

information is displayed to the user. Windows Forms

applications are built by adding controls to forms and

developing responses to user actions, such as mouse clicks or

key presses. A control is a discrete user interface (UI)

element that displays data or accepts data input.

6.2. DotNet Winforms Metamodel

DotNet Winforms is the equivalent of AWT or SWING for

Windows applications, it has a rich set of graphical user

interface components, which presents a real challenge to

retrieve only the mainly used ones, of course after carefully

studying the previous frameworks and this one as well, the

abstract metamodel served as a reference point for the

components.

Thanks to reverse engineering, the exact hierarchy is

shown for each and every element present in the metamodel,

customized into the composite pattern for a more elegant

display.

Fig. 4. Winforms Metamodel.

 American Journal of Software Engineering and Applications 2017; 6(1): 5-12 9

7. A Metamodel for Python Library

7.1. Description of the Python Library

Unlike the previous languages (C# and Java), Python [16,

17] is a high level programming language. Its less verbose

and utterly simple syntax is a powerful asset to create clear

programs on both large and small scales.

Tkinter comes with most Python distributions [16], it

provides an object-oriented layer on top of the Tcl/Tk GUI

library and runs on Windows, UNIX, and Macintosh

systems.

Even though Tkinter does not provide a large set of

controls, it does come with extension libraries to expend its

capabilities, and it enables the users to use advanced GUI

controls, and create customizable ones.

Python has many GUI libraries, since Tkinter provides the

basic ones, such as wxPython [18], AVC, formLayout etc.

7.2. Tkinter Metamodel

Python is popular among programmers, for its many

qualities that other languages such as Java and C# lack, such

as the fast develop/debug. For instance, most of the internet

protocols are written in Python, etc. For these facts alone,

having a means to easily convert GUI to Python is

indispensable. The following metamodel Fig. 5 shows the

basic controls that the previous libraries have included in

their metamodels.

Fig. 5. Tkinter Metamodel.

8. Transforming a PIM GUI Interface to

a PSM GUI Interface

8.1. Transforming a PIM GUI Interface to AWT

After examining the various present metamodels,

transformation cannot be easier, since most components are

easily recognizable as in Java AWT for instance.

Consequently, we can easily go from the abstract element to

a platform-specific graphical user interface component,

resulting in a smooth transformation process.

Unfortunately, that is generally not the case for the rest of

the frameworks. Names do change from a technology to

another; ergo there is a need to make a list of generic

elements and their correspondence in the platform-specific

GUIs (see Table 1).

Table 1. Generic to AWT mappings.

PIM GUI JAVA-AWT

GenericFrame AwtFrame

GenericPanel AwtPanel

PIM GUI JAVA-AWT

GenericGroupBox AwtLabel

GenericLabel AwtLabel

GenericTextField AwtTextField

GenericTextArea AwtTextArea

GenericButton AwtButton

GenericCheckBox AwtCheckBox

GenericRadioButton AwtCheckBox+AwtCheckBoxGroup

GenericListBox AwtList

GenericComboBox AwtChoice

GenericDataGrid A grid of AwtLabel

GenericImage AwtImage

GenericMenuBar AwtMenuBar

GenericMenu AwtMenu

GenericMenuItem AwtMenuItem

8.2. Transforming a PIM GUI Interface to SWING

Although AWT and SWING share the same technology,

which is Java, they cannot be more different, since Swing is

an evolved technology, components that do not exist in AWT

are found. That is why it is imperative to have the changes

listed (see Table 2).

10 Abdessamad Belangour et al.: Towards a Platform Independent Graphical User Interface

Table 2. Generic to SWING mappings.

PIM GUI JAVA-SWING

GenericFrame SwingFrame

GenericPanel SwingPanel

GenericGroupBox SwingLabel

GenericLabel SwingLabel

GenericTextField SwingTextField

GenericTextArea SwingTextArea

GenericButton SwingButton

GenericCheckBox SwingCheckBox

GenericRadioButton SwingRadioButton

GenericListBox SwingList

GenericComboBox SwingComboBox

GenericDataGrid SwingTable

GenericImage SwingImage

GenericMenuBar SwingMenuBar

GenericMenu SwingMenu

GenericMenuItem SwingMenuItem

8.3. Transforming a PIM GUI Interface to WINFORMS

Microsoft has various graphical user interface libraries

including Winforms. Winforms of course has components

that are in common with previously seen frameworks, but

components names do differ. Listed below is the different

components stated in Metamodel Fig. 4, as well as generic

elements and their peers in. Net Winforms.

Table 3. Generic to WINFORMS mappings.

PIM GUI WINFORMS

GenericFrame WinForm

GenericPanel WinPanel

GenericGroupBox WinGroupBox

GenericLabel WinLabel

GenericTextField WinTextBox

GenericTextArea WinTextBox

GenericButton WinButton

GenericCheckBox WinCheckBox

GenericRadioButton WinRadioButton

GenericListBox WinListBox

GenericComboBox WinComboBox

GenericDataGrid WinDataGrid

GenericImage WinPictureBox

GenericMenuBar WinMainMenu

GenericMenu WinMenu

GenericMenuItem WinMenuItem

8.4. Transforming a PIM GUI Interface to Tkinter Python

Python has many GUI libraries, but Tkinter remains the de

facto standard GUI. Since we are looking for simplicity and

mostly interoperability, and Tkinter is included in Windows

and Mac’s versions of python, it is the best choice for the

transformation engine, but there are controls found in other

libraries as well, such as wxPython for the sophisticated

Datagrid. Here is the mapping from the Generic controls to

Tkinter’s controls.

Table 4. Generic to Tkinter mappings.

PIM GUI Tkinter Python

GenericFrame PyTk

GenericPanel PyFrame

GenericGroupBox PyLabelFrame

PIM GUI Tkinter Python

GenericLabel PyLabel

GenericTextField PyEntry

GenericTextArea PyText

GenericButton PyButton

GenericCheckBox PyCheckbutton

GenericRadioButton PyRadiobutton

GenericListBox PyListbox

GenericComboBox PyListbox

GenericDataGrid A set of PyLabels

GenericImage PyPhotoImage

GenericMenuBar PyMenu

GenericMenu PyMenu

GenericMenuItem PyMenu

9. Atlas Transformation Language ATL

9.1. Definition

ATL (Atlas Transformation Language) is a model

transformation language created by the Atlas group (INRIA

& LINA) [6]. Its relatively simple syntax allows quicker and

easier transformations from a source model to a target model.

It is widely used in the field of MDA (Model Driven

Architecture) and MDE (Model Driven Engineering). It may

be an Eclipse add-in, but the libraries can be used to develop

richer transformation applications, such as the transformation

engine, which is described in this paper.

MDA [9, 15] is an approach to software design

development and implementation, it uses models to structure

design specifications.

An ATL transformation file has two sections, one is

mandatory, the header section where we declare the source

and the target models, as well as the helpers and the

transformation rules.

9.2. Structure of Transformations

Transformation rules [7] are the most fundamental

components in a transformation file used to express the

transformation process.

ATL rules are composed of a source pattern and of a target

pattern. The source pattern as well as the target pattern are

respectively composed of a set of elements that specify a

type in the source and target metamodel. In both patterns, a

type from the source metamodel is selected and then related

to another type in the target metamodel. Additionally the

target type's elements are bound to their equivalents in the

source type.

10. Transformation Engine

In the previous sections, we defined a generic GUI

metamodel as well as metamodels for AWT, SWING,

TKinter and Winforms libraries. Mappings were then

elaborated between the GUI metamodel elements form one

side and the specific library elements from another side. In

this section, we show how we built an engine that execute the

 American Journal of Software Engineering and Applications 2017; 6(1): 5-12 11

specified transformations according to a two steps process.

The first step is to build a generic GUI model (serialized in

XMI) that conforms to the genericGUI metamodel as an

input for the engine. XMI (XML Metadata Interchange) [11]

is a use of the Extensible Markup Language (XML) that is

intended to provide a standard way for programmers and

other users to exchange information about metadata.

After that, the user chooses a specific library as a target.

This causes it is metamodel to be loaded in the engine and

according to the predefined mappings model elements to be

created. The output model is an XMI file that represents a

model, which conforms to the target library (Fig. 6).

Fig. 6. ATL transformation process.

The second step of the transformation transforms the

output XMI file to Code according to the specific library

development platform. Thus, for AWT and SWING code is

Java, for Winforms code is C# and for Tkinter code is Python

as we chose for our engine.

The transformation engine is a set of tasks. Firstly, we

created ecore files which are metamodels representations in

ATL terminology. Thus, five ecore files were created: the

source metamodel, which is the generic ecore, and the target

metamodels (AWT, Swing, Tkinter and Winforms). After

that, the source model was instantiated from the abstract

metamodel. For each target metamodel, an ATL

transformation file is needed: thus, we have four ATL files.

The EMF plugin allows us to create the implementation of

the ATL transformation files, which provides the necessary

modules for the automated transformation. Once the target

model is specified, the transformation engine creates the

target model, based on the corresponding ATL file.

EMF [13] (Eclipse modeling framework) being part of

MDA, is the implementation of a light version of MDA in

Eclipse.

The target model, which is an XMI file, is read and

parsed to extract the graphical components. Once the

components are extracted, the transformation engine takes

the data and builds the graphical user interfaces

accordingly. As mentioned earlier, if it is AWT or

SWING, then it is done in Java. If it is Winforms then a

C# application is called, and a web service is started

causing the data to be transferred to the C# application

that reads all the components and builds the GUI,

otherwise it calls the corresponding executable for the

chosen language, calls the web services and builds the

GUI.

Fig. 7. Transformation engine process.

11. Conclusion

In this paper, we presented an approach of isolating the

presentation logic of GUI applications from the

implementation space according to the MDA initiative. Thus,

not only the business logic of an application is preserved

across technologies, but also its graphical user interface. This

goal was firstly achieved by proposing an abstract generic

12 Abdessamad Belangour et al.: Towards a Platform Independent Graphical User Interface

metamodel of basic input output graphical controls. We then,

proposed a metamodel for every targeted GUI library.

Finally, Automatic transformations, we realized through a

tool developed for this purpose to generate the corresponding

code.

References

[1] Object Management Group: the MDA Guide Version 1.0.1,
document OMG/2003-06-01, (2003).

[2] Jan Oyvind Aagedal, Jean Bézivin., Peter F. Linington:
“Model-Driven Development”, ECOOP 2004 Workshop,
Oslo, Norway, (2004).

[3] Oracle Help Center: Java Platform Standard Edition 7
Documentation, Java AWT.

[4] Oracle Help Center: Java Platform Standard Edition 7
Documentation, javax. Swing.

[5] Microsoft: MSDN, Windows Forms Overview.

[6] ATLAS group, LINA & INRIA: ATL: Atlas Transformation
Language, User Manual, Nantes, January 2005, (2005).

[7] Frédéric Jouault, Ivan Kurtev: Transforming Models with
ATL, Nantes. MoDELS 2005 International Workshops
Doctoral Symposium, Educators Symposium Montego Bay,
Jamaica, October 2-7, 2005 Revised Selected Papers. pp 128-
138, (2006).

[8] Herbert Schildt: Java the complete reference 9th edition,
comprehensive coverage of the Java language, (2014).

[9] Wiley Publishing, Inc. David S. Frankel: Model Driven
Architecture, Applying MDA to Enterprise Computing,
(2008).

[10] Daniel Liang, Introduction to Java programming, 6th edition,
(2007).

[11] Stephen Brodsky, Object Interchange with XMI, June 2000,
(2000).

[12] Bill Sempf, Chuck Sphar, Stephen Randy Davis: C# 5.0 ALL-
IN-ONE FOR Dummies, (2013).

[13] Bill Moore, David Dean, Anna Gerber, Gunnar Wagenknecht,
Philippe Vanderheyden: Eclipse Development using the
Graphical Editing Framework and the Eclipse Modeling
Framework, February 2004, (2004).

[14] Chet Haase, Romain Guy: Filthy Rich Clients, Developing
Animated and Graphical Effects for Desktop Java™
Applications, (2007).

[15] Cephas Consulting Corp: The fast Guide to Model Driven
Architecture, The Basics of Model Driven Architecture
(MDA), January 2006 (2006).

[16] Alex Martelli, Anna Matelli Revenscroft, David Ascher:
Python Cookbook, 2end edition, March 2005 (2005).

[17] Mark Lutz, Python Pocket Reference, 4th Edition: Python in
Your Pocket, (2009).

[18] Bhaskar Chaudhary, Tkinter GUI Application Development
Blueprints: Master GUI programming in Tkinter as you
design, implement, and deliver ten real-world applications
from start to finish (2015).

