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Abstract: The paper’s subject is the elaboration of a new approach to image analysis on the basis of the maximum 

likelihood method. This approach allows to get simultaneous estimation of both the image noise and the signal within the 

Rician statistical model. An essential novelty and advantage of the proposed approach consists in reducing the task of solving 

the system of two nonlinear equations for two unknown variables to the task of calculating one variable on the basis of one 

equation.  Solving this task is important in particular for the purposes of the magnetic-resonance images processing as well 

as for mining the data from any kind of images on the basis of the signal’s envelope analysis. The peculiarity of the 

consideration presented in this paper consists in the possibility to apply the developed theoretical technique for noise 

suppression algorithms’ elaboration by means of calculating not only the signal mean value but the value of the Rice 

distributed signal’s dispersion, as well.  From the view point of the computational cost the procedure of the both parameters’ 

estimation by proposed technique has appeared to be not more complicated than one-parametric optimization. The present 

paper is accented upon the deep theoretical analysis of the maximum likelihood method for the two-parametric task in the 

Rician distributed image processing. As the maximum likelihood method is known to be the most precise, its developed 

two-parametric version can be considered both as a new effective tool to process the Rician images and as a good facility to 

evaluate the precision of other two-parametric techniques by means of their comparing with the technique proposed in the 

present paper. 
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1. Introduction 

The problem of the image noise suppression may be 

considered as a special case of the problem of the unknown 

statistical parameters estimation within the frameworks of 

any statistical model on the basis of the measured data. To 

obtain the correct estimation of the parameters it is 

important to use an adequate statistical model describing 

the corresponding physical process.  

In many tasks connected with the visualization the noise 

is formed by means of summing a big number of 

independent components that distort the initial image signal. 

Thus such a noise obeys the Gaussian distribution. The 

same mechanism works at forming the noise distorting the 

real and imaginary parts of the image signal in the systems 

of magnetic-resonance visualization [1]. However normally 

at MR image formation the value to be analyzed is the 

amplitude of the signal instead its real and imaginary parts. 

This amplitude obeys the Rice statistical distribution 

[2, 3, 4]. The applicability of this statistical model for 

describing the MR visualization has been proved in many 

works (for example, [3,5 ,6]). 

The Rice distribution characterizes amplitude of the 

stochastic signal as a square root of the sum of squares of 

two stochastic values while each of these values obeys the 

Gaussian statistics. Unlike the noise of Gaussian (normal) 

distribution the Rician distributed noise is not an additive 

one. An important peculiarity of such a noise consists in the 

fact that this noise does not only adds the stochastic 

distortions into the data contained in the image, but also 

creates a background depending upon the value of the 
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signal. Such a background leads to the decrease of the 

image contrast, especially at low values of the 

signal-to-noise ratio.  

The noise influence within frameworks of the 

applicability of the Rice statistical model depends upon the 

signal value. That’s why the mathematical methods 

describing the processes that obey to the Rice distribution 

as well as the corresponding transformations of the 

obtained signal with the purpose of the noise suppression at 

the image formation and processing are essentially 

nonlinear. The strict mathematical description of such a 

noise is rather a complicated mathematical task. Two 

approximate limiting cases are known that are used for the 

construction of the simplified analysis schemes: at low 

signal-to-noise ratio the Rice distribution is transformed 

into the Rayleigh distribution, while at high signal-to-noise 

ratio – into the normal Gaussian distribution.  

It is worth to note that many authors use the linear 

methods for analyzing the magnetic-resonance images, 

although these methods have been developed first of all for 

the data obeying the Gaussian distribution, (see, for 

example, [7, 8,9]). However this model describes the 

process correct only at very high values of the 

signal-to-noise ratio, while in other cases the Rice 

distribution differs from the Gaussian one significantly. In 

these situations applying the linear methods leads to a bias 

of the data obtained as a result of such an analysis if 

compared with the real data.  

To escape the appearance of such a bias and to obtain the 

more correct values of the parameters at arbitrary value of 

the signal-to-noise ratio the nonlinear techniques are used 

more often for the magnetic resonance images filtration in 

the papers of the last years. These techniques are based 

upon the application of the Rice statistical model, [10, 11, 

12, 13, 14, 15]. In all these papers the maximum likelihood 

(further – ML) method is used for the estimation of the 

parameter of a signal mean value, which is undoubtedly 

important but not the single and completely sufficient 

parameter that allows reconstructing an image. The second 

meaningful statistical parameter of the task - a dispersion of 

the data forming an image – is supposed to be known in the 

mentioned papers. The value of dispersion is often 

measured by means of the empirical techniques which are 

not based upon the Rice statistical model. Paper [14] is 

worth to be mentioned as providing a comparative  

analysis of the ML and the mean-square error (MSE) 

methods for the statistical parameters’ estimation based 

upon the Kramer-Rao lower bound. The papers are known 

(for example, [16]), in which the noise is measured within 

the Rice model although based not upon the ML method, 

but upon the simplified scheme that could be considered as 

not optimal one, namely – the mean-square error 

minimization.  

In the present paper the ML method is first used for the 

estimation of both a priori unknown statistical parameters – 

the image signal mean value and the dispersion. The 

correct estimation of these parameters makes it possible to 

solve the problem of noise suppression and the image 

reconstruction in the magnetic-resonance visualization 

systems much more efficiently.  

After finishing the work that has become the subject of 

the present paper we learned about the paper [17] which 

considers the properties of the maximum likelihood 

equations’ solutions and their quantity.  

In spite of the thematic affinity between paper [17] and 

some issues of the present paper relating the properties of 

solutions of the maximum likelihood equations the 

approaches and the apparatus of mathematical analysis 

developed in the present paper and in paper [17] are 

essentially different.  We suppose that it is reasonable to 

conduct here a comparative analysis of the both papers’ 

approaches and results. While considering the 

one-parametric task, i.e. the task of the estimation of only 

one unknown parameter – the amplitude of the initial signal 

– while a dispersion value is supposed to be known a priory, 

we have implemented a detailed mathematical analysis of 

the extremum’s character of the likelihood function at the 

points of zero value of its derivative by means of the strict 

mathematical proof and study of the function’s features. 

These features which visually seem evidently following 

from the function’s graph need nevertheless to be strictly 

proved what has been done in the present paper by means 

of a number of lemmas and theorems. As for the paper [17] 

it has not provided the complete mathematical proof of the 

function’s features which determine the existence of the 

task solution: the related functions’ features and the 

conclusion on the existence of the task solution are 

declared on the basis of graphical illustration.  

In the present paper we have complimented a 

comprehensive mathematical investigation of the functions 

determining the character and the properties of the 

maximum likelihood equation’s solution as for the 

one-parametric and for two-parametric tasks.  

It is important that at solving the two-parametric task, 

when the maximum likelihood technique is applied to find 

the both unknown statistical parameters – the initial 

signal’s mathematical expectation and the noise dispersion 

– we managed to reduce solving the system of two 

nonlinear equation with two variables to solving one 

equation with one variable.  

Thus the proposed by us method of proving the 

properties of the maximum likelihood equation’s solution 

differs principally from the purely graphical approach 

presented in paper [17], which although contains the 

analysis of the second derivatives of the likelihood function, 

but does not provide the strict proof of the properties (the 

monotonous character, the smoothness, the 

convexity/concavity etc.) of the functions which determine 

the conditions of the task solutions  existence and their 

quantity.  
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2. The Problem Formulation. the 

Maximum Likelihood Equations 

System 

At constructing the magnetic-resonance image a value 

being measured is a modulus of a complex value with the 

real and imaginary parts being distorted by the Gaussian 

noise. This noise obeys a normal distribution. The mean 

values of the noise components distorting the measured 

signals’ real and imaginary parts are obviously of zero 

value, while the value of the noise dispersion is of an 

a-priory unknown value.   

Let us denote by 
Re

x and
Im

x  the independent random 

quantities having the normal distribution with the same 

dispersions and non-zero mean values. These quantities 

correspond to the real and imaginary parts of the complex 

signal  

2 2

Re Imx x x= +  

forming the magnetic-resonance image under the study. 

Let us denote as ν  the mean value of the real and imaginary 

parts of the measured signal; as 2σ  – the dispersion of the 

Gaussian noise distorting the signal. Then the amplitude x  

of the signal obeys the Rice distribution with the following 

probability density function: 

( )
2 2

02 2 2
, exp

2

x x x
P x I

ν νν σ
σ σ σ

 +  = ⋅ − ⋅   
  

 (1) 

Here and below we use the following designations: 

( )I zα  is the modified Bessel function (Infeld function) 

of the first kind with order α , 
i

x  is the signal value 

measured in i -th sample for the subsequent image data 

processing; n  is the quantity of the elements in the sample 

(the so-called sample’s length). For designating the 

averaging within the sample we’ll use the angular brackets:  

2 2

1 1

1 1
, 

n n

i i

i i

x x x x
n n= =

= =∑ ∑  

The mathematical problem being solved in the present 

paper consists in the estimation of the both mentioned 

parameters ν  and 2σ  on the basis of the measured sample 

data and in the further reconstruction of the initial 

undistorted image. 

To solve this problem we apply the ML method being 

widely used in similar tasks [18, 19], especially in 

magnetic-resonance imaging that has become one of the 

most efficient instrument in medical diagnostics, [20-22]. 

Applied to the problem of the magnetic-resonance images 

processing the ML method has been used in many papers 

(for example, [10, 11, 12, 13, 14, 15]) for the estimation of 

one among several unknown parameters of the task, 

namely– the parameter of the mean value ν  of a signal, 

forming the undistorted image. In these papers the second 

parameter – dispersion – is supposed to be known although 

normally this is not the case in practice. Some authors 

propose to measure the value of dispersion taking the data 

from the areas of an image with very low signal level, on the 

basis of the noise background or from the areas with high 

signal-to-noise ratio having locally-constant signal level [3]. 

However such calculations do lead to a noticeable 

systematic error in the estimation of a dispersion value and 

that’s why cannot be considered as reliable. The error in 

computing the dispersion inevitably causes an error in the 

useful signal estimation. So the task of the accurate 

evaluation of the dispersion value σ  is rather actual for the 

subsequent accurate estimation of the parameterν . 

An important point is that in contrast to the previous 

papers devoted to the problem of the magnetic-resonance 

visualization, in particular the papers [11, 14] considering 

the maximum likelihood approach in its one-parametric 

approximation, the present paper is the first to develop  the 

two-parametric version for the maximum likelihood 

technique applied for the magnetic-resonance vision tasks.  

Let us consider a sample of n  measurements of the value 

of the signal’s amplitude x . The function of the joint 

probability density   ( ),L ν σ   of the events consisting in 

the fact that the result of the i -th measurement equals to the 

value 
i

x  ( 1,...,i n= ) can be expressed as a product of the 

probability density functions for each measurement of the 

sample:  

( ) ( )
1

, ,
n

i

i

L P xν σ ν σ
=

= ∏              (2) 

where the function ( ),
i

P x ν σ is determined by the 

expression (1). The function is also referred to as the 

likelihood function (further we’ll denote it shortly as LF). At 

the known samples’ data having been obtained as a result of 

the measurements this function depends upon unknown 

statistical parameters ν  and 2σ . The ML method consists 

in the finding the parameters’ values which maximize LF (or, 

equivalently, its logarithm). The logarithmic likelihood 

function (LLF) for the Rice distribution is as follows:  

 

( ) ( )
1

2 2

02 2
1

ln , ln ,

2 ln ln
2

n

i

i

n
i i

i

L P x

x x
I

ν σ ν σ

ν νσ
σ σ

=

=

=

 +  = − ⋅ − +  ⋅   

∑

∑
   (3) 

The formula (3) is obtained from the formulas (2) and (1). 

In the expression for the LLF the terms are missed that do 

not depend upon the parameters to be evaluated as these 

terms do not influence upon the solution of the likelihood 

equations. The likelihood equations for computing the 

unknown statistical parameters ν  and 2σ  is as follows: 
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( )

( )

ln , 0

ln , 0

L

L

ν σ
ν

ν σ
σ

∂ = ∂
 ∂ =
 ∂

              (4) 

The equating to zero the LLF derivatives allows finding 

those values of the parameters which provide an extremum 

value (maximum or minimum) of the LF. As the analytical 

solution of the equations (4) has not been found the task 

should be solved numerically. Solving the system of 

equation (4) with two unknown parameters involves the 

following evident difficulties, which have been resolved at 

the present paper: 

1. The determining of the conditions of the ML equations’ 

solution existence and uniqueness is a cumbersome 

mathematical task; 

2. Theoretical estimation of the found extremum points 

character (as that may correspond to both maximum and 

minimum of the LF) is also complicated; 

3. The computational cost of the two-parametric 

optimization is by default higher than computational cost of 

the one-parametric task. 

3. One-Parametric ML Task  

For completeness and logical consistency of the 

theoretical consideration, before discussing the solution of 

the equations’ system (4) for two unknown parameters ν  

and 2σ , we repeat in brief the solution of the task of finding 

only one parameter ν  in supposition that 2σ is known a 

priori. Just this case has become a subject for study in most 

of the mentioned above papers devoted to the Rice 

distributed data analysis by the ML method. Then we shall 

generalize the theoretical results for the case of evaluation of 

two unknown statistical parameters. Such an order of the 

material presentation will allow to follow the logic of the 

consideration more clearly. Then we’ll consequently 

substantiate, by means of a number of lemmas and theorems, 

the existence and the uniqueness of the mathematical task 

solution obtained by the ML method. 

Let us suppose that as a result of the measurements a 

sample of the signal values 
1
, I

n
x x…  has been obtained. 

From formulas (3) and (4) it follows that in this case the first 

likelihood equation can be presented as follows:  

0 2 2
1

1
ln 0

n
i

i

x
I

n

ν ν
ν σ σ=

∂   − = ∂  
∑       (5) 

where n  is a number of the elements in the sample. 

Taking into account the following known expression [20]: 

0 1( ) ( )
d

I z I z
dz

=                    (6) 

we can easily find the derivative within the sum sign in (5). 

This function and its properties will be important in the 

further consideration, so we shall introduce a special 

designation for it: 

( ) ( ) ( )
( )

1

0

0

ln
I zd

I z I z
dz I z

= =ɶ     (7) 

Taking into account (7) the likelihood equation for the 

parameter ν  can be written in as follows: 

2
1

1 n
i

i

i

x v
I x

n
ν

σ=

 = ⋅ 
 

∑ ɶ                 (8) 

From (8) one can see that the properties of the solution of 

this equation are determined by the properties of the 

function ( )I zɶ introduced by us in (7) and being equal to the 

ratio of the modified Bessel function of the first kind of the 

first and zero orders. The study of the properties of this 

function will help to consider the issue on the existence of 

the solutions of the ML equation (8), their quantity and 

features.  

It is easy seen that the value ν =0 is always one of the 

solutions of  (8). We have proved the following statement 

(the proofs of this theorem and other mathematical 

statements are provided in the Appendix at the end of the 

paper): 

Theorem 1 

Let the condition 2 22x σ>  be valid. Then at 0ν >  

there exists a single solution of the equation (8) that 

corresponds to the maximum of the LLF. If 2 22x σ≤ , then 

the LLF maximum corresponds to the trivial solution of the 

equation (8), i.e. to the solution 0ν = . 

Obviously while proving the theorem concerning the 

maximum likelihood technique we have to consider both the 

first and the second derivatives of the likelihood function in 

order to determine the character of the extremum (maximum 

or minimum) of the function in the point of zero first 

derivative. Similarly, the sign of the second derivative of the 

function being analyzed is taken into account in the 

mathematical considerations at proving Theorem 2 and 

Theorem 3 provided below.  

The zero root of  (8) corresponds to the LLF maximum 

only in the limiting case of the Rice distribution at 0ν =  

(when it degenerates into the Rayleigh distribution). Such a 

distribution is characteristic for the noise component of the 

signal when the useful signal in the measured data is absent. 

In all other cases the zero root corresponds to the minimum 

of the LF.  

It is worthwhile to note that the issue on the existence of 

the solution of the LLF maximum equation was being 

considered in detail in the paper [12]. The analysis of the 

LLF extremums was being conducted in this paper by means 

of the decomposition into the Taylor row taking into account 

some statements of the catastrophe theory concerning the 

possible structural changes of a function within the vicinity 

of the degenerate stationary point. In this paper the power 

expansion of the logarithmic likelihood function by the 
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parameter ν  is conducted, i.e. the decomposition within 

the vicinity of zero point 0ν = . In contrast to the way of 

consideration implemented by the authors of the paper [12] 

we study the behavior of the LLF with the purpose of the 

revealing all the solutions of the ML equation not limited by 

the vicinity of the point 0ν = , i.e. without any restrictions 

concerning the value ofν . Besides, the proposed by us 

approach to the mathematical analysis of the LF behavior in 

contrast to the approach described in [12], has allowed us to 

develop the logically consistent method for the estimation of 

the statistical parameters of the task in the case when the 

second important parameter – a dispersion- is not known a 

priory. This is just the case which is most characteristic for 

the practice at solution of applied problems of the 

magnetic-resonance images processing. 

The statements similar to the Theorem 1, has been 

obtained, in particular, in the mentioned paper [12]. In this 

paper a conclusion is made on the dependence of the LLF 

extremum’s nature in the point 0ν =  upon the feasibility of 

the condition 2 22x σ> . In the present paper we develop 

and apply the other approaches to the solution of this 

problem and we present here the mathematical consideration 

in detail because the similar logical constructions and the 

conclusions made on their basis will be used by us further, at 

grounding the method of the solution of two-parametric task. 

In particular, by virtue of these reasons we provide here our 

proof of the Theorem 1, as subsequently the same statements 

will form the basis for the proof of the solution existence for 

two-parametric task.  

4. Two-Parametric ML Task:  

Theoretical Consideration 

We have considered above the mathematical task of the 

estimation of the statistical parameter ν  based upon the 

data of a sample of n  measured random values of the 

signal’s amplitude x . In this case the second parameter of 

the statistical model – a dispersion 2σ  - is supposed to be 

known a priori. However in fact this condition never takes 

place in practice what significantly decreases the merit and 

the accuracy of one parametric approach described above.  

In this part of our paper we shall generalize the method for 

the case when both statistical parameters of the task ν  and 
2σ  are unknown. Consideration in this case generally 

demands a numerical solution of the system of two 

equations (4). In the present paper we have succeeded to 

reduce the problem to the numerical solution of one equation 

of one variable and so to simplify the task – both concerning 

the volume of calculations at the numerical computation and 

concerning the formal theoretical considerations and proofs. 

Let us implement the change of one variable, namely: as 

two parameters of the task instead the variables ν  and 2σ

we shall consider the following variables: ν and
2

νγ
σ

= . 

The introduction of the variable parameter γ  is purely 

formal technical trick that allows simplifying the subsequent 

calculations. A comprehensive mathematical analysis of the 

problem and strict substantiation of the maximum likelihood 

technique applicability for MR image processing tasks has 

become the subject of paper [21]. 

We’ll obtain a system of ML equations for the introduced 

by us a pair of the statistical model’s parameters ν  and 
γ

 

by differentiating the LLF (3) by these parameters. From 

formula (1) we obtain a following representation of the 

probability density function 
( ),P x ν γ
⌢

 as a function of 

the parameters ν  and 
γ

, in the case when the signal’s 

amplitude x  obeys to the Rice distribution:  

( ) ( )
2

02
, exp 1

2

x x
P x I x

γ γνν γ γ
ν ν

  
= ⋅ − ⋅ + ⋅  

  

⌢

 (9) 

Let us consider a sample of n  measurements of the 

signal’s amplitude value x . Then the LF ( ),L ν γ
⌢

 is 

expressed as a product of the probability density functions 

for each measurement of this sample: 

( ) ( )
1

, ,
n

i

i

L P xν γ ν γ
=

= ∏
⌢ ⌢

              (10) 

Taking into account the formulas (9) and (10), we obtain 

for the LLF the following expression:  

( ) ( )

( )

1

2

02
1

ln , ln ,

ln ln ln 1 ln
2

n

i

i

n
i

i i

i

L P x

x
x I x

ν γ ν γ

γ νγ ν γ
ν

=

=

= =

  ⋅ + − − + + ⋅  
   

∑

∑

⌢ ⌢

 (11) 

The system of the likelihood equations for the parameters 

ν  and γ  is as follows : 

( )

( )

ln , 0

ln , 0

L

L

ν γ
ν

ν γ
γ

∂ =∂
 ∂ =

∂

⌢

⌢
                (12) 

The first of these equations has been discussed above at 

considering the one-parametric task (see equation (8)). In 

variables ν  and γ  this equation looks as follows:  

( )
1

1 n

i i

i

I x x
n

ν γ
=

= ⋅∑ ɶ  

where the function ( )iI x γɶ  is determined by the formula 

(7). Differentiating the LLF (11) by variable γ , we obtain 

the second equation of the system (12) in the following 

view: 
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( ) ( )
2

2
1 1

ln , 1 0
2

n n
i

i i

i i

xn
L x I x

νν γ γ
γ γ ν= =

 ∂ = − ⋅ + + = ∂  
∑ ∑

⌢
ɶ  

Let us introduce a notation: 

( ) ( )
1

1 n

i i

i

S x I x
n

γ γ
=

= ∑ ɶ  

Then having conducted the non-complicated 

mathematical transformations we’ll obtain the following 

system of equations for the parameters ν  and γ : 

( )

( )2 2

2

2

S

x S

ν γ
νγ

ν ν γ

=

 = + −

                  (13) 

Substituting the first equation of the system (13) into the 

second one, we obtain the equation for the variable γ : 

( )
( )2 2

2S

x S

γ
γ

γ
=

−
                    (14) 

It is evident that the issue on the existence and uniqueness 

of the solution of equation (14) means the existence and 

uniqueness of the solution of equations system (13). We 

have studied the properties of equation (14) solution both by 

means of computer simulation and by analytical 

mathematical considerations. The main conclusions of this 

study are the following: 

1. The solution of equation (14) for non-negative 

parameter   exists; 

2. This solution is unique; 

3. This solution corresponds to the global maximum of 

the LLF (11). 

Now let us consider these assertions in more detail. The 

function   is a linear combination of the function , and this 

determines the properties of the function  as a smooth 

monotonous and concave function. We shall use these 

properties at investigating the issues concerning the 

existence and the properties of the solution of equation (14) 

for . The rather complicated analytical considerations having 

been implemented by us can be resumed as the following 

mathematical affirmation:  

Theorem 2 

The solution of the equation (14) for non-negative values 

of the parameter   exists. 

Unfortunately, the strict proof of the uniqueness of this 

solution, which is needed for the completely rigorous 

treatment of the problem, is unavailable now. Thus, let us 

declare this assertion as a hypothesis: The solution of the 

equation (14) for non-negative values of the parameter   is 

unique. 

The strict proof of this assertion has seemed to be a very 

cumbersome task, because the right part of equation (14) is 

neither a concave, nor a convex function at . Nevertheless 

we have got a lot of confirmations of the mentioned 

solution’s uniqueness by virtue of the experimental results. 

The example plots of the LF shape presented in Fig. 1 for 

various signal-to-noise ratio values may illustrate the 

uniqueness of the two-parametric ML equations’ solution. 

Based upon the assumption, that the two-parametric ML 

equations’ solution is unique, we proved the following 

assertion: 

Theorem 3 

The unique non-zero solution of the equation (14) always 

corresponds to the global maximum of the LLF (11). 

This conclusion may seem to be unexpected as from 

Theorem 1 it follows that the ML estimation may take the 

place at 0ν =  (what in our case would correspond to zero 

value of variable γ  and uncertain value of σ ). 

Nevertheless this paradox is only the seeming one and may 

be explained as follows. The zero estimation of variable ν  

is possible only at a priory known value of σ  (let us denote 

it as
A

σ ). However in our case we use the value of σ  

having been obtained by means of solving the maximum 

likelihood equation (we shall denote it as
ML

σ ). At such a 

value of σ  the mean value parameter ν  can be infinitely 

close to zero, but cannot be equal strictly to zero.  

5. Two-Parametric ML Problem: 

Practical Issues 

The numerical solution of the equation (14) allows 

finding the value of the parameter
2

νγ
σ

= , and then, taking 

into account expression (13), determining the values of the 

parameters ν  and σ  as well. 

It is worth mentioning, that the proposed solution of the 

system (13) demonstrates a new meaning of the 

“conventional” estimation of the parameterν , provided by 

the formula 

2 22 Axν σ= − ,              (15) 

where
2

Aσ  is some hypothetic value specified a priori. In 

the paper [11] this formula was subjected to some just 

criticism due to the following issues: 

1. It loses the sense at 2 22
A

x σ< ; 

2. It does not provide a strict estimation of the parameter 

from the viewpoint of the ML principle. 

However, if we substitute the first equation of the system 

(13) into the second one with replacing the function S  by 

ν  and the parameter γ  by
2ν σ , we obtain the following 

expression coinciding with the conventional estimation 

formula: 

2 22 MLxν σ= −                (16) 
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where 
ML

σ  means the estimation of the parameter σ , 

having been obtained as a result of the solution of the 

equations’ system (13), i. e. corresponding to the maximum 

of the LF. Despite the fact that this formula looks exactly as 

a conventional one, one can affirm that just this formula 

provides the ML estimation for the parameter ν  if the 

parameter σ  was not taken as a priory known 
A

σ  but was 

calculated by means of the ML equations’ system (13) 

solving.  

So, from the above analysis the conclusion follows that 

the system (13) always has a nontrivial solution and so the 

situation 2 22
ML

x σ<  never takes place. The calculation by 

the formula (16) always provides the ML estimation. 

Subsequently, we obtain the following optimal strategy of 

this method application: 

1. By means of the numerical solution of the equations’ 

system (13) a parameter 
2

MLσ  is calculated for some 

homogeneous area of an image; 

2. All other calculation are conducted by the formula (16) 

and do not demand a numerical solution of any equations.  

The elaborated procedure allows accurate ML estimating 

of the statistical parameters of an image, based upon the 

measured data instead of any a priory assumptions. The 

obtained values of the parameters correspond to the 

maximum of the LF. This technique is not associated with 

cumbersome computing as the principle calculations are 

implemented by means of a simple formula (16). 

6. The Numerical Simulation Results  

The both above described ML approaches were tested by 

means of computer simulation (one- and two-parametric). 

The first numerical experiment was conducted as follows. 

The data were generated obeying to the Rice distribution 

with the parameters given beforehand. Parameter σ  was 

assumed to be equal to 1, while parameter ν  was changed 

from 0 to 5. So created sets were used to make measures of 

the parameters according to the above presented algorithms. 

The experiments were performed at variable sample’s length

n : from 4 up to 64. The same experiment for each value of

ν , σ  and n  was repeated 410  times to acquire statistics. 

For each n four types of measurements were 

implemented: 

1. Calculation of parameter ν  by means of the ML 

method: 

• traditional one-parametric ML estimation of ν  by 

means of solving (8) assuming that parameter σ  is known 

a priory; 

• original two-parametric ML estimation according to (13) 

for the case when both statistical parameters are unknown.  

These results are presented by an upper row of the graphs 

in Fig. 2. 

2. Calculation of the mean square deviation of the 

measured values of parameter ν  for both methods. These 

results are presented by the second from top row of the 

graphs in Fig. 2. 

3. Calculation of parameter σ  by means of the ML 

method: only two-parametric estimation according the 

equations (13). The results are presented by the third from 

top row of graphs in Fig. 2.  

4. Definition of the mean square deviation of the 

measured values of parameter σ . These results are 

presented by lower row of the graphs in Fig.2.  

On the basis of the presented graphs were have 

investigated the errors inherent to both one-parametric and 

two-parametric methods. The results are compiles in Table 1 

.Table 1. Investigated methods’ errors estimation 

Parameter Error type, measurement method n=4 n=8 n=16 n=32 n=64 

ν  

Maximum systematic bias, one-parametric method (σ is known a priory) 0,4 0,35 0,3 0,25 0,2 

Maximum systematic bias, two-parametric method (σ is found from the sample) 0,9 0,8 0,7 0,6 0,5 

Maximum mean square deviation, one-parametric method (σ is known a priory) 0,68 0,63 0,58 0,53 0,49 

Maximum mean square deviation, two-parametric method (σ is found from the sample) 0,7 0,53 0,42 0,35 0,18 

σ  

Maximum systematic bias at small ν  –0,4 –0,39 –0,21 –0,16 –0,12 

Asymptotic systematic bias of σ  estimation at large ν  –0,2 –0,1 –0,04 –0,02 –0,01 

Maximum mean square deviation at small ν  0,4 0,33 0,26 0,21 0,17 

Asymptotic mean square deviation at large ν  0,3 0,25 0,18 0,13 0,09 
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Fig. 1. The three-dimensional shape of the LF at various statistical parameters’ values: a) 1,? ,1ν σ= = ; b) 1,? ,25ν σ= = ; c)

1,? ,5ν σ= = . Each plot is represented from 3 view angles: view from σ  axis side (left column); view from the origin of the coordinates side 

(middle column); view from ν  axis side (right column). The sample length n  in these experiments equals to 3. 

 

Fig. 2 Results of computer simulation. Along abscissa axis in all graphs a given value of ν is marked, along ordinate axis a calculated value of variable 

parameter ν  is marked, the grid spacing equals to 0,5, the range of values: 0…5. The graphs rows from top to bottom contain: (1) measurements of ν  by 

two different methods (the grip spacing along the abscissa axis is 0,5; the range of values: 0…5); (2) mean square deviation of ν  (the grid spacing along 

abscissa axis is 0,1; the range of values: 0…1); (3) measurements of σ  (the grid spacing along abscissa axis is 0,2; the range of values 0…2); (4) the 

mean square deviation of σ  (the grid spacing along abscissa axis is 0,1; the range of values: 0…1).  
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As it follows from the data of Table 1, with the growth of 

the amount of the data points in a sample an error at 

computing the statistical parameters decreases noticeably 

(especially the mean square deviation).  

Table 1 and Fig. 2 make clear the important peculiarity of 

the Rician distribution: both bias and variance of the 

measured ν  values grow strongly at low SNR, which is 

inherent to both variants of the examined ML estimation 

procedures. This can be explained with the aid of Fig. 1 plots: 

one can see, that the less is SNR, the less expressed is the 

maximum of LF. Nevertheless, this maximum never 

disappears completely. 

 

Fig.3. Comparing the obtained results with the results provided in [11]. 

While doing the numerical calculations of the ML 

solution for both unknown statistical parameters we found it 

reasonable to compare the obtained results with the results 

provided in paper [11] for the only unknown parameter   in 

supposition of the a priory known parameter  . Fig. 3 

illustrates this comparison. The experiments in this case 

were performed in the same conditions as the analogous 

experiment in [11], so our Fig. 3 can be directly compared 

with the Fig. 2 in [11]. In this experimentthe simulated 

Rician distributed signal was estimated from 16 data points. 

The true value of ν  was 100, pre-assigned σ  values grow 

from 0 to 30 (upper graph), and from 30 to 100 in lower 

graph. The ML estimations were obtained by maximization 

of the LLF by numerical solving of the equations (8) and 

(13). Also there was done the conventional estimation by 

formula (15). The same experiment of ν  estimation by 

three different ways was repeated 510  times after which the 

average values were computed. 

The bias in two-parametric ML estimation is evidently 

larger than in one-parametric ML and conventional 

estimations. This is easily explainable: ν estimation error in 

two-parametric task is influenced by the error of σ  

estimation, while in one-parametric task σ  is known 

exactly. In this connection it is worth to note once more that 

the case of the only unknown parameter is not realistic in 

practice and so this comparison is rather provisional.  

7. Conclusion 

In the present paper a task has been solved consisting in 

the elaboration of a new so-called two-parametric technique 

for the estimation of unknown statistical parameters of a 

Rician distributed signal forming the magnetic-resonance 

image. This task is being solved by means of the ML method 

on the basis of measured sample’s values of the signal 

according to the above-presented theoretical approach. The 

elaborated technique allows to obtain simultaneous 

estimation of both the noise and the signal unknown 

parameters of the Rice statistical distribution what opens 

new important perspectives in MR imaging development.  

While providing significantly more possibilities for image 

processing if compared with the conventional 

one-parametric approach, the proposed two-parametric ML 

method has appeared to be approximately the same in its 

computational cost as the traditional one-parametric ML 

method. 

At low values of the signal-to-noise ratio ( 2ν σ< ) the 

proposed here two-parametric method provides 

approximately 2 times worse accuracy of the estimation of 

parameter ν  in compared with the traditional 

one-parametric ML method (when parameter σ  is 

assumed to be known a priory). This fact is easily 

explainable because the result of the traditional method is 

not influenced by an error of the parameter σ  estimation. 

However, in its pure form the traditional method is not 

applicable in practice because the second statistical 

parameter σ  never may be considered as known a priori. 

At the same time at more high signal-to-noise ratios 

( 3ν σ> ) the errors of the two-parametric method are 

practically indistinguishable from the errors inherent to 

traditional one-parametric method at the same sample length 

n . But for the case 3ν σ>  one can affirm that the proposed 

method ensures practically the same accuracy as 

one-parametric method, at the same time it possess an 

essential advantage as for this method does not need any a 

priory information about the process. 

The implemented analysis and the image processing 

method elaborated in the present paper allow reconstructing 

an image of the investigated object ensuring a correct 

suppression of non-linear Rician noise corruptions that 

appear in the systems of tomography visualization.  

An important issue that should be noted here concerns the 

practical value of the results obtained in the present paper. 

The conducted mathematical research and the obtained 

experimental results have shown that the proposed 
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two-parametric technique can be reliably applied for the 

image analysis tasks at rather high values of signal-to-noise 

ratios ( 3ν σ> ). We expect the possible opponents’ 

objections that at high values of signal-to-noise ratios these 

is no need to use elaborated two-parametric approach to 

solve the tasks within the Rice statistical model as at this 

area the Gauss distribution can be applied. But such kind of 

objection would be not true due to the following reasons: the 

Gauss distribution starts properly working for the 

considered task at significantly higher values of 

signal-to-noise ratio, namely: at 10ν σ> . So, there is a large 

interval of practically meaningful signal values 

10 3σ ν σ> >  in magnetic-resonance imaging which is 

adequately described by the Rician statistical model. And in 

this interval the elaborated two-parametric technique seems 

to be the most appropriate for describing and calculating the 

image processing tasks making use of all the advantages of 

this technique provided above. 

In the conclusion it is worth to underline that the present 

paper provides a theoretical analysis of the maximum 

likelihood method for the two-parametric task in the Rician 

distributed image processing. The developed 

two-parametric version of the maximum likelihood method 

is a new effective tool both to process the Rician images and 

to evaluate the precision of other two-parametric techniques 

by comparing with the technique proposed in the present 

paper.  

A principle merit of the elaborated technique consists in 

the proved possibility to obtain the unique values of both 

major statistical parameters of the image at the “cost” of 

one-parameter estimation.   

Appendix. Proofs of Principle  

Statements 

Lemma 1 

Function ( )I zɶ  is positive-valued, monotonically 

increasing and concave at interval ( )0,+∞ . 

Proof:  

The condition of monotonic character of the function 

( )I zɶ  means the nonnegativity of its derivative. Taking into 

account the definition of the function ( )I zɶ and the known 

formula ( ) ( )0 1
I z I z′ =  we can put down its derivative as 

follows: 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

1 0 1 0

2

0

2

0 1 1

2

0

I z I z I z I z
I z

I z

I z I z I z

I z

′ ′−
′ =

′⋅ −
=

ɶ

      (17) 

The function 
0

I  in the denominator is always positive, 

so the sign of the derivative of function ( )I zɶ  is determined 

by the sign of (17) numerator. So to prove the monotonic 

character of the function ( )I zɶ , i.e. the nonnegativity of its 

derivative, it is sufficient to prove the nonnegativity of the 

numerator of  (17) at 0z ≥ .  

Let us consider the known integral presentation of the 

modified Bessel function of the first kind of integer order: 

( ) cos

0

1
cosz

nI z e n d

π
θ θ θ

π
= ∫         (18) 

where ( ),Il z∈ >Z . From this formula we can obtain 

the following expressions for functions ( )0
I z  and ( )1

I z : 

( ) cos

0

0

1 z tI z e dt

π

π
= ∫ , ( ) cos

1

0

1
cosz tI z e tdt

π

π
= ⋅∫  (19) 

Similarly, for the derivative of the function ( )1
I z  we 

obtain: 

( ) cos 2

1

0

1
cosz tI z e tdt

π

π
′ = ∫          (20) 

Substituting (19) and (20) into the numerator of the 

expression (18) we get: 

( ) ( ) ( )2

1 0 1

cos 2 cos

2

0 0

cos cos

2

0 0

1
cos

1
cos cos

z t z t

z t z t

I z I z I z

e tdt e dt

e tdt e t dt

π π

π π

π

π

′

′

′ − =

′⋅ −

′ ′− ⋅

∫ ∫

∫ ∫

       (21) 

As a result of non-complicated transforms we obtain for 

the expression (21) the following view: 

( ) ( ) ( )
( ) ( )

2

1 0 1

2cos cos

2

0 0

1
cos cos

2

z t t

I z I z I z

dtdt e t t

π π

π
′+

′ ⋅ − =

′ ′−∫ ∫
     (22) 

By virtue of nonnegative value of the sub-integral 

expression it obviously follows from (22) that the whole 

expression (22) is nonnegative and, consequently, the 

derivative of function ( )I zɶ  is nonnegative, what means its 

monotony at 0z ≥ . So the function’s monotony is proved.  

The proof of concavity is implemented similarly, 

although it demands much more cumbersome calculations. 

Lemma 2 

( )0Iz I z∀ > ∈ɶ (0,1) 

Proof:  
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Let us consider the integral representation (18). At 0n =  

the sub-integral expression is always larger than the same 

expression at 1n = . From this fact it easily follows that:

( ) ( )0 1
0Iz I z I z∀ > > . The lemma is proved.  

Theorem 1 

Let us suppose that the condition 2 22x σ>  is valid. 

Then at 0ν >  there exists a unique solution of equation (8), 

which corresponds to the LF maximum. If 2 22x σ≤ , then 

the LF maximum corresponds to trivial solution of equation 

(8), i.e. to 0ν = . 

Proof: 

To determine the conditions of the existence of non-trivial 

solution of equation (8) let us consider the behavior of the 

right and the left parts of this equation. 

The left part of equation (8) is presented by a straight line 

1y ν= . The right part, as it follows from the properties of 

function ( )I zɶ , having been proved in Lemma 1, is presented 

by a smooth monotonic concave function

( )2 2
1

1 n
i

i

i

x
y I x

n

νν
σ=

 = ⋅ 
 

∑ ɶ . The graph of this function is a 

curve passing through the coordinates origin point and 

asymptotically approaching to the straight line y x= . Due 

to its concave character this curve can have one or two 

common points with the straight line 1y ν= . One of these 

points is always known to us and corresponds to the trivial 

solution 0ν = .  

The existence of the second common point is determined 

by the function ( )2
y ν  derivative in the vicinity of the 

coordinates’ origin point: for the existence of the second 

solution it is necessary and sufficient that the condition 

( ) ( )2 1
0 0 1y y′ ′< =  takes place. Let us find the derivative

( )2
0y′ : 

( ) ( )
2

2 2
1

1 n
i

i

i i

x
y I z

n z
ν

σ=

∂′ = ⋅
∂∑ ɶ  

where
2

i
i

x
z

ν
σ

=
. We shall use the known formulas of the 

decomposition into a series [20]: 

( ) ( ) ( ) ( )
( )

2 2 1

0 1

0 0

2 2
, 

! ! ! 1 !

k k

k k

z z
I z I z

k k k k

+∞ ∞

= =

= =
⋅ ⋅ +∑ ∑ (23) 

From decompositions (23) we obtain the following 

formula describing the behavior of function ( )I zɶ  at

0z → : 

( ) ( )
2

41
2 8

z z
I z O z

 
⋅ − + 
 

ɶ ≃  

Taking into account this estimation of the function ( )I zɶ  

at small values of argument, we obtain: 

( )
2

2 2

1

1
0

2

n
i

i

x
y

n σ
=

′ = ∑                  (24) 

Thus, the non-trivial solution of equation (8) exists only at 

the condition 2 22x σ> . To determine if any solution of 

equation (8) corresponds to maximum or to minimum of the 

LF we have to consider the second derivative of the LLF. 

From equation (5) taking into account expressions (6) and 

(7), we obtain: 

( ) ( ) ( )
2

1 22
ln ,L y yν σ ν ν

ν
∂ ′ ′= −

∂
 

In the vicinity of zero this expression can be transferred 

into the following one: 

( )
2

2 2

2
ln , 1 2L xν σ σ

ν
∂ = −

∂
. 

So, at 2 22x σ> the second derivative in the vicinity of 

zero is positive what corresponds to the minimum of the 

LLF. Since the LLF and all its derivatives are smooth, its 

second extremum at 0ν >  can be only a maximum. At 
2 22x σ<  the second derivative in the vicinity of zero is 

negative and this means that the LLF has a maximum. So the 

theorem is proved. 

Theorem 2 

The solution of the equation (14) for non-negative values 

of the parameter γ  exists. 

Proof: 

Let us consider equation (14) at 0γ ≥ , what corresponds 

to the physical sense of the task. Then the left part of 

equation (14) is presented by a straight line ( )3
y γ γ= , 

passing through the coordinates’ origin point. Let us 

consider the behavior of the equation’s right part: 

( ) ( )
( )4 2 2

2 S
y

x S

γ
γ

γ
=

−  

The denominator of this expression is positive 

monotonically decreasing function by virtue of lemmas 1 

and 2 while the nominator is a positive monotonically 

increasing function. So the function itself is monotonically 

increasing. 

Taking into account the series decomposition formulas 

(23), we obtain the following expression, which is valid at 

vanishing values of variable γ : 

( )
2

2

4
0

lim 1
4

x
y

γ
γ γ γ γ

→

 
 = ⋅ + >
 
 
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Thus in the vicinity of zero value of variable γ  the curve

( )4
y γ , displaying the right part of equation (14), goes 

above the straight line corresponding to the left part of this 

equation: ( )3
y γ γ= .  

At larger values of variable γ  the right part of equation 

(14), by virtue of the asymptotic behavior of the modified 

Bessel functions, can be put down as follows: 

( )4 22

2
lim 0

x
y

x xγ
γ

→ ∞
= >

−
     (25) 

It is easily seen that the denominator of expression (25) is 

a non-negative magnitude and equals to mean squared 

deviation of a sample value
i

x . So with increasing the value 

of variable γ  the right part of equation (14) asymptotically 

approaches to the constant positive value determined by 

expression (25). This means that the curve corresponding to 

the right part of equation (14) inevitably crosses the straight 

line corresponding to the left part of this equation because in 

the vicinity of zero this curve goes above the mentioned 

straight line. In other words, from the above considerations 

we can conclude that the non-trivial solution of equation (14) 

exists. The theorem is proved. 

Theorem 3 

The unique solution of the equation (14) corresponds to 

the global maximum of the LLF (11). 

Proof: 

Let us find the second derivative of the ( )ln ,L ν γ
⌢

 

function with respect to γ : 

( ) ( )
( )

22

2

2

2 2

1 1
ln ,

2 2

1

2 2

xS
L

n S

S S
x

S

γ
ν γ

γ γγ

γ

′ ∂
 = + −
 ∂
 

′ ′
= − + +

⌢

 

Making use of expressions having been obtained by us 

while proving the Theorem 1, we get the following 

estimation at 0γ → : 

( )
2 32

2 20

1 1
lim ln ,  

4 16

x x
L

n xγ
ν γ

γ→

∂ = +
∂

⌢

, 

This means that the second derivative of the LLF is 

always positive at zero point and consequently this point 

corresponds to its minimum. As the LLF is smooth, its 

second extreme point can be only a maximum. 
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