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Abstract: The application of B-spline (Basis spline) surface to the estimation of the lake bottom topography is 

described.By using the analysis of a bivariate B-spline, the shape of the lake bottom is approximated.According to the 

validity of the estimation by the bivariate B-spline function the method is applied to the actual data of the lake 

depth.Surveys over the water area have more difficulties than those on land, and the measurement data are distributed quite 

irregularly. The locations of the measured data donot exist regularly over the lake.Those locations were distributed along 

with the wake of the boat on which the sample data were collected. The density of the data is quite high in some small 

regions and quite low in other wide regions.Based on such irregular data, we tried a statistical estimation.The regularized 

term with a penalty coefficient makesa proper approximation of the parameters of the B-spline functions. There are many 

factors, such that the number of knots, the locations of those knots, the number of B-spline functions and the coefficient of 

penalized term.Appropriate information criterion which has sufficient accuracy and a small amount of computation is 

applied for determination of the optimal model. 

Keywords: B-spline surface, Cross-validation, Influence function, Generalized cross-validation, Surface model selection, 
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1. Introduction 

In this study we approximate the topography of a lake 

bottom with our statistical method.The lake is Kojima Lake 

which is located in Okayama prefecture in 

Japan.KojimaLake is separated by the bank from Kojima 

bay and turns into a freshwater lake. The water quality of 

the closed water area like this lake tends to worsen because 

of sedimentations or the pollutants from the upper stream. 

For the improvement of the water quality, the dredging 

must be tried and that requires a detailed depth data of the 

lake.Comparedto land, a detailed survey of the lake depth is 

difficult,so we applied a statistic method.Based on the data 

measured from September 2010 to January 2011, we made 

the estimation by using B-splines. To make an optimal 

model selection, various information criteria are devised. 

When there is a large number of models, CV (cross 

validation) is difficult to use for its computational cost. The 

GCVIF(generalized cross validation with influence 

function) is adopted because we can obtain almost the same 

information as CV and it has a smaller computational cost. 

Furthermore, in order to obtain a high accuracy, the 

technique of using the influence function, which we have 

proposed recently [1], is applied.We are able to obtain an 

optimal model by this method which can approximate the 

smooth topography of the lake bottom.At first we applied 

CV and GCVIF for the estimation of the selected two 

subdomains of the lake.Afterevaluation of the methods, we 

approximated the topography of the whole domain by 

GCVIF and selected values ofβ. 

2. Method of Surface Approximation 

2.1. Introduction to B-splines 

The spline function is a piecewise-defined polynomial 

function.The combinations of spline functions must have a 

sufficient required smoothness at the places where those 

functions connect.The connection points are named 

knots.We can consist the B-spline function Mm,i(x) of the 

required degree r-1 (order r) by the algorithm of de 

Boor-Cox [2-4].This calculation can be started by the first 
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step 
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and the successive recurrence formula listed below 

��,���� 	 ����� !�"! #,� #���$������"! #,��������� !   , (2) 

where {ξ&},k=1-r,…,n+r are the knots and n is the total 

number of intervals for the approximation. 

Usually,B-splines with order four (degree three) are used 

in the calculation. Along the x direction we set the knots ��, �', … , �), and the knots at both ends are four-folded.So, 

the total number of basis B-splines will be * 
 4 .The 

univariate spline functions are shown in Fig. 1,whereξ�, 	��' 	 ��� 	 �- 	 0,ξ� 	 1,ξ' 	 2 ,ξ, 	 3,ξ1 	 ξ2 	 ξ3 	ξ4 	 4. 

We set the approximation for the three dimensional 

surface as 5��, 6� 	 ∑ ∑ �8��8���9��6� ,:;�<�:#=<�         (3) 

wherep1, p2 is the total number of basis B-splines 

{Mi(x)},{Nj(y)},respectively.In addition, these functions 

have the support [ ξ8�� , ξ8 ), [ η��� , η��  for the xandy 

directionsrespectively.The shape of the three dimensional 

B-splines are shown in Fig. 2 where p1=p2=2,ξ8 	 �� 
1� ? 10,η8 	 �� 
 1� ? 10,i=1,2,…,6. 

 

Figure1. Spline Functions (Order Four) 

 

Figure2. Three Dimensional SplineFunctions(Order Four) 

We have to satisfy the Schoenberg-Whitney condition [5] 

to determine the parameters wij.If there is no sample point 

in the domain {(x,y)|ξ8�� � � @ �8 , A��� � 6 @ A_CD, then 

we cannot solve the equations of the parameters. 

2.2. Method of Parameter Estimation 

For the nonlinear statistical modeling the maximum 

penalized likelihood methods are often used [6-8].Suppose 

that we have n observations {(EF, �G�; I 	 1, … , J}, where zGis the response variables generated from the unknown 

true distribution G(z|x)having a probability 

densityofg(z|x)and �G is the vectors of explanatory 

variables. 

We estimate w, which is a vector consisting of the 

unknown parameters and determines the model z=u(x| 

w).Letf(zG|�G; M�be a specified parametric model, where M 

is a vector of unknown parameters included in the 

model.The regression model with Gaussian noise is 

denoted as EG 	 5��G|�� N OG  , OG~9�0, Q'�, I 	 1, R , J   (4) S�EG|�G; M� 	 �√'UV; ��* W
 XYZ�[��Z;\�D;'V; ] ,     (5) 

whereM 	 ��^, σ'�`.The parameter will be determined by 

the maximization of the penalized log-likelihood function 

expressed as 

ℓa�M� 	 ∑ logS�EG|�G; M� 
 e'eG<� fg��� .     (6) 

As the regularized term or penalized terms H(w) with an 

m-dimensional parameter vector w, various types are used 

depending on the dimension of explanatory variables or the 

purpose of the analysis.For the three dimensional 

approximation[9], we use 

g��� 	 i jkl;[l�;m' N kl;[ln;m'o p�p6 ,    (7) 

H(w) can be represented in the quadratic form by the q ?m nonnegative matrix K as follows g��� 	 �^r� .                   (8) 

Therefore, when we set bk(�F, 6F� 	 �8��G�9��6G�, k is 

determined by i and j,(6) will be 

ℓa�M� 	 
 e' log�2tQ'� 
 �'V; �E 
 u��^�E 
 u�� 
 e' f�^r� ,(9) 

whereE=(z1,…,zn)' and B is an n?m matrix composed of the 

basis functions as 

 u 	 vw����^w��'�^xw��e�^y=z{{
{| w�����w���'�xw���e�

w'����w'��'�xw'��e�
RR}R

w~����w~��'�xw~��e� ���
��
 (10) 

By differentiating ℓ��M� with respect to M and setting the 

result equal to zero, we obtain the equations below �ℓa�Q' 	 
 J2Q' � 12Q1 �E 
 u��^�E 
 u�� 	 0 , 
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lℓ�l\ 	 �V; u^�E 
 u�� 
 Jfr� 	 0 ,(11) 

By solving these equations, we have the estimation of the 

parameters by �� 	 �u^u N JfQ�'r���u^E ,              (12) 

Q�' 	 �e �E 
 u���^�E 
 u��� .              (13) 

For the predictive valueÊF 	 ��`w��G� , at each point of �G , 

we obtain the vector of predicted values Ê 	 u�� 	 u�u^u N fr���u^E ,(14) 

whereÊ 	 �Ê�, Ê', … , Êe�`.At first, we set the constant value 

of β 	 λσ�' and determine ��  for a given value of β.After 

that, we obtain the variance estimator σ�', and then we can 

obtain the smoothing parameter  λ 	 β/σ�'. 

3. Model Selection 

3.1. Cross Validation Criterion 

From n observations the α-th data point �EF, �G�  is 

removed and the parameter vector M 	 ��^, Q'�^ is 

estimated based on the remainingJ 
 1observations. We 

denote the parameter as M���G� 	 ��� ��F�` , Q�'��F��` .The 

corresponding estimated regression function is denoted as 5� ��F����. Weuse the log-likelihood forCross-Validation(CV) 

as 

�� 	  
2 � log kS��G , M��G��me
G<�  

	 ∑ 
log�2tQ�'��G�� N �YZ�[�� Z��;
V�;� Z� ��F<�  .(15) 

This is asymptotically equivalent to AIC (Akaike 

Information criterion)-type criteria such as AIC or BIC 

(Bayesian Information criterion) and so on [10-12]. 

Minimizing the (15) is a method for selecting an optimal 

model.Various alternative schemes are considered for the 

reduction of its computational costs. 

3.2. Generalized Cross Validation with Influence 

Function 

If the predicted value Ê is given in the form of Ê 	 gE, 

where H is a matrix that does not depend on the data z,then 

in cross-validation, the estimation process performed n 

times by removing observations one-by-one is not needed, 

and thus the amount of computation required can be 

reduced substantially.Because the matrix H transforms 

observed data E to predicted values Ê, it is referred to as a 

hat matrix or is called a smoother matrix.The alternative 

scheme is called generalized CV (GCV)[13] which 

estimates the value of 5� ��F���G� as follows 

����� 	  ∑ �log�2tQ�'��G�� N � YZ�[���Z�V�� Z����#������'�eG<� ,(16) 

where the matrix H is denoted in (14)as follows g 	 u�u^u N fr���u^.         (17) 

In (16) the value of Q�'��F�  is also estimated by the 

influence function as follows 

M���G� � M� 
 �e �����EG; ���,                (18) 

where�����EG; ��� is the influence function of �� atEG. 

The general definition of the influence function is as 

follows.Its suitably normed limitinginfluence on the value 

of an estimate or test statistic T(ˆG) can be expressed as 

������, �� 	 lim¡¢- £�#�����¡�¤$¡¥¦��£�¤�¡ ,   (19) 

whereδ� denotes the pointmass 1 at x.The above quantity, 

considered as a function of x,was introduced [14-15] under 

the name influence function, and is arguably the mostuseful 

heuristic tool of robust statistics. 

4. Numerical Calculation 

4.1. Computation for the Selected Areas 

For the topographical estimation, we have acquired the 

experimental data of the lake.Thearea of the data is 2.79 

km
2
, and the total number of data is 1,178.At first, we 

tested the two subdomains of the whole data.After 

verifying the scheme to these two subdomains, we applied 

the scheme to the whole domain. We chose two subdomains 

where the distributions of the data are relatively uniform 

compared with other domains.Area I is an eastern area and 

Area II is a northern area.The distributions of data are 

shown in Fig. 3,4. 

We used a small number of knots for the x and y 

directions, respectively, because of the irregularity of 

locations of samples.We tested10 to 18 knots for the x and y 

directions,respectively.For every combination of the 

number of knots, we generated 100 sets of the uniformly 

randomized x- and y-coordinates according to the density 

ofsamples,respectively.However some of them didnot 

satisfy the Schoenberg-Whitney condition,sowe generated 

another set of coordinates.Furthermore, if the equations of 

matrices made from ill-conditioned coordinates could not 

be solved properly, then we also generated other 

coordinates of knots.After solving (12) and (13), we have 

appliedgeneralized cross-validation with the influence 

function GCVIF[1] as the information criterion.
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(a) Planar Distribution 

 

(b) ThreeDimensional Distribution 

Figure3. Distribution of Data over Area I 

 

(a) Planar Distribution 

 

(b) Three Dimensional Distribution 

Figure4. Distribution of Data over Area II

5. Conclusion 

In the actual measurement data, some of the information 

criteria could not determine the optimal 

parameters.Inparticular, the solutions to smallβ 's did not 

determine the shape of surfaces adequately. The major 

reason of those difficulties is considered as the irregularity 

of the distribution of data.If there is little data near the 

boundary of the domain, even if the surface changes sharply, 

the value of criterion will seldom be influenced. In spite of 

those difficulties, CV and the generalized CV with influence 

function (GCVIF) can determine the optimal values to the 

various sets of data.The computational cost of GCVIF is 1/50 

of cross-validation.Furthermore, the selected optimal model 

by GCVIF (Fig. 7) is better than that by CV(Fig. 5).We can 

assert that GCVIF is just a practical method. This 

approximation method is able to contribute to the 

improvement of the water quality of Kojima Lake. 

Table1. CV Results for Area I 

total number of knots 

x-axisy-axis 
¨ ©２２２２ ª CV 

17      16 1.000E-00 0.003458 2.892E+02 -766.4 

11                     10 1.000E-01 0.003292 3.038E+01 -776.8 

10      10 1.000E-02 0.003166 3.159E+00 -776.5 

10      10 1.000E-03 0.003118 3.207E-01 -768.3 

11     10 1.000E-04 0.002872 3.482E-02 -768.2 

11     10 1.000E-05 0.002665 3.753E-03 -766.0 

11     10 1.000E-06 0.002661 3.758E-04 -761.9 

10      10 1.000E-07 0.002878 3.475E-05 -747.8 

10      10 1.000E-08 0.002878 3.475E-06 -746.2 

10      10 1.000E-09 0.002878 3.475E-07 -746.0 

10      10 1.000E-10 0.002878 3.475E-08 -746.0 
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Table2. CV Results for Area II 

total number of knots 

x-axisy-axis 
¨ ©２２２２ ª CV 

16  18 1.000E+00 0.09638 1.038E+01 199.9 

17  10 1.000E-01 0.09081 1.101E+00 203.6 

11  10 1.000E-02 0.08468 1.181E-01 215.3 

12 12 1.000E-03 0.07261 1.377E-02 219.9 

12 11 1.000E-04 0.07048 1.419E-03 195.3 

12 11 1.000E-05 0.07015 1.426E-04 194.7 

12 11 1.000E-06 0.07012 1.426E-05 196.0 

12  11 1.000E-07 0.07012 1.426E-06 197.0 

12  11 1.000E-08 0.07012 1.426E-07 197.1 

12 11 1.000E-09 0.07012 1.426E-08 197.1 

12  11 1.000E-10 0.07012 1.426E-09 197.1 

Table3. GCVIFResultsforArea I  

total number of knots 

x-axisy-axis 
¨ ©２２２２ ª GCVIF 

17 16 1.000E+00 0.003297 3.030E+02 -768.5 

10 16 1.000E-01 0.003206 3.120E+01 -778.2 

16 10 1.000E-02 0.003125 3.200E+00 -779.1 

10 10 1.000E-03 0.003118 3.207E-01 -772.0 

10 10 1.000E-04 0.003063 3.265E-02 -772.0 

10 10 1.000E-05 0.002968 3.369E-03 -762.1 

11 10 1.000E-06 0.002678 3.734E-04 -761.3 

10 10 1.000E-07 0.002726 3.668E-05 -760.3 

10 10 1.000E-08 0.002726 3.668E-06 -760.2 

10 10 1.000E-09 0.002726 3.668E-07 -760.2 

10 10 1.000E-10 0.002726 3.668E-08 -760.2 

Table4. GCVIFResultsfor Area II 

total number of knots 

x-axis y-axis 
¨ ©２２２２ ª GCVIF 

16   18 1.000E+00 0.09638 1.038E+01 190.6 

18   18 1.000E-01 0.07264 1.377E+00 167.4 

15  14 1.000E-02 0.06267 1.596E-01 158.6 

11   15 1.000E-03 0.06199 1.613E-02 165.8 

11  11 1.000E-04 0.07025 1.424E-03 173.7 

11  10 1.000E-05 0.07728 1.294E-04 177.4 

10   10 1.000E-06 0.07725 1.294E-05 177.7 

10    10 1.000E-07 0.07725 1.294E-06 177.7 

10   10 1.000E-08 0.07725 1.294E-07 177.7 

10   10 1.000E-09 0.07725 1.294E-08 177.7 

10  10 1.000E-10 0.07725 1.294E-09 177.7 

Table 5. GCVIFResults over the Whole Area 

total number of knots 

x-axisy-axis 
¨ ©２２２２ ª GCVIF 

22 19 1.000E-01 0.04969 2.013E+00 292.6    

21 18 1.000E-02 0.05146 1.943E-01 333.0 

22 18 1.000E-03 0.06605 1.514E-02 347.7 

22 18 1.000E-04 0.05017 1.993E-03 337.4 

22 21 1.000E-05 0.09521 1.050E-04 318.6 

22 18 1.000E-06 0.04231 2.364E-05 303.2 

22  18 1.000E-07 0.04175 2.395E-06 299.2 
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(a) Area I�« 	 10��� 

(b) AreaII�« 	 10�2�
Figure5. Selected Model (CV)

(a) AreaI�« 	 10�4� 

(b) AreaII�« 	 10�4� 
Figure6. Selected Model (CV)
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(a) Planar distribution 

 

(b) Three Dimensional Distribution 

Figure9. Distribution of Data over Whole Area 

 

(a) Samples and Estimated Surface 

 

(b)Estimated Surface 

Figure10. Estimation of Lake Bottom Topography

 

Figure11. GCVIF Results over the Whole Area �« 	 10�4� 
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