

American Journal of Science, Engineering and Technology
2017; 2(1): 39-49

http://www.sciencepublishinggroup.com/j/ajset

doi: 10.11648/j.ajset.20170201.17

TCP IP Header Attack Vectors and Countermeasures

Vincent O. Nyangaresi, Solomon O. Ogara, Silvance O. Abeka

School of Informatics and Innovative Systems, Jaramogi Oginga Odinga University of Science & Technology, Kisumu, Kenya

Email address:

vincentyoung88@gmail.com (V. O. Nyangaresi), solomon.ogara@gmail.com (S. O. Ogara), silvancea@gmail.com (S. O. Abeka)

To cite this article:
Vincent O. Nyangaresi, Solomon O. Ogara, Silvance O. Abeka. TCP IP Header Attack Vectors and Countermeasures. American Journal of

Science, Engineering and Technology. Vol. 3, No. 1, 2017, pp. 39-49. doi: 10.11648/j.ajset.20170201.17

Received: November 10, 2016; Accepted: January 31, 2017; Published: February 27, 2017

Abstract: The TCP IP header has security vulnerabilities that make it prone to numerous kinds of attacks such as TCP SYN

flooding, TCP RST, source quench, TCP session hijacking, TCP sequence number prediction, port scanning, CHARGEN and

ECHO. The purpose of this paper was to investigate the attack vectors for various TCP IP header attacks and suggest possible

countermeasures to curb these attacks. The goals were to gain an understanding on what makes the TCP IP header architecture

vulnerable, so that appropriate countermeasures to address these shortcomings could be instigated; based on their performance

in terms of their efficiency in curbing the various attack vectors exploiting these vulnerabilities. To achieve this, a combined

experimental - simulation approach was employed using Wireshark network analyzer, Nmap, Ettercap, Aireplay-ng and

Airodump-ng from Aircrack-ng suite software. A sample network utilizing the transmission control protocol was designed and

some packets transmitted over it. The packet traffic volume, sequence numbers, acknowledgement numbers, associated

protocols, TCP handshake and packets in flight were then studied. The results obtained indicate that the TCP IP header is

indeed susceptible, most probably because the initial intent of the TCP was to share information and security was not a major

concern at that time. However, as the internet is now open to the general public and not restricted to the department of defense

where it was initially meant to serve, there is need to develop novel algorithms that could help mitigate the weaknesses

inherent in the TCP architecture. This study is of help to network designers and administrators as it aids them to identify how

to structure their networks for in-depth security by adding another layer of security at the TCP IP header level to support the

network-based controls such as next generation firewalls.

Keywords: TCP IP Header, Attack Vector, Vulnerabilities, Countermeasures

1. Introduction

The TCP was initially designed to enable communications

within the department of defense (DoD). In these networks,

security as not a major a consideration as these were private

networks and therefore there was some levels of trust among

the communication parties. However, with the advent of

electronic commerce, many organizations are moving their

business enterprise activities online so that they could take

advantage of global market reach, 24 hour economy and

efficiency that the internet offers.

More and more people are getting connected using a

variety of devices such as desktop computers, laptop

computers, mobile phones, and tablets (Shaneel, 2014). This

means that anonymity is on the rise as users do not know

who is connecting to them, using what device and for what

intentions.

This reduces the level of trust among the various

networked entities and increases the attack vectors. Many

solutions have been suggested ranging from next generation

firewalls, intrusion detection systems, intrusion prevention

systems, anti-malware, and anti-spy software among others.

However, all of these can be regarded as addressing the

symptoms of the problem and not tackling the real problem,

which is the weakness within the TCP architecture itself. In

this paper, we take the security challenges and

countermeasures at the TCP structure level.

2. TCP IP Header Architecture

To understand how the various attacks against the TCP

protocol are rationalized, we first of all study the TCP IP

header as shown in Figure 1. This figure shows that the TCP

IP header consist of the source port, the destination port,

sequence number, acknowledgement number, data offset,

reserved field, the various flags (URG, ACK, PSH, RST,

40 Vincent O. Nyangaresi et al.: TCP IP Header Attack Vectors and Countermeasures

SYN and FIN), the window size, checksum,, urgent pointer,

options field and the padding field.

Figure 1. TCP IP Header.

The source port field is 16 bits wide and represents the

port that is the originator of the TCP segment while the

destination port field is a 16 bit field that is a port of the

destination computer which is the recipient of this TCP

segment (Avi, 2016). The sequence number and

acknowledgement number fields are both 32 bits wide and

they play a vital role in connection initialization during the

three way handshake procedure, and during payload

exchange, to keep track of the byte count in the data streams

that are exchanged among the communicating machines.

The data offset field is 4 bits wide and is the number of 32-

words in the TCP header. The reserved field is 6 bits wide

and as the name suggest, it is set aside for future usage. The

TP IP header also includes six control bits, called flags, each

of which is 6 bits wide. The URG flag stands for urgent. A

data packet whose URG bit is set is an urgent data and can

therefore act like an interrupt for the ongoing communication

between the sender and the receiver. The ACK field means

acknowledgment and is used to indicate receipt of data

packets, signaling data or to indicate packet loss.

The PSH flag stands for push, meaning that when it is set,

the corresponding TCP segment has to be put on the wire

immediately. This is a fruitful requirement for highly petite

messages and when echo-back is needed for individual

characters. The RST flag means reset and when set, the

interpretation is that the sender desires to reset the TCP

connection. On the other hand, SYN flag stands for

synchronization and when set, the consequence is that there

is need for the synchronization of the sequence numbers.

Lastly, the FIN control bit implies finish and when set, it

means the source needs to lapse the connection.

The window field is 16 bits wide and is employed to

specify the upper limit of the number of data bytes that the

receiver’s TCP is prepared to accept from the sender’s TCP

in a particular TCP segment. The Checksum field is 16 bits

wide and is used for error detection and correction. In his

study, Avi (2016) noted that it is computed by accumulating

all 16-bit words in a 12-byte pseudo header, the TCP header,

and the data. In situations where the data has an odd number

of bytes, a padding consisting of a zero byte is appended to

the data. The pseudo-header and the padding are not

transmitted with the TCP segment.

The urgent pointer field is16 bits wide and is utilized in

situations where urgent data is to be sent. In this scenario, the

TCP header’s URG bit set, and the consequences are that the

receiving TCP engine has to momentarily suspend

accumulating the byte stream that might be in the middle of

and give higher priority to the sent urgent data.

The options field is of variable size. There are two

dissimilar window related fields in this TCP header: the

window field that is included in the header and the other one

which is designated as the congestion window that only

appears when data packet loss is detected via the failure to

receive acknowledgements for the sent packets within the

agreed time confines.

The congestion window field is placed in the options field

in the TCP header. The window field is employed by the

sender TCP and its size is determined by the information

received from the receiving TCP whereas the congestion

window is set by the sending TCP. In the following sections,

the various attack vectors exploiting TCP header

architectural vulnerabilities are discussed.

3. Research Approach

This study involved the practical investigation of the

various TCP attack vectors. As such, various network

monitoring tools (Wireshark network analyzer, Nmap,

Ettercap and

Airodump-ng from Aircrack-ng suite) were employed for

to achieve the paper objective. These tools included

Wireshark and Nmap. The experimental setup consisted of

three laptop machines designated as the server, attacker and

user (client) as shown in Figure 2.

Figure 2. Conceptual Set Up.

The client machine was meant to transmit some packets to

the server, via the hub. Since the client, server and attacker

were linked together on the network through the hub, that

attacker, using appropriate software, is able to observe the

data being transmitted by the client. Therefore the network

monitoring software were installed in the machine designated

as the attacker. The practical set up that was employed is

shown in Figure 3.

 American Journal of Science, Engineering and Technology 2017; 3(1): 39-49 41

Figure 3. Experimental Set Up.

As shown in Figure 3, the machine designated as an

attacker had Wireshark network analyzer, Nmap, Ettercap,

Aireplay-ng and Airodump-ng from Aircrack-ng suite

installed in it for network monitoring. These software were

able to capture, insert and analyze packets over the network.

4. TCP Header Vulnerabilities

In this paper, seven attack vectors, Port Scanning, TCP

Sequence Number Prediction, TCP Session Hijacking,

Source-Quench Attacks, TCP RST Attack, TCP SYN

Flooding, CHARGEN and ECHO formed the basis for

investigation. The sub-sections below discuss these attacks as

well as the possible remedies.

A. TCP SYN Flooding

According to Welian (2010), in TCP communications, all

new connections are initiated by having the data source send

a SYN segment to the receiver. The SYN segment is a data

packet with its synchronization flag bit set. A TCP SYN

flooding involves a malicious machine continuously

transmitting a TCP SYN segment to every port on the

receiver.

The receiver would then reply to the source’s TCP SYN

request by a SYN-ACK segment from its open ports. This is

a data segment whose SYN and ACK control bits are set.

However, for the closed ports, the receiver replies with the

RST segment. In an ideal three-way handshake, the source

responds to the SYN-ACK reply from the receiver with an

ACK segment as shown in Figure 4.

Figure 4. Normal Three-Way Handshake.

On the contrary, in TCP SYN flooding attack, a malicious

machine never transmits back the expected ACK segment.

Instead, once a connection for a specific port times out,

another TCP SYN request will appear for the same port from

the malicious machine (Guang, 2015).

When a source and a receiver gets into this scenario of a

never-ending stream of TCP SYN-ACK segments from the

receiver not being acknowledged by the source, there is a an

everlasting half-open connections with the target machine as

shown in Figure 5.

Figure 5. TCP SYN Flooding.

Using this attack vector, an intruder can flood the target’s

buffer that queues incoming requests for half-opened

connections. These are connections that have completed

SYN, SYN-ACK, but are yet to receive the final ACK from

the requesting machine (Mirja, 2015). When this buffer

queue is fully occupied by SYN floods, the target machine

cannot take any additional connections.

B. TCP RST Attack

This attack can be employed to lapse an already established

TCP communication between two target machines. This is

common on telnet and secure shell (SSH) connections. Figure 6

that follows shows the Wireshark captured traffic that illustrates

the normal way of starting a TCP connection.

In this captured traffic, {S} shows a SYN packet that is

transmitted by the source machine of IP address 10.0.1.3 to

destination, whose IP address is 10.100.101.102. To

42 Vincent O. Nyangaresi et al.: TCP IP Header Attack Vectors and Countermeasures

accomplish this, the source uses port 80. Additionally, {S.}

displays a SYNACK packet that the server of IP address

10.100.101.102 sends back to the source machine on the port

that the outbound request was originally made on.

Figure 6. Normal TCP Connection Establishment.

Finally, {.} shows an acknowledgement (ACK) packet that

the source machine sends it to the destination machine on

port 80 to signal that it has received the destination machine’s

ACK packet.

This essentially completes the TCP connection

establishment phase. However, if after the connection

establishment a reset (RST) packet is sent, this will serve to

immediately exterminate the TCP connection and can be

represented as shown in Figure 7. In TCP, an ongoing

connection in which data transfer takes place between the

two end points is in the ESTABLISHED state. However, at the

start when a network interface is brought up on the local

machine, the TCP connection is in the LISTEN state. When a

local host wants to establish a connection with a remote host,

it transmits a SYN packet to the remote host. This causes the

about-to-be established TCP connection to transition into the

SYN SENT state. The remote host normally responds with a

SYN/ACK packet, to which the local should send back an

ACK packet as the connection on the local transitions into the

ESTABLISHED state. This is referred to as a three-way

handshake.

On the other hand, if the local host receives a SYN packet

from a remote host, the state of the connection on the local

host transitions into the SYN RECD state as the local sends a

SYN/ACK packet back to the remote. If the remote comes

back with an ACK packet, the local transitions into the

ESTABLISHED state. This is again a three-way handshake.

Regarding the state transition for the termination of a

connection, each end must independently close its half of the

connection. Suppose that the local host wishes to terminate

the connection first. It sends to the remote a FIN packet,

(which is the 6th flag bit in the TCP header of Figure 1) and

the TCP connection on the local transitions from

ESTABLISHED to FIN WAIT 1.

The remote must now respond with an ACK packet which

causes the local to transition to the FIN WAIT 2 state. Now

the local waits to receive a FIN packet from the remote.

When that happens, the local replies back with a ACK packet

as it transitions into the TIME WAIT state. The only transition

from this state is a timeout after two segment lifetimes to the

state CLOSED.

On the contrary, when the remote host initiates termination

of a connection by sending a FIN packet to the local host, the

following happens: The local host sends an ACK packet to

the Remote host and transitions into the CLOSE WAIT state.

It next sends a FIN packet to remote and transitions into the

LAST ACK state. It now waits to receive an ACK packet from

the remote and when it receives the packet, the local

transitions to the state CLOSED.

Since Wireshark enables intruders to monitor the TCP

packet exchanges between the source and destination

machines, it becomes possible for the intruder to send a RST

packet with the proper values (, that is, a packet whose RST

packet flag is set. To accomplish this, a spoofed source IP

address is employed such that it matches that of the source

machine, 10.0.1.3.

Moreover, proper source port has to be used (port 80 in

this case), proper destination IP (address 10.100.101.102 in

this case), proper destination port (port 80 for this case).

Once constructed, it is launched to break an ongoing telnet

connection between the two communicating parties (Robbie,

2015). Since video streaming is highly sensitive to delay and

jitter, a TCP RST attack can have severe consequences. An

intruder may then be interested in interrupting the TCP

session established between the target and the video sharing

website.

Figure 7. TCP Establishment Phase.

This takes advantage of the fact that in all video streaming

applications, a TCP session is normally instituted between

the client and the content server. If the intruder is able to send

TCP RST packets over and over again, this will render a

connection between the source and destination impossible to

establish. Effectively, the TCP traffic is prevented from

flowing between the source and destination.

C. Source-Quench Attacks

In his study, Bellovin (2013), illustrate that intruders can

capitalize on the ICMP source quench signals that are ideally

employed by routers overwhelmed by data traffic to instruct

TCP data sources to decrease their transmission rate. Figure 8

shows a typical source quench message.

 American Journal of Science, Engineering and Technology 2017; 3(1): 39-49 43

Figure 8. Typical Source Quench Message.

For this attack to succeed, the Type field must be set to a

value of 4, the Code field must be set to a value of zero (0)

and the IP header and additional data must be employed by

the intruder to match the reply with the associated request.

In this scenario, the malicious machine falsifies such

signals in an effort to employ them as a vector to launch a

denial of service attack on the TCP sources.

Apart from source quench messages, other internet control

management protocol (ICMP) messages are able to be

maliciously employed to reset an ongoing communication

between two or more parties. This is achieved by having the

malicious machine transmitting to any of the participating

parties an ICMP error signal claiming that there is a hard

error.

Hard errors are ICMP error signals of type 3 that indicates

‘destination unreachable’, code 2 that shows ‘protocol

unreachable’, code 3 that indicates ‘port unreachable’, or

code 4 that shows ‘fragmentation needed’ and the DF bit is

set. Since RFC 1122 requires that a host machine should

terminate the corresponding TCP connection upon receipt of

an ICMP error message, this attack effectively tears down the

communication among parties.

D. TCP Session Hijacking

The ultimate goal of this attack is to takeover an already

established TCP connection session among communicating

parties. John & Barry (2013) explain that this is achieved by

infusing malicious contents into this TCP session. This is

most common in telnet remote communications where the

target machine can be made to execute the inserted malicious

code. Figure 9 shows a normal three way handshake and data

exchange among communicating entities.

Figure 9. Ideal Three Way Handshake And Data Transmissions.

This figure shows that the client initiates a three way

handshake by sending a packet whose SYN control bit is set

(Mahdavi, 2015). The server responds to this request by

transmitting a SYN-ACK packet which is a packet whose

SYN and ACK control bits are set. The client then transmits

ACK to acknowledge the server’s SYN-ACK response.

Afterwards, the two machines engage in a TCP

communication until the source sends a packet whose FIN

flag is set, to indicate to the server that it wants to terminate

the connection. Figure 8 illustrates a different scenario where

the TCP connection has been hijacked.

44 Vincent O. Nyangaresi et al.: TCP IP Header Attack Vectors and Countermeasures

Figure 10. TCP Session Hijack.

On the other hand, Figure 8 shows data exchange where a

malicious machine has taken over the TCP communication

among the communicating entities. In this scenario, the

malicious machine has sent data segment ‘Z’ to the server,

disguised as the legitimate client.

This attack is made easier by the fact that in most network

monitoring tools such as Wireshark, the TCP sequence

number displayed is the relative one, meaning that the actual

sequence number can be computed by adding the initial

sequence number to the present relative sequence number.

E. TCP Sequence Number Prediction

Gont (2015) noted that during the three way handshake,

the communicating devices exchange startup packets

containing sequence numbers. Considering these two

machines as X (client) and Y (server), then X send to Y a

SYN packet with a corresponding initial sequence number.

The sequence number is a randomly generated number S,

also known as the initial sequence number (ISN). The server

X transmits to X a SYN-ACK packet as shown in Figure 11.

This packet holds what X anticipates to be the next

sequence number from Y, the number S+1, in X’s

Acknowledgement Number field. The SYN-ACK packet

must also hold in its sequence Number field a different

randomly generated number T. upon receipt of SYN-ACK, X

replies with an ACK packet with its Acknowledgement

Number field holding its anticipated sequence number that Y

will utilize in it next TCP transmission to X, which is T+1.

This completes the three way handshake for initializing a

TCP connection among the communicating entities. As this

example illustrates, T and S are incremented in a predictable

manner that can be easily determined by a malicious

machine.

Figure 11. TCP Sequence Number Prediction.

As Figure 9 demonstrates, the TCP packet with sequence

number 10200 is the TCP SYN packet that is sent by the

client to the server to request for the establishment of a TCP

connection. The server responds with SYN-ACK packet of

sequence number 10201.

Afterwards, the client acknowledges and goes on to

request the required services, which is the downloading of a

movie located on the server. This is request whose sequence

number is 10203. This illustrates the ease with which the

sequence numbers can be predicted to launch other attacks.

F. Port Scanning

This mechanism is used as an attack vector by allowing

malicious users to determine open TCP ports as well as

services running on these ports. This requires that a TCP

 American Journal of Science, Engineering and Technology 2017; 3(1): 39-49 45

connection be established to the victim machine. For

example, in UNIX systems, may employ the connect () call

to open a connection with the victim’s ports (Welian, 2010).

This call will succeed if that particular victim is listening on

that port. Port and service discovery can also be established

using a SYN scanning technique.

In this technique, a packet is sent to the victim in pretence

of the need to create a real TCP connection. A SYN-ACK

will then be an indication of an active receiver while a RST

message will be an implication of a port with no listening

services. Figure 10 shows a sample data from a port scan.

Figure 12. Data From Port Probing.

This figure shows that this port scan led to discovery of

port number, running protocol, state of the port as well as the

services running on these ports. Another attack involving

probing is the FIN scanning.

In this technique, FIN packets are sent and RST packets

are waited from closed ports. The rationale is that an active

listener will discard this packet silently without any need to

reply. Hence if a response is received, it would b an

indication of a closed port, upon which another set of ports

are probed.

G. CHARGEN and ECHO

The UNIX systems implement CHARGEN services in

their TCP/IP. This service executes on both UDP and TCP

port numbers 19 and it works by having the receiver transmit

back a packet with 0 to 512 randomly chosen characters for

every incoming UDP packet.

In the case of ECHO that runs on both UDP and TCP port

numbers 7, the requirements are that the receiver institutes a

reply with whatever it has received for each incoming packet.

Although these two services are crucial for diagnostic

purposes, they can easily be compromised and be used as

attack vectors for denial of service (Guang, 2015).

To put this into context, we consider a case where the

CHARGEN and ECHO services have established a chain

between themselves. In this scenario, these two services will

generate traffic continuously which in the final analysis will

lead to a very high number of data traffic on the network.

This is a denial of service (DOS) as illustrated by Figure 13.

Figure 13. CHARGEN and ECHO Initiated DOS.

As an illustration, we consider two machines X and Y and

an intruder Z. Using spoofed IP address, Z sends a UDP

packet, whose source address field is set with Y’s IP address,

the destination IP address field is set as X, its source port set

as 7, and destination port set as 19. Upon arrival at machine

X, it will imagine that Y requires an access to the

CHARGEN service.

Therefore, X will transmit back a packet to Y’s ECHO

port, leading to the creation of a chain and therefore the

resulting high volumes of traffic generated on the network.

Ultimately, this will lead to the legitimate users experiencing

a reduction in the network data rates.

5. Discussions

In this section, the various TCP-based techniques that the

researchers believe could help reduce or mitigate the TCP IP

header attacks and vulnerabilities are elaborated. These

mechanisms include TCP pacing, random early detection and

selective acknowledgements.

However, it was noted that there is some kind of trade-off

incurred in the utilization of these techniques. Notably

present in all these is the notion of acknowledgements, which

have been shown to facilitate other attacks such as denial of

service attacks exploiting the three way handshake sequence

number-acknowledgement exchanges over the transmission

channels.

A. TCP Pacing

The rationale of this technique is that if the TCP packet

sources can space the data packets to be sent away from each

other, then it could be possible to mitigate the burst packet

transmissions (Wei et al., 2010). The argument is that most

TCP IP attacks in one way or another lead to denial of

service attacks which lead to congestions and eventual packet

losses.

Figure 14 gives an illustration of this mechanism. This

figure shows three data packets in transit in the

communication channel. Note that these data packets are

separated from each other by a predetermined gap, called

46 Vincent O. Nyangaresi et al.: TCP IP Header Attack Vectors and Countermeasures

‘rest position’ for this study. Therefore, by preventing burst

transmissions, the durations of congestions and dropping of

packets by receivers will be reduced. Figure 15 compares

paced against non-paged TCP connections.

Figure 14. TCP Pacing.

This graph of latency against flows measured the latency

of 16 parallel SACK flows in a local area network, where

each flow sends one megabyte of data.

Figure 15. Paced Versus Non-Paced TCP Connections.

Figure 15 shows that TCP (Transmission Control Protocol)

pacing evens out the transmission of a window of packets

over a round-trip time (RTT), so that packets are injected into

the network at the desired rate of

congestion_window_size/RTT. In so doing, it reduces

burstiness of TCP traffic caused by ACK compression.

Therefore, paced connections have generally low latency

as seen in Figure 15. It works by creating some ‘rest

positions’ before the TCP sender could push some packets

into the transmission channel. This leads to the transmission

of discontinuous streams of data as opposed to the

continuous bursts of data packets.

B. Random Early Detection

This algorithm manages router buffer queues and discards

data packet during congestion based on a certain queue cut

off limit (Zhang et al., 2010). The effect of this is that

congestion control is initialized just before any actual

network congestion event occurs as shown in Figure 16.

Figure 16 demonstrates the fact that the congestion

avoidance swings into action just before the slow start

algorithm could reach its slow start threshold value.

Therefore, the routers and other internetworking devices can

react to denial service attacks before the actual denial of

service attack is fully exploited.

Figure 16. Random Early Detection.

In doing this, the receivers will monitor their buffer queues

and start dropping packets with a predetermined probability

once their threshold values have been exceeded. Effectively,

the packet sources will initiate slow start and congestion

avoidance algorithms long before the actual congestion

occurs. In so doing, it prevents high bandwidth TCP

connections from inhibiting transmissions for low bandwidth

connections.

Moreover, it ensures TCP fairness in that it mitigates the

chance that some unfriendly TCP implementations may gain

unreasonable advantage. It does this by eliminating the

reliance on TCP source and receiver trust relationships. In

fact, this technique will help prevent advanced persistent

threats which normally starve other TCP communications in

their bid to gain high bandwidth for large files transfers. This

is because it ensures that connections utilizing large share of

the bandwidth have their packet loss probability higher than

that of connections with low bandwidth usage.

C. Selective Acknowledgements

TCP’s poor handing of congestion that leads to

unnecessary retransmission of packets emanates from the fact

that destination machine has no mechanism of instructing the

source that it has received some packets which are currently

in its buffer queue.

Therefore, when retransmission occurs, even the packets

currently on the receiver’s buffer are retransmitted. This is

imposed by the requirement that the TCP destination send

ACK only for the packets it has received correctly. In ideal

 American Journal of Science, Engineering and Technology 2017; 3(1): 39-49 47

situations, the source should transmit only the lost segments.

This is enabled by selective acknowledgement (SACK), a

technique implemented as a TCP option.

This requires that the source and receiver negotiate the use

of this TCP option via the TCP header option fields (Stretch,

2010). In such cases then, the destination machine can

provide the source with feedback in the form of selective

acknowledgements option. The destination machine instructs

the source on which blocks of data it has received. This takes

the format shown in Figure 17.

Figure 17. TCP SACK Option.

Figure 17 shows that SACK employs a list of blocks that

serve to inform the source on the byte stream that has already

been received successfully. However, the source does not

have to depend on the destination machine to sustain the out

of order packets.

If the receiver were to re-order and queue the packets that

had been sent between the time when the segment was

initially sent and the time when the retransmission window

expired, will performance gain be achieved. This is because

in this case, the source will limit its retransmissions to only

those packets that have been expressly reported lost.

As an illustration, Figure 18 shows a Wireshark captured

packet, which contains a demonstration of SACKs in action.

The presence of the SACK permitted (SACK_PERM) option

in the two SYN packets, packet number 1 and packet number

2 imply that both end hosts support selective

acknowledgments.

Toward the end of the capture, it can be seen that packet

number 30 was received out of order, and the client has sent a

duplicate acknowledgment in packet number 31.

Figure 18. SACK PERMITTED.

This packet includes a SACK option indicating that the segment in packet number 30 was received.

However, the SACK option cannot simply specify which segment(s) were received. For this reason, it specifies the left and

right edges of data that has been received beyond the packet's acknowledgment number as shown in Figure 19. A single SACK

option can specify multiple noncontiguous blocks of data (such as bytes 200-299 and 400-499).

48 Vincent O. Nyangaresi et al.: TCP IP Header Attack Vectors and Countermeasures

Figure 19. Left And Right Edges Of Data.

Figure 18 illustrates that there is duplicate acknowledgment repeated in packets number 33, 35, and 37. In each, the SACK

is expanded to include the noncontiguous segments the server has continued sending. Finally, the server retransmits the

missing segment in packet number 38, as shown in Figure 20.

Figure 20. Server Packet Re-Transmission.

Note the “HTTP 1514 [TCP Retransmission] HTTP/1.1

200 OK (text/javascript)” for packet 38. This information

confirms that the server has indeed retransmitted the TCP

packet. After this retransmission, the client updates its

acknowledgment number appropriately in packet number 39.

6. Conclusions

This paper studied the various TCP header vulnerabilities

such as Port Scanning, TCP Sequence Number Prediction,

TCP Session Hijacking, Source-Quench Attacks, TCP RST

Attack, TCP SYN Flooding, CHARGEN and ECHO, that

could be exploited as attack vectors to launch other attacks. It

has also suggested techniques such as selective

acknowledgements, random early detection and TCP pacing

could help mitigate the various TCP Header attacks. All these

mechanisms are geared towards proper handling of

congestion so that it could not be used by malicious users to

unfairly gain their bandwidth at the expense of other network

users. However, there is some form of trade-offs involved,

 American Journal of Science, Engineering and Technology 2017; 3(1): 39-49 49

especially for random early detection where TCP connections

with high bandwidth usage have their packets dropped with

high probability. The consequences are that high bandwidth

data transfers such as video traffic, for example, will have

more of their packets dropped compared to text documents

transfer. This will effectively lead to more buffering, an

unwanted scenario in video streaming.

With SACK, the source is able to reduce its

retransmissions significantly. However, packets that are out

of order and still in the receiver’s buffer have to be resent

since the destination machine has no mechanism of

distinguishing the source the packets that have been lost and

the ones that are out of order. TCP pacing will lead to long

network delays since the data packets are distantly spaced

hence leading to poor network performance. All these

shortcomings point to the requirement for novel approaches

either from the TCP header architecture perspective or the

countermeasure perspective to effectively mitigate TCP

header vulnerabilities.

References

[1] N. Shaneel (2014). Improving Network Performance: An
Evaluation of TCP/UDP on Networks. Department of
Computing UNITEC Institute of Technology Auckland, New
Zealand.

[2] K. Avi (2016). Lecture 16: TCP/IP Vulnerabilities and DoS
Attacks: IP Spoofing, SYN Flooding, and The Shrew DoS
Attack. Purdue University.

[3] D. Welian (2010). Attack Lab: Attacks on TCP/IP Protocols.
Syracuse University.

[4] Y. Guang (2015). Introduction to TCP/IP Network Attacks.
Department of Computer Science Iowa State University.

[5] K. Mirja (2015). Mitigating TCP ACK loop.

[6] M. Robbie (2015). Attacks on TCP/IP Protocols. Computer
Network Security.

[7] M. Bellovin (2013). Security Problems in the TCP/IP Protocol
Suite.

[8] T. John and E. Barry (2013). TCP veto: A novel network
attack and its application to SCADA protocols. Innovative
Smart Grid Technologies (ISGT), IEEE PES.

[9] A. Mahdavi (2015). A DDoS Attack Explained: TCP ACK.
Staminus.

[10] F. Gont (2015). On the Validation of TCP Sequence Numbers.
TCP Maintenance and Minor Extensions.

[11] D. Wei, P. Cao and H. Steven (2010). TCP Pacing Revisited.

[12] C. Zhang, J. Yin, C. Zhiping and C. Weifeng (2010). RRED:
robust RED algorithm to counter low-rate denial-of-service
attacks. IEEE Communications Letters. 14 (5): 489–491.

[13] J. Stretch (2010). TCP Selective Acknowledgments (SACK).

