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Abstract: The TCP IP header has security vulnerabilities that make it prone to numerous kinds of attacks such as TCP SYN 

flooding, TCP RST, source quench, TCP session hijacking, TCP sequence number prediction, port scanning, CHARGEN and 

ECHO. The purpose of this paper was to investigate the attack vectors for various TCP IP header attacks and suggest possible 

countermeasures to curb these attacks. The goals were to gain an understanding on what makes the TCP IP header architecture 

vulnerable, so that appropriate countermeasures to address these shortcomings could be instigated; based on their performance 

in terms of their efficiency in curbing the various attack vectors exploiting these vulnerabilities. To achieve this, a combined 

experimental - simulation approach was employed using Wireshark network analyzer, Nmap, Ettercap, Aireplay-ng and 

Airodump-ng from Aircrack-ng suite software. A sample network utilizing the transmission control protocol was designed and 

some packets transmitted over it. The packet traffic volume, sequence numbers, acknowledgement numbers, associated 

protocols, TCP handshake and packets in flight were then studied. The results obtained indicate that the TCP IP header is 

indeed susceptible, most probably because the initial intent of the TCP was to share information and security was not a major 

concern at that time. However, as the internet is now open to the general public and not restricted to the department of defense 

where it was initially meant to serve, there is need to develop novel algorithms that could help mitigate the weaknesses 

inherent in the TCP architecture. This study is of help to network designers and administrators as it aids them to identify how 

to structure their networks for in-depth security by adding another layer of security at the TCP IP header level to support the 

network-based controls such as next generation firewalls. 

Keywords: TCP IP Header, Attack Vector, Vulnerabilities, Countermeasures 

 

1. Introduction 

The TCP was initially designed to enable communications 

within the department of defense (DoD). In these networks, 

security as not a major a consideration as these were private 

networks and therefore there was some levels of trust among 

the communication parties. However, with the advent of 

electronic commerce, many organizations are moving their 

business enterprise activities online so that they could take 

advantage of global market reach, 24 hour economy and 

efficiency that the internet offers.  

More and more people are getting connected using a 

variety of devices such as desktop computers, laptop 

computers, mobile phones, and tablets (Shaneel, 2014). This 

means that anonymity is on the rise as users do not know 

who is connecting to them, using what device and for what 

intentions.  

This reduces the level of trust among the various 

networked entities and increases the attack vectors. Many 

solutions have been suggested ranging from next generation 

firewalls, intrusion detection systems, intrusion prevention 

systems, anti-malware, and anti-spy software among others.  

However, all of these can be regarded as addressing the 

symptoms of the problem and not tackling the real problem, 

which is the weakness within the TCP architecture itself. In 

this paper, we take the security challenges and 

countermeasures at the TCP structure level.  

2. TCP IP Header Architecture 

To understand how the various attacks against the TCP 

protocol are rationalized, we first of all study the TCP IP 

header as shown in Figure 1. This figure shows that the TCP 

IP header consist of the source port, the destination port, 

sequence number, acknowledgement number, data offset, 

reserved field, the various flags (URG, ACK, PSH, RST, 
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SYN and FIN), the window size, checksum,, urgent pointer, 

options field and the padding field. 

 

Figure 1. TCP IP Header. 

The source port field is 16 bits wide and represents the 

port that is the originator of the TCP segment while the 

destination port field is a 16 bit field that is a port of the 

destination computer which is the recipient of this TCP 

segment (Avi, 2016). The sequence number and 

acknowledgement number fields are both 32 bits wide and 

they play a vital role in connection initialization during the 

three way handshake procedure, and during payload 

exchange, to keep track of the byte count in the data streams 

that are exchanged among the communicating machines.  

The data offset field is 4 bits wide and is the number of 32-

words in the TCP header. The reserved field is 6 bits wide 

and as the name suggest, it is set aside for future usage. The 

TP IP header also includes six control bits, called flags, each 

of which is 6 bits wide. The URG flag stands for urgent. A 

data packet whose URG bit is set is an urgent data and can 

therefore act like an interrupt for the ongoing communication 

between the sender and the receiver. The ACK field means 

acknowledgment and is used to indicate receipt of data 

packets, signaling data or to indicate packet loss. 

The PSH flag stands for push, meaning that when it is set, 

the corresponding TCP segment has to be put on the wire 

immediately. This is a fruitful requirement for highly petite 

messages and when echo-back is needed for individual 

characters. The RST flag means reset and when set, the 

interpretation is that the sender desires to reset the TCP 

connection. On the other hand, SYN flag stands for 

synchronization and when set, the consequence is that there 

is need for the synchronization of the sequence numbers. 

Lastly, the FIN control bit implies finish and when set, it 

means the source needs to lapse the connection.  

The window field is 16 bits wide and is employed to 

specify the upper limit of the number of data bytes that the 

receiver’s TCP is prepared to accept from the sender’s TCP 

in a particular TCP segment. The Checksum field is 16 bits 

wide and is used for error detection and correction. In his 

study, Avi (2016) noted that it is computed by accumulating 

all 16-bit words in a 12-byte pseudo header, the TCP header, 

and the data. In situations where the data has an odd number 

of bytes, a padding consisting of a zero byte is appended to 

the data. The pseudo-header and the padding are not 

transmitted with the TCP segment.  

The urgent pointer field is16 bits wide and is utilized in 

situations where urgent data is to be sent. In this scenario, the 

TCP header’s URG bit set, and the consequences are that the 

receiving TCP engine has to momentarily suspend 

accumulating the byte stream that might be in the middle of 

and give higher priority to the sent urgent data. 

The options field is of variable size. There are two 

dissimilar window related fields in this TCP header: the 

window field that is included in the header and the other one 

which is designated as the congestion window that only 

appears when data packet loss is detected via the failure to 

receive acknowledgements for the sent packets within the 

agreed time confines.  

The congestion window field is placed in the options field 

in the TCP header. The window field is employed by the 

sender TCP and its size is determined by the information 

received from the receiving TCP whereas the congestion 

window is set by the sending TCP. In the following sections, 

the various attack vectors exploiting TCP header 

architectural vulnerabilities are discussed. 

3. Research Approach 

This study involved the practical investigation of the 

various TCP attack vectors. As such, various network 

monitoring tools (Wireshark network analyzer, Nmap, 

Ettercap and  

Airodump-ng from Aircrack-ng suite) were employed for 

to achieve the paper objective. These tools included 

Wireshark and Nmap. The experimental setup consisted of 

three laptop machines designated as the server, attacker and 

user (client) as shown in Figure 2. 

 

Figure 2. Conceptual Set Up. 

The client machine was meant to transmit some packets to 

the server, via the hub. Since the client, server and attacker 

were linked together on the network through the hub, that 

attacker, using appropriate software, is able to observe the 

data being transmitted by the client. Therefore the network 

monitoring software were installed in the machine designated 

as the attacker. The practical set up that was employed is 

shown in Figure 3. 
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Figure 3. Experimental Set Up. 

As shown in Figure 3, the machine designated as an 

attacker had Wireshark network analyzer, Nmap, Ettercap, 

Aireplay-ng and Airodump-ng from Aircrack-ng suite 

installed in it for network monitoring. These software were 

able to capture, insert and analyze packets over the network. 

4. TCP Header Vulnerabilities 

In this paper, seven attack vectors, Port Scanning, TCP 

Sequence Number Prediction, TCP Session Hijacking, 

Source-Quench Attacks, TCP RST Attack, TCP SYN 

Flooding, CHARGEN and ECHO formed the basis for 

investigation. The sub-sections below discuss these attacks as 

well as the possible remedies.  

A. TCP SYN Flooding 

According to Welian (2010), in TCP communications, all 

new connections are initiated by having the data source send 

a SYN segment to the receiver. The SYN segment is a data 

packet with its synchronization flag bit set. A TCP SYN 

flooding involves a malicious machine continuously 

transmitting a TCP SYN segment to every port on the 

receiver.  

The receiver would then reply to the source’s TCP SYN 

request by a SYN-ACK segment from its open ports. This is 

a data segment whose SYN and ACK control bits are set. 

However, for the closed ports, the receiver replies with the 

RST segment. In an ideal three-way handshake, the source 

responds to the SYN-ACK reply from the receiver with an 

ACK segment as shown in Figure 4.  

 

Figure 4. Normal Three-Way Handshake. 

On the contrary, in TCP SYN flooding attack, a malicious 

machine never transmits back the expected ACK segment. 

Instead, once a connection for a specific port times out, 

another TCP SYN request will appear for the same port from 

the malicious machine (Guang, 2015). 

When a source and a receiver gets into this scenario of a 

never-ending stream of TCP SYN-ACK segments from the 

receiver not being acknowledged by the source, there is a an 

everlasting half-open connections with the target machine as 

shown in Figure 5. 

 

Figure 5. TCP SYN Flooding. 

Using this attack vector, an intruder can flood the target’s 

buffer that queues incoming requests for half-opened 

connections. These are connections that have completed 

SYN, SYN-ACK, but are yet to receive the final ACK from 

the requesting machine (Mirja, 2015). When this buffer 

queue is fully occupied by SYN floods, the target machine 

cannot take any additional connections. 

B. TCP RST Attack 

This attack can be employed to lapse an already established 

TCP communication between two target machines. This is 

common on telnet and secure shell (SSH) connections. Figure 6 

that follows shows the Wireshark captured traffic that illustrates 

the normal way of starting a TCP connection. 

In this captured traffic, {S} shows a SYN packet that is 

transmitted by the source machine of IP address 10.0.1.3 to 

destination, whose IP address is 10.100.101.102. To 
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accomplish this, the source uses port 80. Additionally, {S.} 

displays a SYNACK packet that the server of IP address 

10.100.101.102 sends back to the source machine on the port 

that the outbound request was originally made on. 

 

Figure 6. Normal TCP Connection Establishment. 

Finally, {.} shows an acknowledgement (ACK) packet that 

the source machine sends it to the destination machine on 

port 80 to signal that it has received the destination machine’s 

ACK packet.  

This essentially completes the TCP connection 

establishment phase. However, if after the connection 

establishment a reset (RST) packet is sent, this will serve to 

immediately exterminate the TCP connection and can be 

represented as shown in Figure 7. In TCP, an ongoing 

connection in which data transfer takes place between the 

two end points is in the ESTABLISHED state. However, at the 

start when a network interface is brought up on the local 

machine, the TCP connection is in the LISTEN state. When a 

local host wants to establish a connection with a remote host, 

it transmits a SYN packet to the remote host. This causes the 

about-to-be established TCP connection to transition into the 

SYN SENT state. The remote host normally responds with a 

SYN/ACK packet, to which the local should send back an 

ACK packet as the connection on the local transitions into the 

ESTABLISHED state. This is referred to as a three-way 

handshake. 

On the other hand, if the local host receives a SYN packet 

from a remote host, the state of the connection on the local 

host transitions into the SYN RECD state as the local sends a 

SYN/ACK packet back to the remote. If the remote comes 

back with an ACK packet, the local transitions into the 

ESTABLISHED state. This is again a three-way handshake. 

Regarding the state transition for the termination of a 

connection, each end must independently close its half of the 

connection. Suppose that the local host wishes to terminate 

the connection first. It sends to the remote a FIN packet, 

(which is the 6th flag bit in the TCP header of Figure 1) and 

the TCP connection on the local transitions from 

ESTABLISHED to FIN WAIT 1. 

The remote must now respond with an ACK packet which 

causes the local to transition to the FIN WAIT 2 state. Now 

the local waits to receive a FIN packet from the remote. 

When that happens, the local replies back with a ACK packet 

as it transitions into the TIME WAIT state. The only transition 

from this state is a timeout after two segment lifetimes to the 

state CLOSED. 

On the contrary, when the remote host initiates termination 

of a connection by sending a FIN packet to the local host, the 

following happens: The local host sends an ACK packet to 

the Remote host and transitions into the CLOSE WAIT state. 

It next sends a FIN packet to remote and transitions into the 

LAST ACK state. It now waits to receive an ACK packet from 

the remote and when it receives the packet, the local 

transitions to the state CLOSED. 

Since Wireshark enables intruders to monitor the TCP 

packet exchanges between the source and destination 

machines, it becomes possible for the intruder to send a RST 

packet with the proper values (, that is, a packet whose RST 

packet flag is set. To accomplish this, a spoofed source IP 

address is employed such that it matches that of the source 

machine, 10.0.1.3.  

Moreover, proper source port has to be used (port 80 in 

this case), proper destination IP (address 10.100.101.102 in 

this case), proper destination port (port 80 for this case). 

Once constructed, it is launched to break an ongoing telnet 

connection between the two communicating parties (Robbie, 

2015). Since video streaming is highly sensitive to delay and 

jitter, a TCP RST attack can have severe consequences. An 

intruder may then be interested in interrupting the TCP 

session established between the target and the video sharing 

website.  

 

Figure 7. TCP Establishment Phase. 

This takes advantage of the fact that in all video streaming 

applications, a TCP session is normally instituted between 

the client and the content server. If the intruder is able to send 

TCP RST packets over and over again, this will render a 

connection between the source and destination impossible to 

establish. Effectively, the TCP traffic is prevented from 

flowing between the source and destination. 

C. Source-Quench Attacks 

In his study, Bellovin (2013), illustrate that intruders can 

capitalize on the ICMP source quench signals that are ideally 

employed by routers overwhelmed by data traffic to instruct 

TCP data sources to decrease their transmission rate. Figure 8 

shows a typical source quench message. 
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Figure 8. Typical Source Quench Message. 

For this attack to succeed, the Type field must be set to a 

value of 4, the Code field must be set to a value of zero (0) 

and the IP header and additional data must be employed by 

the intruder to match the reply with the associated request. 

In this scenario, the malicious machine falsifies such 

signals in an effort to employ them as a vector to launch a 

denial of service attack on the TCP sources.  

Apart from source quench messages, other internet control 

management protocol (ICMP) messages are able to be 

maliciously employed to reset an ongoing communication 

between two or more parties. This is achieved by having the 

malicious machine transmitting to any of the participating 

parties an ICMP error signal claiming that there is a hard 

error.  

Hard errors are ICMP error signals of type 3 that indicates 

‘destination unreachable’, code 2 that shows ‘protocol 

unreachable’, code 3 that indicates ‘port unreachable’, or 

code 4 that shows ‘fragmentation needed’ and the DF bit is 

set. Since RFC 1122 requires that a host machine should 

terminate the corresponding TCP connection upon receipt of 

an ICMP error message, this attack effectively tears down the 

communication among parties.  

D. TCP Session Hijacking 

The ultimate goal of this attack is to takeover an already 

established TCP connection session among communicating 

parties. John & Barry (2013) explain that this is achieved by 

infusing malicious contents into this TCP session. This is 

most common in telnet remote communications where the 

target machine can be made to execute the inserted malicious 

code. Figure 9 shows a normal three way handshake and data 

exchange among communicating entities. 

 

Figure 9. Ideal Three Way Handshake And Data Transmissions. 

This figure shows that the client initiates a three way 

handshake by sending a packet whose SYN control bit is set 

(Mahdavi, 2015). The server responds to this request by 

transmitting a SYN-ACK packet which is a packet whose 

SYN and ACK control bits are set. The client then transmits 

ACK to acknowledge the server’s SYN-ACK response.  

Afterwards, the two machines engage in a TCP 

communication until the source sends a packet whose FIN 

flag is set, to indicate to the server that it wants to terminate 

the connection. Figure 8 illustrates a different scenario where 

the TCP connection has been hijacked. 
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Figure 10. TCP Session Hijack. 

On the other hand, Figure 8 shows data exchange where a 

malicious machine has taken over the TCP communication 

among the communicating entities. In this scenario, the 

malicious machine has sent data segment ‘Z’ to the server, 

disguised as the legitimate client.  

This attack is made easier by the fact that in most network 

monitoring tools such as Wireshark, the TCP sequence 

number displayed is the relative one, meaning that the actual 

sequence number can be computed by adding the initial 

sequence number to the present relative sequence number. 

E. TCP Sequence Number Prediction 

Gont (2015) noted that during the three way handshake, 

the communicating devices exchange startup packets 

containing sequence numbers. Considering these two 

machines as X (client) and Y (server), then X send to Y a 

SYN packet with a corresponding initial sequence number. 

The sequence number is a randomly generated number S, 

also known as the initial sequence number (ISN). The server 

X transmits to X a SYN-ACK packet as shown in Figure 11.  

This packet holds what X anticipates to be the next 

sequence number from Y, the number S+1, in X’s 

Acknowledgement Number field. The SYN-ACK packet 

must also hold in its sequence Number field a different 

randomly generated number T. upon receipt of SYN-ACK, X 

replies with an ACK packet with its Acknowledgement 

Number field holding its anticipated sequence number that Y 

will utilize in it next TCP transmission to X, which is T+1. 

This completes the three way handshake for initializing a 

TCP connection among the communicating entities. As this 

example illustrates, T and S are incremented in a predictable 

manner that can be easily determined by a malicious 

machine. 

 

Figure 11. TCP Sequence Number Prediction. 

As Figure 9 demonstrates, the TCP packet with sequence 

number 10200 is the TCP SYN packet that is sent by the 

client to the server to request for the establishment of a TCP 

connection. The server responds with SYN-ACK packet of 

sequence number 10201. 

Afterwards, the client acknowledges and goes on to 

request the required services, which is the downloading of a 

movie located on the server. This is request whose sequence 

number is 10203. This illustrates the ease with which the 

sequence numbers can be predicted to launch other attacks. 

F. Port Scanning 

This mechanism is used as an attack vector by allowing 

malicious users to determine open TCP ports as well as 

services running on these ports. This requires that a TCP 
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connection be established to the victim machine. For 

example, in UNIX systems, may employ the connect () call 

to open a connection with the victim’s ports (Welian, 2010). 

This call will succeed if that particular victim is listening on 

that port. Port and service discovery can also be established 

using a SYN scanning technique.  

In this technique, a packet is sent to the victim in pretence 

of the need to create a real TCP connection. A SYN-ACK 

will then be an indication of an active receiver while a RST 

message will be an implication of a port with no listening 

services. Figure 10 shows a sample data from a port scan. 

 

Figure 12. Data From Port Probing. 

This figure shows that this port scan led to discovery of 

port number, running protocol, state of the port as well as the 

services running on these ports. Another attack involving 

probing is the FIN scanning.  

In this technique, FIN packets are sent and RST packets 

are waited from closed ports. The rationale is that an active 

listener will discard this packet silently without any need to 

reply. Hence if a response is received, it would b an 

indication of a closed port, upon which another set of ports 

are probed. 

G. CHARGEN and ECHO 

The UNIX systems implement CHARGEN services in 

their TCP/IP. This service executes on both UDP and TCP 

port numbers 19 and it works by having the receiver transmit 

back a packet with 0 to 512 randomly chosen characters for 

every incoming UDP packet.  

In the case of ECHO that runs on both UDP and TCP port 

numbers 7, the requirements are that the receiver institutes a 

reply with whatever it has received for each incoming packet.  

Although these two services are crucial for diagnostic 

purposes, they can easily be compromised and be used as 

attack vectors for denial of service (Guang, 2015).  

To put this into context, we consider a case where the 

CHARGEN and ECHO services have established a chain 

between themselves. In this scenario, these two services will 

generate traffic continuously which in the final analysis will 

lead to a very high number of data traffic on the network. 

This is a denial of service (DOS) as illustrated by Figure 13.  

 

Figure 13. CHARGEN and ECHO Initiated DOS. 

As an illustration, we consider two machines X and Y and 

an intruder Z. Using spoofed IP address, Z sends a UDP 

packet, whose source address field is set with Y’s IP address, 

the destination IP address field is set as X, its source port set 

as 7, and destination port set as 19. Upon arrival at machine 

X, it will imagine that Y requires an access to the 

CHARGEN service.  

Therefore, X will transmit back a packet to Y’s ECHO 

port, leading to the creation of a chain and therefore the 

resulting high volumes of traffic generated on the network. 

Ultimately, this will lead to the legitimate users experiencing 

a reduction in the network data rates. 

5. Discussions 

In this section, the various TCP-based techniques that the 

researchers believe could help reduce or mitigate the TCP IP 

header attacks and vulnerabilities are elaborated. These 

mechanisms include TCP pacing, random early detection and 

selective acknowledgements.  

However, it was noted that there is some kind of trade-off 

incurred in the utilization of these techniques. Notably 

present in all these is the notion of acknowledgements, which 

have been shown to facilitate other attacks such as denial of 

service attacks exploiting the three way handshake sequence 

number-acknowledgement exchanges over the transmission 

channels.  

A. TCP Pacing 

The rationale of this technique is that if the TCP packet 

sources can space the data packets to be sent away from each 

other, then it could be possible to mitigate the burst packet 

transmissions (Wei et al., 2010). The argument is that most 

TCP IP attacks in one way or another lead to denial of 

service attacks which lead to congestions and eventual packet 

losses.  

Figure 14 gives an illustration of this mechanism. This 

figure shows three data packets in transit in the 

communication channel. Note that these data packets are 

separated from each other by a predetermined gap, called 
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‘rest position’ for this study. Therefore, by preventing burst 

transmissions, the durations of congestions and dropping of 

packets by receivers will be reduced. Figure 15 compares 

paced against non-paged TCP connections. 

 

Figure 14. TCP Pacing. 

This graph of latency against flows measured the latency 

of 16 parallel SACK flows in a local area network, where 

each flow sends one megabyte of data. 

 

Figure 15. Paced Versus Non-Paced TCP Connections. 

Figure 15 shows that TCP (Transmission Control Protocol) 

pacing evens out the transmission of a window of packets 

over a round-trip time (RTT), so that packets are injected into 

the network at the desired rate of 

congestion_window_size/RTT. In so doing, it reduces 

burstiness of TCP traffic caused by ACK compression. 

Therefore, paced connections have generally low latency 

as seen in Figure 15. It works by creating some ‘rest 

positions’ before the TCP sender could push some packets 

into the transmission channel. This leads to the transmission 

of discontinuous streams of data as opposed to the 

continuous bursts of data packets. 

B. Random Early Detection 

This algorithm manages router buffer queues and discards 

data packet during congestion based on a certain queue cut 

off limit (Zhang et al., 2010). The effect of this is that 

congestion control is initialized just before any actual 

network congestion event occurs as shown in Figure 16.  

Figure 16 demonstrates the fact that the congestion 

avoidance swings into action just before the slow start 

algorithm could reach its slow start threshold value. 

Therefore, the routers and other internetworking devices can 

react to denial service attacks before the actual denial of 

service attack is fully exploited. 

 

Figure 16. Random Early Detection. 

In doing this, the receivers will monitor their buffer queues 

and start dropping packets with a predetermined probability 

once their threshold values have been exceeded. Effectively, 

the packet sources will initiate slow start and congestion 

avoidance algorithms long before the actual congestion 

occurs. In so doing, it prevents high bandwidth TCP 

connections from inhibiting transmissions for low bandwidth 

connections. 

Moreover, it ensures TCP fairness in that it mitigates the 

chance that some unfriendly TCP implementations may gain 

unreasonable advantage. It does this by eliminating the 

reliance on TCP source and receiver trust relationships. In 

fact, this technique will help prevent advanced persistent 

threats which normally starve other TCP communications in 

their bid to gain high bandwidth for large files transfers. This 

is because it ensures that connections utilizing large share of 

the bandwidth have their packet loss probability higher than 

that of connections with low bandwidth usage.  

C. Selective Acknowledgements 

TCP’s poor handing of congestion that leads to 

unnecessary retransmission of packets emanates from the fact 

that destination machine has no mechanism of instructing the 

source that it has received some packets which are currently 

in its buffer queue.  

Therefore, when retransmission occurs, even the packets 

currently on the receiver’s buffer are retransmitted. This is 

imposed by the requirement that the TCP destination send 

ACK only for the packets it has received correctly. In ideal 
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situations, the source should transmit only the lost segments. 

This is enabled by selective acknowledgement (SACK), a 

technique implemented as a TCP option.  

This requires that the source and receiver negotiate the use 

of this TCP option via the TCP header option fields (Stretch, 

2010). In such cases then, the destination machine can 

provide the source with feedback in the form of selective 

acknowledgements option. The destination machine instructs 

the source on which blocks of data it has received. This takes 

the format shown in Figure 17.  

 

Figure 17. TCP SACK Option. 

Figure 17 shows that SACK employs a list of blocks that 

serve to inform the source on the byte stream that has already 

been received successfully. However, the source does not 

have to depend on the destination machine to sustain the out 

of order packets.  

If the receiver were to re-order and queue the packets that 

had been sent between the time when the segment was 

initially sent and the time when the retransmission window 

expired, will performance gain be achieved. This is because 

in this case, the source will limit its retransmissions to only 

those packets that have been expressly reported lost.  

As an illustration, Figure 18 shows a Wireshark captured 

packet, which contains a demonstration of SACKs in action. 

The presence of the SACK permitted (SACK_PERM) option 

in the two SYN packets, packet number 1 and packet number 

2 imply that both end hosts support selective 

acknowledgments.  

Toward the end of the capture, it can be seen that packet 

number 30 was received out of order, and the client has sent a 

duplicate acknowledgment in packet number 31. 

 

Figure 18. SACK PERMITTED. 

This packet includes a SACK option indicating that the segment in packet number 30 was received. 

However, the SACK option cannot simply specify which segment(s) were received. For this reason, it specifies the left and 

right edges of data that has been received beyond the packet's acknowledgment number as shown in Figure 19. A single SACK 

option can specify multiple noncontiguous blocks of data (such as bytes 200-299 and 400-499). 
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Figure 19. Left And Right Edges Of Data. 

Figure 18 illustrates that there is duplicate acknowledgment repeated in packets number 33, 35, and 37. In each, the SACK 

is expanded to include the noncontiguous segments the server has continued sending. Finally, the server retransmits the 

missing segment in packet number 38, as shown in Figure 20. 

 

Figure 20. Server Packet Re-Transmission. 

Note the “HTTP 1514 [TCP Retransmission] HTTP/1.1 

200 OK (text/javascript)” for packet 38. This information 

confirms that the server has indeed retransmitted the TCP 

packet. After this retransmission, the client updates its 

acknowledgment number appropriately in packet number 39. 

6. Conclusions 

This paper studied the various TCP header vulnerabilities 

such as Port Scanning, TCP Sequence Number Prediction, 

TCP Session Hijacking, Source-Quench Attacks, TCP RST 

Attack, TCP SYN Flooding, CHARGEN and ECHO, that 

could be exploited as attack vectors to launch other attacks. It 

has also suggested techniques such as selective 

acknowledgements, random early detection and TCP pacing 

could help mitigate the various TCP Header attacks. All these 

mechanisms are geared towards proper handling of 

congestion so that it could not be used by malicious users to 

unfairly gain their bandwidth at the expense of other network 

users. However, there is some form of trade-offs involved, 
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especially for random early detection where TCP connections 

with high bandwidth usage have their packets dropped with 

high probability. The consequences are that high bandwidth 

data transfers such as video traffic, for example, will have 

more of their packets dropped compared to text documents 

transfer. This will effectively lead to more buffering, an 

unwanted scenario in video streaming.  

With SACK, the source is able to reduce its 

retransmissions significantly. However, packets that are out 

of order and still in the receiver’s buffer have to be resent 

since the destination machine has no mechanism of 

distinguishing the source the packets that have been lost and 

the ones that are out of order. TCP pacing will lead to long 

network delays since the data packets are distantly spaced 

hence leading to poor network performance. All these 

shortcomings point to the requirement for novel approaches 

either from the TCP header architecture perspective or the 

countermeasure perspective to effectively mitigate TCP 

header vulnerabilities. 
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