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Abstract: In this work, the Karmarkar’s algorithm of the interior point method is compared to the simplex method by 

ascertaining the effect of interior point algorithm on linear programming problem of high number of variables and study why it 

is not so popularly used in solving linear programming problems. Six (6) products of coca-cola Hellenic Port Harcourt plant 

(Coke 50cl, Coke35cl, Fanta 50cl, Fanta 35cl, Sprite 35cl and Schweppes 33cl) and their raw materials (Concentrates, Sugar, 

Water and Carbon (iv) oxide) respectively were studied. The data were analysed using Scilab 5.5.2 software for Karmarmar’s 

approach and Tora software for Simplex method and the results are compared. The Karmarkar’s algorithm gave a maximum 

profit of N70,478,116.00 giving a breakdown that the company should produce 159300 crates of Coke 35cl, 64173 crates of 

Fanta 50cl, 8419 crates of Coke 50cl, 4876 crates of Fanta 35cl, 1118 crates of Sprite and 7 crates of Schweppes from the 

available resources to attain the optimal solution. The Simplex gave a maximum profit of N107,666,639.51 giving only the 

production of about 339482 crates of Schweppes 33cl from the available resources to attain the optimal solution. 
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1. Introduction 

Linear Programming according to Hoffman and Bradley 

(1995) is a branch of mathematics that deals with an 

important class of constrained Optimization problems in 

manufacturing industries for decision making. This is now 

very common in many areas of applied science. With this 

vast application, Robere (2012) pointed out that there has 

been interest in finding suitable algorithm to find the 

solution to any linear programming problem. Having 

introduced linear programming by Leonid Kantorovich for 

solving a production scheduling problem, the first 

algorithm to solve this problem called the Simplex 

Algorithm was introduced by Dantzig in 1947. This 

algorithm has been working well in practice ever since it 

was introduced but in the 1970s, it was found out that this 

simplex algorithm work well in all possible linear programs. 

This lead to the introduction of the first interior point 

algorithm “Ellipsoid Method” by Khachiyan in 1979 

though was criticised because of its inability to meet some 

requirements. Then in 1984, Karmarkar came up with 

another interior point algorithm which he named after 

himself. This algorithm is generally accepted due to its 

ability to deal with huge number of variables and produce 

optimal solution. This prompt to the use of Karmarkar’s 

algorithm in this work. 

1.1. Purpose of the Study 

To obtain the optimal solution of a linear programming 

problem using Karmarkar’s methods of an interior point 

algorithm not a corner point algorithm. 

1.2. Statement of Problem 

Linear programming models are concerned with the optimal 

way in which available raw materials are utilized to produce 

the different products of a company. Whenever there is raw 

material to be transformed into finished goods, there is need 
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to minimize the cost of production so as to increase profit on 

sales. The problem becomes; what quantity of each product 

to be produced from the available resources (raw materials) 

to minimize costs of production and maximize profit. This 

work tends to develop a better optimization tool that can 

tackle this problem. This will enable companies to take 

advantage of this opportunity to improve in their production. 

2. Literature Review 

When the runtime of simplex method is compared with 

Karmarkar’s method, one can observe that neither of them is 

faster than the other in all problems. The practical efficiency 

of both Simplex and Karmarkar’s methods depend strongly 

on the details of their implementation. The iterations 

numbers required by Karmarkar’s method is higher than that 

of Simplex. The simplex method needs lesser iteration like 

2n to 3n iterations, where n is the number of primal variables. 

Thus, generally the Interior Point Methods are better for 

large-scale problems Szabo and Kovacs (2003). 

Karmarkar’s algorithm seems to work better on linear 

programming problems with no initial feasible point (k=0) 

and also on very large structural problems Lemire (1989). He 

went ahead to say that the Karmarkar’s algorithm is valid and 

it exhibits polynomial time complexity. Having used the 

algorithm to solve some problems, he found out that the 

algorithm produces speed ups over the simplex method. This 

counter-opposes the statement made by Szabo and Kovacs 

that both methods have the same speed, none is faster. 

Further discussion on the outline of the algorithm and 

comment on the applications of this class of method by 

Nemirovski and Todd in 2008 equally revealed that 

Karmarkar’s algorithm is convenient for polynomial time and 

large constraints with variables which supports the statement 

made by szabo and kovacs. 

Vanderbei et al (1986) Concluded that Karmarkar’s 

algorithm is formulated in the positive orthant instead of the 

simplex method. This makes it easier to conceptualize and 

lead to computational simplicity. They said that this method’s 

sliding-objective-function is replaced by a projected gradient 

search for the optimum. Empirically, this leads to a decrease 

in the number of iterations the algorithm requires to solve a 

problem. 

Karmarkar (1984) also stated in his work on “A 

Polynomial-Time Algorithm for Linear Programming” that 

the algorithm is not necessary to find the exact solution to all 

optimization problems rather it is useful to distinguish 

between two types of approximate solutions. He gave an 

instance that if X0 is the exact solution, X is the approximate 

solution and ��� is the objective function also, that a strong 

approximation (approximation in solution space) requires 

that X be close to X0 in some suitable norm. a weak 

approximation (approximation in objective function space) 

requires ��� be close to ����. This weak approximation is 

sufficient to Karmarkar’s method and it is easier to achieve 

numerically. 

3. Methodology 

The method employed in this work is the interior point 

algorithm of Karmarkar and the Simplex method. The 

Simplex method is widely known so will not be talked about 

extensively rather the new Karmarkar method will be 

discussed. 

For a linear programming problem to be solved by 

Karmarkar’s method manually, such problem must be in a 

homogenous form (Assumption 1 of karmarkar). The second 

assumption says that the objective function at optimal has the 

value zero (0). 

Consider the problem 

Min ��� 

Subject to �� = 0 

1�� = 1 

� ≥ 0 

In the constraint, we observe that we don’t have � (basic 

solution value) rather, we have 0 and the sum of all variables 

is equal to 1. 

So when the problem is not given in this form, we convert 

it to Karmarkar’s form before we can solve it by karmarkar’s 

method. Having the problem in homogeneous form, we can 

now solve thus by the following steps: 

(a) Set k=0 {initial iteration} 

(b) Find � = ���
��  and � = �

��(���) the product of �  and � 

⇒ �� (step length) 

(c) We transform the x-space problem to a problem in the 

y-space. � = �� = (�
� , �

� , … , �
�)  where 

� = ��. �  !"#$"�%&'. Then we get (� = )$"* (��) =
)$"* (�

� , �
� , … , �

�) 

(d) We get �� =  coefficient of variables at objective 

function then, A = matrix of the coefficient of the 

variables at the constraints. + = ,�(�1 - 

(e) We get the Projection matrix . 

. = [0 − +�(++�)��+] 
(f) We find the projected steepest descent direction +3 (can 

equally be �4). 

+3 = −.5 

(g) The new value of y can now be obtained by �� =
6�78 = �� − 9: ;<

∥ ;<∥  where ∥  +3 ∥  (norm of +3 ) =
>( +3�)? + ( +3?)? + ⋯ + ( +3�)? 

(h) The Z (objective function) value will now be 

calculated as B = ���. 
The termination condition is as stated before: if the duality 

gap is zero or negative then stop, otherwise obtain the next 

iteration until the termination condition is met. 
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3.1. The Duality Gap at Optimal 

��� − ��C 

Where C = (+�?+�)��+�?� where P takes values of the 

matrix above ,�(�1 - and �? = [)"$*(�)]? and � is as stated 

above. 

If: 

��� − ��C = 0 or negative{strong duality} 

Then 

��� > ��C{weak duality} 

3.2. Converting Linear Programming Problem to 

Karmarkar’s Form 

When the problem is in linear programming form or in 

standard form, we can convert it to Karmarkar’s form before 

we can solve the problem manually by Karmarkar’s method. 

There are steps to be followed in order to achieve this: 

Let us consider the LPP below 

Max B =  ��� 

GH�I&5J J� �� ≤ � (i) {primal) 

� ≥ 0 

1. Firstly, we get the dual of the primal given above as: 

 Min B =  ��L 

GH�I&5J J� ��L ≥ 5 (ii) {dual) 

L ≥ 0 

2. We introduce the slack and surplus variables in the 

primal and dual problems, and then combine the 

problems. 

3. We introduce a boundary constraint K such that any 

feasible solution to the equation gotten in step 2 above 

will satisfy sum of all variables in the said equation less 

than or equal to K and then add a slack variable to get 

something like: ∑ �N + ∑ LN + ' = O 

4. We homogenize the equations gotten in step 3 above by 

introducing a dummy variable )  (subject to the 

condition ) = 1 ). We then replace the equation 

∑ �N + ∑ LN + ' = O  with the following equivalent 

equations: ∑ �N + ∑ LN + ' − O) = 0  and ∑ �N +
∑ LN + ' + ) = O + 1 

5. Transform the equations in step 4 above to have one 

variable in all the equations instead of different 

variables. By this, we have 

�N = (O + 1)�N , $ = 1, 2, … , (Q + �) 

LN = (O + 1)�RS�SN , $ = 1, 2, … , (Q + �) 

' = (O + 1)�?RS?�S�, ) = (O + 1)�?RS?�S? 

6. An artificial variable is now introduced in all the 

equations, such that the sum of the coefficients in each 

homogeneous equation will be zero and the artificial 

variable in the last equation is one. These artificial 

variables are to be minimized. The artificial variable to 

be introduced here is �?RS?�S� 

4. Data Presentation and Analysis 

The data of this work was gotten from the production and 

commercial department of Coca-cola plant of Port Harcourt. 

The researcher’s interest is to ascertain the products and their 

quantities to be produced in other to make an optimal profit 

using karmarkar and comparing to simplex. The Tora 

software is used to analyse the data for Simplex and the 

scilab software is used to analyse the data for Karmarkar 

since the data cannot be analysed manually because of the 

numerous number of variables. This lead to a matrix 4x9 

which is difficult to solve manually. 

Table 1. Available raw materials in stock. 

Raw Materials Quantity Available 

1. Concentrates 4332 (units) 

2. Sugar 467012 (kg) 

3. Water (H2O) 1637660 (litres) 

4. Carbon (iv) oxide (CO2) 8796 (vol. per pressure) 

Source: Coca-cola Port Harcourt Plant 

Table 2. Available raw materials needed to produce a crate of each product. 

Flavours Concentrates Sugar Water 
Carbon (iv) 

oxide 

Coke 50cl (��) 0.00359 0.89 7.552 0.0135 

Coke 35cl (�?) 0.0042 1.12 6.539 0.0133 

Fanta 50cl (��) 0.0021 1.044 7.671 0.007 

Fanta 35cl (�T) 0.00419 0.86 6.822 0.005 

Sprite 35cl (�U) 0.00359 0.73 6.12 0.0149 

Schweppes 33cl (�V) 0.00438 0.23 4.824 0.0156 

Source: Coca-cola Port Harcourt Plant 

Table 3. Available cost of production and selling price of a crate of each 

product. 

Products 
Average cost 

price (N) 

Average selling 

price (N) 
Profit (N) 

Coke 50cl (��) 760.55 1050 289.45 

Coke 35cl (�?) 679.51 980 300.49 

Fanta 50cl (��) 762.63 1050 287.37 

Fanta 35cl (�T) 691.91 980 288.09 

Sprite 35cl (�U) 689.67 980 290.33 

Schweppes 33cl (�V) 682.85 980 317.15 

Source: Coca-cola Port Harcourt Plant 

4.1. Karmarkar’s Approach of Solving the Problem 

Model Formulation: 

W"� B = 289.45�� + 300.49�? + 287.37�� + 288.09�T + 290.33�U + 317.15�V GH�I&5J J�: 
0.00359�� + 0.0042�? + 0.0021�� + 0.00419�T + 0.00359�U + 0.00438�V ≤ 4332 
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0.89000�� + 1.12000�? + 1.04400�� + 0.86000�T + 0.7300�U + 0.2300�V ≤ 467012 

7.5520�� + 6.5390�? + 7.67100�� + 6.82200�T + 6.1200�U + 4.82400�V  ≤ 1637660 

0.01350�� + 0.01330�? + 0.0070�� + 0.0050�T + 0.01490�U + 0.01560�V  ≤ 8796 

This can be put in Karmarkar’s form by the following steps: 

Step 1: Get the dual of the above primal as: 

Min B = 4332L� + 467012L? + 1637660L� + 8796LT 

'H�I&5J J�:  
0.00359L� + 0.89L? + 7.552L� + 0.0135LT ≥ 289.45 

0.0042L� + 1.12L? + 6.539L� + 0.0133LT ≥ 300.49 

0.0021L� + 1.044L? + 7.671L� + 0.007LT ≥ 287.37 

0.00419L� + 0.86L? + 6.822L� + 0.005LT ≥ 288.09 

0.00359L� + 0.73L? + 6.12L� + 0.0149LT ≥ 290.33 

0.00438L� + 0.23L? + 4.824L� + 0.0156LT ≥ 317.15 

L$Jℎ: "%% !"#$"�%&' ����&*"J$!&  

Step 2: We introduce the slack and surplus variables in the primal and dual problems, and then combine the problems. 

0.00359�� + 0.0042�? + 0.0021�� + 0.00419�T + 0.00359�U + 0.00438�V + �a = 4332 

0.89000�� + 1.12000�? + 1.04400�� + 0.86000�T + 0.7300�U + 0.2300�V + �b = 467012 

7.5520�� + 6.5390�? + 7.67100�� + 6.82200�T + 6.1200�U + 4.82400�V + �c = 1637660 

0.01350�� + 0.01330�? + 0.0070�� + 0.0050�T + 0.01490�U + 0.01560�V + ��� = 8796 

0.00359L� + 0.89L? + 7.552L� + 0.0135LT − LU = 289.45 

0.0042L� + 1.12L? + 6.539L� + 0.0133LT − LV = 300.49 

0.0021L� + 1.044L? + 7.671L� + 0.007LT − La = 287.37 

0.00419L� + 0.86L? + 6.822L� + 0.005LT − Lb = 288.09 

0.00359L� + 0.73L? + 6.12L� + 0.0149LT − Lc = 290.33 

0.00438L� + 0.23L? + 4.824L� + 0.0156LT − L�� = 317.15 

289.45�� + 300.49�? + 287.37�� + 288.09�T + 290.33�U + 317.15�V= 4332L� + 467012L? + 1637660L� + 8796LT 

L$Jℎ: "%% !"#$"�%&' ����&*"J$!&  

Step 3: Introduce a boundary constraint K such that any feasible solution to the equation gotten in step 2 above will satisfy 

sum of all variables in the said equation less than or equal to K and then add a slack variable to get something like: ∑ �N +
∑ LN + ' = O 

0.00359�� + 0.0042�? + 0.0021�� + 0.00419�T + 0.00359�U + 0.00438�V + �a = 4332 

0.89000�� + 1.12000�? + 1.04400�� + 0.86000�T + 0.7300�U + 0.2300�V + �b = 467012 

7.5520�� + 6.5390�? + 7.67100�� + 6.82200�T + 6.1200�U + 4.82400�V + �c = 1637660 

0.01350�� + 0.01330�? + 0.0070�� + 0.0050�T + 0.01490�U + 0.01560�V + ��� = 8796 

0.00359L� + 0.89L? + 7.552L� + 0.0135LT − LU = 289.45 

0.0042L� + 1.12L? + 6.539L� + 0.0133LT − LV = 300.49 
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0.0021L� + 1.044L? + 7.671L� + 0.007LT − La = 287.37 

0.00419L� + 0.86L? + 6.822L� + 0.005LT − Lb = 288.09 

0.00359L� + 0.73L? + 6.12L� + 0.0149LT − Lc = 290.33 

0.00438L� + 0.23L? + 4.824L� + 0.0156LT − L�� = 317.15 

289.45�� + 300.49�? + 287.37�� + 288.09�T + 290.33�U + 317.15�V − 4332L� − 467012L? − 1637660L� − 8796LT = 0 

d �N
��

Ne�
+ d LN

��

Ne�
+ G = O 

L$Jℎ: "%% !"#$"�%&' ����&*"J$!&  

Step 4: Homogenize the equations gotten in step 3 above by introducing a dummy variable ) (subject to the condition ) =
1). We then replace the equation ∑ �N + ∑ LN + ' = O with the following equivalent equations: ∑ �N + ∑ LN + ' − O) = 0 and 

∑ �N + ∑ LN + ' + ) = O + 1 

0.00359�� + 0.0042�? + 0.0021�� + 0.00419�T + 0.00359�U + 0.00438�V + �a − 4332) = 0 

0.89000�� + 1.12000�? + 1.04400�� + 0.86000�T + 0.7300�U + 0.2300�V + �b − 467012) = 0 

7.5520�� + 6.5390�? + 7.67100�� + 6.82200�T + 6.1200�U + 4.82400�V + �c − 1637660) = 0 

0.01350�� + 0.01330�? + 0.0070�� + 0.0050�T + 0.01490�U + 0.01560�V + ��� − 8796) = 0 

0.00359L� + 0.89L? + 7.552L� + 0.0135LT − LU − 289.45) = 0 

0.0042L� + 1.12L? + 6.539L� + 0.0133LT − LV − 300.49) = 0 

0.0021L� + 1.044L? + 7.671L� + 0.007LT − La − 287.37) = 0 

0.00419L� + 0.86L? + 6.822L� + 0.005LT − Lb − 288.09) = 0 

0.00359L� + 0.73L? + 6.12L� + 0.0149LT − Lc − 290.33) = 0 

0.00438L� + 0.23L? + 4.824L� + 0.0156LT − L�� − 317.15) = 0 

289.45�� + 300.49�? + 287.37�� + 288.09�T + 290.33�U + 317.15�V − 4332L� − 467012L? − 1637660L� − 8796LT = 0 

d �N
��

Ne�
+ d LN

��

Ne�
+ G − O) = 0 

d �N
��

Ne�
+ d LN

��

Ne�
+ G + ) = (O + 1) 

L$Jℎ: "%% !"#$"�%&' ����&*"J$!& 

Step 5: Transform the equations in step 4 above to have one variable in all the equations instead of different variables. By 

this, we have 

�N = �N , $ = 1, 2, … , (Q + �) 

LN = �RS�SN , $ = 1, 2, … , (Q + �) 

' = �?RS?�S�, ) = �?RS?�S? 

Jℎ&� ' = �?�"�) ) = �?? 

Jℎ& "��!& J#"�' �#Q"J$��' �$&%) Jℎ&  �%%�L$�* '�'J&Q:  

0.00359�� + 0.0042�? + 0.0021�� + 0.00419�T + 0.00359�U + 0.00438�V + �a − 4332�?? = 0 

0.89000�� + 1.12000�? + 1.04400�� + 0.86000�T + 0.7300�U + 0.2300�V + �b − 467012�?? = 0 

7.5520�� + 6.5390�? + 7.67100�� + 6.82200�T + 6.1200�U + 4.82400�V + �c − 1637660�?? = 0 
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0.01350�� + 0.01330�? + 0.0070�� + 0.0050�T + 0.01490�U + 0.01560�V + ��� − 8796�?? = 0 

0.00359��� + 0.89��? + 7.552��� + 0.0135��T − ��U − 289.45�?? = 0 

0.0042��� + 1.12��? + 6.539��� + 0.0133��T − ��V − 300.49�?? = 0 

0.0021��� + 1.044��? + 7.671��� + 0.007��T − ��a − 287.37�?? = 0 

0.00419��� + 0.86��? + 6.822��� + 0.005��T − ��b − 288.09�?? = 0 

0.00359��� + 0.73��? + 6.12��� + 0.0149��T − ��c − 290.33�?? = 0 

0.00438��� + 0.23��? + 4.824��� + 0.0156��T − �?� − 317.15�?? = 0 

289.45�� + 300.49�? + 287.37�� + 288.09�T + 290.33�U + 317.15�V − 4332��� − 467012��? − 1637660��� − 8796��T = 0 

d �N
?�

Ne�
− O�?? = 0 

d �N
??

Ne�
= 1 

L$Jℎ: "%% !"#$"�%&' ����&*"J$!&  

Step 6: An artificial variable is now introduced in all the equations, such that the sum of the coefficients in each 

homogeneous equation will be zero and the artificial variable in the last equation is one. These artificial variables are to be 

minimized. The artificial variable to be introduced here is �?RS?�S�, we then have: 

W$�$Q$f&: �?�  

GH�I&5J J�:  
0.00359�� + 0.0042�? + 0.0021�� + 0.00419�T + 0.00359�U + 0.00438�V + �a − 4332�?? + 4332.978�?� = 0 

0.89000�� + 1.12000�? + 1.04400�� + 0.86000�T + 0.7300�U + 0.2300�V + �b − 467012�?? + 467008.126�?� = 0 

7.5520�� + 6.5390�? + 7.67100�� + 6.82200�T + 6.1200�U + 4.82400�V + �c − 1637660�?? + 1637621.625�?� = 0 

0.01350�� + 0.01330�? + 0.0070�� + 0.0050�T + 0.01490�U + 0.01560�V + ��� − 8796�?? + 8796.931�?� = 0 

0.00359��� + 0.89��? + 7.552��� + 0.0135��T − ��U − 289.45�?? + 281.869�?� = 0 

0.0042��� + 1.12��? + 6.539��� + 0.0133��T − ��V − 300.49�?? + 293.814�?� = 0 

0.0021��� + 1.044��? + 7.671��� + 0.007��T − ��a − 287.37�?? + 279.646�?� = 0 

0.00419��� + 0.86��? + 6.822��� + 0.005��T − ��b − 288.09�?? + 274.577�?� = 0 

0.00359��� + 0.73��? + 6.12��� + 0.0149��T − ��c − 290.33�?? + 284.475�?� = 0 

0.00438��� + 0.23��? + 4.824��� + 0.0156��T − �?� − 317.15�?? + 313.076�?� = 0 

d �N
?�

Ne�
− O�?? + (O − 21)�?� = 0 

d �N
?�

Ne�
= 1 

L$Jℎ: "%% !"#$"�%&' ����&*"J$!&  

This can now be solved using Scilab 5.5.2 software and then result will be obtained. 

Analysis from Scilab of Karmarkar’s Method 

The above data is analysed using scilab 5.5.2 for karmarkar’s method and the result is as below: 
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Table 4. Result from the analysis by Karmarkar’s Approach. 

Variables Explanations Values 

Iter No. of iterations 56 

Exitflag  1 

Fopt Objective function 70478116 

Xopt  No. of crates 

�� Coke 50cl 8419 

�? Coke 35cl 159300 

�� Fanta 50cl 64173 

�T Fanta 35cl 4876 

�U Sprite 35cl 1118 

�V Schweppes 33cl 7 

The result from scilab 5.5.2 

4.2. Simplex Method of Solving the Problem 

Model formation 

W"� B = 289.45�� + 300.49�? + 287.37�� + 288.09�T + 290.33�U + 317.15�V + 0G� + 0G? + 0G� + 0GT 

GH�I&5J J�:  
0.00359�� + 0.0042�? + 0.0021�� + 0.00419�T + 0.00359�U + 0.00438�V + G� + 0G? + 0G� + 0GT = 4332 

0.89000�� + 1.12000�? + 1.04400�� + 0.86000�T + 0.7300�U + 0.2300�V + 0G� + G? + 0G� + 0GT = 467012 

7.5520�� + 6.5390�? + 7.67100�� + 6.82200�T + 6.1200�U + 4.82400�V  + 0G� + 0G? + G� + 0GT = 1637660 

0.01350�� + 0.01330�? + 0.0070�� + 0.0050�T + 0.01490�U + 0.01560�V + G� + 0G? + 0G� + GT = 8796 

This can be put in standard form as 

W"� B = 289.45�� + 300.49�? + 287.37�� + 288.09�T + 290.33�U + 317.15�V + 0G� + 0G? + 0G� + 0GT 

GH�I&5J J�:  
0.00359�� + 0.0042�? + 0.0021�� + 0.00419�T + 0.00359�U + 0.00438�V + G� + 0G? + 0G� + 0GT = 4332 

0.89000�� + 1.12000�? + 1.04400�� + 0.86000�T + 0.7300�U + 0.2300�V + 0G� + G? + 0G� + 0GT = 467012 

7.5520�� + 6.5390�? + 7.67100�� + 6.82200�T + 6.1200�U + 4.82400�V  + 0G� + 0G? + G� + 0GT = 1637660 

0.01350�� + 0.01330�? + 0.0070�� + 0.0050�T + 0.01490�U + 0.01560�V + G� + 0G? + 0G� + GT = 8796 

This can be solved with TORA software and results will be 

obtained 

Analysis from Tora of Simplex Method 

Table 5. Result from the analysis using Simplex Method. 

Variables Explanations Values 

 No. of iterations 2 

 Objective function 107666640 

  No. of crates 

�� Coke 50cl 0.0000 

�? Coke 35cl 0.0000 

�� Fanta 50cl 0.0000 

�T Fanta 35cl 0.0000 

�U Sprite 35cl 0.0000 

�V Schweppes 33cl 339481.76 

'ga Slack 2845.07 

'gb Slack 388931.20 

'g�� Slack 3500.08 

The result from TORA 

5. Conclusion 

From the result above, it is shown that the production of 

about 159300 crates of Coke 35cl, 64173 crates of Fanta 

50cl, 8419 crates of Coke 50cl, 4876 crates of Fanta 35cl, 

1118 crates of Sprite and 7 crates of Schweppes with that 

available resources in the Port Harcourt plant of the Coca-

cola company will make an optimal profit of N70,478,116.00 

Looking at the result, Coke 35cl is the most significant 

product that will push up profit while the production of 

Schweppes is almost insignificant. Then the result shows that 

the coca-cola plant in Port Harcourt should produce about 

339482 crates of Schweppes only with the available 

resources in other to make an optimal profit of 

N107,666,640.00 By observation, it is noticed that the other 

products were not put into consideration as to how many 

crates to be produced. 
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Recommendations 

Since Karmarkar’s approach gave a better result from the 

data analysed, the production team of Coca-cola Port 

Harcourt is encourage to adopt this method for better 

decision making. However, it is still uncertain as to how 

problems that produce dense A matrix or dense factorizations 

could be solved efficiently using the Karmarkar’s algorithm, 

the direction for future research include (i) development of 

better methods to determine the initial feasible interior-point 

and (ii) decomposition methods for essentially sparse 

problems but with a few dense rows/columns. If these are 

achieve, solving linear problems by Karmarkar’s algorithm 

manually will be easier and a good alternative to Simplex 

method would have equally been achieved. 
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