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Abstract: Discrete compound Poisson processes (namely nonnegative integer-valued Lévy processes) have the property 
that more than one event occurs in a small enough time interval. These stochastic processes produce the discrete compound 
Poisson distributions. In this article, we introduce ten approaches to prove the probability mass function of discrete 
compound Poisson distributions, and we obtain seven approaches to prove the probability mass function of Poisson 
distributions. Finally, we discuss the connection between additive functions in probabilistic number theory and discrete 
compound Poisson distributions and give a numerical example. Stuttering Poisson distributions (a special case of discrete 
compound Poisson distributions) are applied to numerical solution of optimal (s, S) inventory policies by using continuous 
approximation method. 
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1. Introduction 

Poisson distribution is a famous distribution in discrete 
distribution family, and it has important applications in 
social and economic sciences, physics, biology and other 
fields. For example, the number of passengers came to a 
bus stop, the number of particles emitted by radioactive 
substances, the number of microorganisms in a region 
under the microscope and so on. Poisson (1837) [25] tried 
to use the binomial distribution of several experiments to 
derive distribution function of the Poisson distribution in 
his representative work Recherches sur la probabilité des 

jugements en matière criminelle et en matière civile, 

précédées des règles générales du calcul des probabilités 
2 3
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After about 100 years, de Finetti (1929) [6] initiated that 
the probability of an event in the interval 0 0[ , )t t t∆ +  of 

Poisson Processes is   ( ), ( 0) t o tλ λ∆ + ∆ > and the 

probability more than one events is ( )o t∆ . Khintchine [21] 

summarized the equivalent conditions of Poisson 

distribution: zero initial conditions, stationary increments, 
independent increments, and orderliness (impossible of two 
or more events occurring in the same moment of time). In 
actual life, Poisson processes (distribution) is not an 
adequate model for the observed data that the possibility of 
two or more events occur at a given instant. Khintchine 
[21] also generalized the Poisson processes by giving more 
restrict of orderliness. As for a situation: during period of t, 
the number of cars that arrive at the terminal station can be 
regard to Poisson distribution, every car take i passengers 
with probability iα , thus the number of passengers who 

arrive at the terminal station can not satisfy Poisson 
processes. So we assume that there are many events 
occurring in a small segment of length t. Hight [14] 
considered another situation: somebody might throw some 
letters (more than one) into a postbox at the same time. 

2. Discrete Compound Poisson Model 

2.1. Nonnegative Integer-Valued Lévy Processes 

We employ the following definition due to [14]. 
Definition 1. (Discrete compound Poisson processes) 
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Nonnegative integer-valued stochastic processes 0{ ( )}tX t ≥  

satisfy the following four conditions:  
(i) Initial condition: (0) 0X = ;  

(ii) Stationary increments: the events occur in 0 0[ , )t t t+  

only depends on t, and is not relevant to 0t ; 

(iii) Independent increments: the events occur in 

0 0[ , )t t t+ is independent with the events which happen 

before 0t ;  

(iv) Superimposition: the probability of i events taking 
place between 0 0[ , )t t t+  is: 

1

( ), ( 1, 0, 0, )( ) 1i i i
i

it t o t iP αλα λ α
∞

=
∆ ∆ + ∆ ≥ => ≥= ∑

. 

Especially, when it applies to the inventory management 
theory, the number of consumers coming in a period of t can 
be seen to subject to the stuttering Poisson distribution 
(SPD). When the interval is small enough and the number 
has the property of geometric distribution, that is 

(1 ) , ( 1,2, )i

ia iα α= − = ⋯
. 

Galliher [12] applied SPD to the inventory management 
firstly, and named it as stuttering Poisson distribution. We 
will prove the explicit expression of probability mass 
function (pmf) of SPD in the following part. Definition 1 
was put forward by Khintchine [21], where iα  be 

probability of nonnegative discrete distribution. Hight [14] 
still named stuttering Poisson distribution instead of discrete 
compound Poisson distribution existing in the broad sense of 
inventory management. There are some other names:  

Pollaczek-Geiringer distribution, 
Generalized Poisson distribution, 
Composed Poisson distribution, 
Poisson power series distribution, 
Poisson par grappes distribution, 
Poisson-stopped sum distribution, 
Multiple Poisson distribution, 

Infinite divisible distribution on the nonnegative integer. 
Readers can find more general information of Poisson 

distribution and discrete compound Poisson distribution in 
[18] and [14]. The wide range of applications with discrete 
compound Poisson, see [21], [16], [34], [12] and [2]. 

Definition 2. (Discrete compound Poisson distribution) 
In particular, we say the discrete random variable X  
satisfying the conditions above has a discrete compound 
Poisson (DCP) distribution with parameters 

1 2 1
( , , ) R ( 1, 0, 0)

i i iα λ α λ α λα∞∞
= =∈ ≥ >∑⋯

. 

We denote it as  

1 2( , , )X CP α λ α λ∼ ⋯ . 

If 1( , , )rX CP α λ α λ∼ ⋯ ，we say X has a DCP 

distribution of order r. 
Remark 1. In the Section 3.8, we will show ( )X t  have 

compound Poisson sum properties. 

Theorem 1. Discrete compound Poisson process ( )X t  

is a Markov chain with stationary independent increments. 
Let ( ) (0) 0( ) { }i X t i XP t P = == . The pmf of DCP 

processes is 

1 2
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where N {0,1,2, }= ⋯ . 

By the definition of Bell polynomial [4]:  

1
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hence ( )iP t satisfies  

1(1! , , ! ) ! ( ).i i iB t i t i P tα λ α λ =⋯  

So ( )nP t  can be expressed by Bell polynomial. The 

indeterminate equation 1 , ( N)n

i i iik n k=Σ = ∈  is called 

Diophant's equations. The depth theoretical properties and 
statistical applications of Bell polynomial with Diophant's 

equations 1
n

i iik n=Σ = , see [30].  

Theorem 2. If 1 2( ) ( , , )X t CP t tα λ α λ∼ ⋯ , then the 

probability generating function (pgf) of ( )X t  is  

1
( 1)

( ) , ( 1).
i

ii
t s

P s e s
λ α∞

= −∑= ≤          (2) 

Remark 2. We will give ten approaches to proof the pmf 
of DCP distribution and two to approaches proof the pgf of 
DCP distribution in Section 3. 

Lévy processes 0{ ( )}tX t ≥  satisfy the following four 

conditions as follows: 
(i) { (0) 0} 1, . .P X a s= = ;  

(ii) ( )X t has independent increment;  

(iii) ( )X t has stationary increment;  

(iv) ( )X t is almost surely right continuous with left 

limits.  
Lévy processes can derive Lévy–Khinchine formula 

(details can be seen in Bertoin(1996)). The characteristic 

function ( )E[ ]i X te θ  of ( )X t is 

2 2
1\{0}

1
exp ( 1 I ) ( )

2
i x

XR
ait t t e i x w dx

θθ σ θ θ <
 − + − − 
 

∫
, 

where , 0a R σ∈ ≥ , IA  is an indicator function. And  

( )w dx is a measure which is called Lévy measure. It 

satisfies 

2
\{0} min{ ,1) ( )R x w dx∫ < ∞ . 

Lévy–Khinchine formula is firstly obtained in the 
generalization of de Finetti [6] and Kolmogorov [22] 
results by Lévy [23] and Khinchine [20]. This formula can 
be expressed as the union of Brown motion, constant drift, 
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compound Poisson process, and a pure jump martingale. By 
the definition of Lévy process, suppose 

( ) x xw dx dα λ δ= ,              (3) 

where xδ  is Dirac measures (or point measure) with 

( ), ( N)xfd f x xδ∫ = ∈   and 2
\{0} min{ ,1) ( )R x w dx∫ < ∞ . 

Because ( )X t  is a integer value as well as the 

definition of ( )w dx , we have 

2 2
1\{0}

1
( I ) ( ) 0

2 XR
ait t t i x w dxθ σ θ θ <− = =∫

. 

Hence, the characteristic function of ( )X t is  

( )

1

E[ ] exp[ ( 1)]i X t ji

j
j

e t e
θ θλ α

∞

=
= −∑

 , 

Theorem 2 shows that the Lévy measure (3) we defined 
before is reasonable. 

Discrete compound Poisson process is a continuous-time 
non-negative integer value Lévy process. Barndorff [2] put 
forward the integer-valued Lévy process, and he use it in 
latency financial econometrics.  

2.2. Special Case 

2.2.1. Hermite Distribution 

When 2r =  in definition 2, it called Hermite 
distribution. The pmf is 

[ ] 22
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The pmf above is gotten by the pgf of Hermite distribution 
expanded in terms of Hermite polynomial. More details can 
be seen in Kemp [19]. 

2.1.2. Stuttering Poisson Distribution 

In inventory system, Galliher [12] use the DCP 
distribution with parameter 1 2( ) ( , , )X t CP t tα λ α λ∼ ⋯  to 

describe the demands, where 1(1 )n

nα λ α α λ−= − . He 

called it stuttering Poisson distribution.   
The following parts show that the pmf of SPD can be 

expressed by Laguerre polynomial. We need a lemma. The 
power series solution of second-order linear differential 
equation 

(1 ) 0xy x y ny′′ ′+ − + =  

 is
( )

( )
!

x n n x

nn

e d x e
y L x
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−

= ≜ , which is called Laguerre 

polynomial. 
We begin by proving a property of Laguerre polynomial.  

First, we need Lemma 1. It is the connection between 
Laguerre polynomial and pgf of SPD. 

Lemma 1: The Taylor’s formula with respect to t of   
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Proof: It is easy to prove that 
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⋅  satisfies 

ODE: (1 ) 0xy x y ny′′ ′+ − + = . Suppose t is a complex 

variable and assume that 
11 (1 )( , ) (1 ) t xtP t x t e

−− − −= −  is 

analytic in 1t r≤ < . Define the Taylor expansion of 

( , )P t x  in 1t r≤ <  is 
0

( ) n
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∞
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formula of higher order derivative of analytic function, the 
coefficient ( )na x  of power series is 
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Theorem 3：The pmf of SPD is  

1
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Proof: The pgf of SPD can be rewritten as follow by the 
Lemma 1 above: 
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( )nP t is the coefficient of ns  in the expanded formula of 

( , )P s t , hence 
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Let 0.2 0.5, 10tα λ= =、 , plot the graphic in SPD and PD 

of ( )ny P t= by Maple 16. 

 

Figure 1. 0.2α =  
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Figure 1. 0.5α =  

The figure of SPD is more dwarfed than it is in PD from 
Fig.1 and Fig. 2 This is because the SPD have superimposed 
events occurred within a sufficiently small time interval, 
while the PD is not allowed. Number of incidents in a unit 
time is relatively more in SPD. More discrete compound 
Poisson distribution examples can be seen in Wimmer [32], 
it lists more than 100 special cases. 

3. Ten Approaches to Prove the PMF of 

Discrete Compound Poisson 

Distribution  

3.1. Lemma 

Lemma 2. (Cauchy functional equation) Suppose f   is 

continuous on R , so ( ) ( ) ( )f x y f x f y+ = +   for all 

,x y R∈ , Then ( ) ( R)f x ax a= ∈ . The proposition of 

Cauchy functional equation: Suppose f  is continuous on 

R , so ( ) ( ) ( )f x y f x f y+ =  for all ,x y R∈ , Then 

( ) ( R)axf x e a= ∈ . 

Lemma 3. (Euler’s method of linear differential equation 
with constant coefficients) Suppose a p-dimensional column 
vector function x , P  is an n-order coefficient matrix of 

differential equation 
d

dt
=x

Px .  

Let ( )λ λ= −F P E , and det ( ) 0λ =F  is the 

characteristic equation of  P . det ( ) 0λ =F has different 

characteristic roots in the complex field. Suppose they are  

1 2, , , ( )m m nλ λ λ ≤⋯  which have algebraic multiplicities 

1 2 1 2, , ,  ( )m mr r r r r r n+ + + =⋯ ⋯  . 

Then the particular solution of the equation is  
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where the vector iA  satisfies equation ( ) 0ir

i iλ =F A .  

Hence, the general solution of equation 
d

dt
=x

Px   is 

1 1 2 2 1 2, ( , , ,  are constants )m m mc c c c c c= + + +⋯ ⋯x x x x (4) 

Lemma 4. (Polynomial of n-th power) 
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  (5) 

Another expression can be seen by Theorem 1 in [31]. In 

order to simplify the symbols, set the coefficient of lx  as  
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Lemma 5. (Nilpotent matrix) nI  is a n -dimension 

identity matrix, let shift matrix be
0

0 0
n 

 
 
≜

I
N , if 

1i n≥ +  , then 0i =N . 
Lemma 6. (Faà di Bruno formula, [10])  If g  and  f  

are functions with a sufficient number of derivatives, then 
we have 
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It is easy to verify Lemma 2 to Lemma 5, and the proofs 
can be found in many text books. 

3.2. Univariate Multinomial Distribution Approximation 

Now we discuss the generalization of n times of Bernoulli 
trials, and consider it under the situation: n → ∞ . This case 
is similar to univariate multinomial distribution (see [18] 
p522): Suppose that there is a sequence of n  independent 
trials during segment length of t, where each trial has infinite 
possible outcomes 0 1 2, , ,A A A ⋯  that are mutually 

exclusive and the probability of each outcomes can be 
written as : 

0
0 1

( 1, 1)1 ( , ,) i i
i i

o tp t p αλ
∞ ∞

= =
= − ∆ =+ =∆ ∑ ∑

 

( )   ( ),ii ip p A t o tλα= ∆ + ∆=  

respectively. Let the occurrence of ( 1, 2, )iA i = ⋯ be deemed 

to be equivalent to i successes and the occurrence of 0A  be 

deemed to be a failure. The number of successes ( )X t  

achieved in the n trials. When n → +∞ , the reader can see 
in Fig.3, we divide 0 0[ , )t t t+  in to N  pieces evenly, and 

every interval is t∆ , that is lim
N

N t t
→∞

∆ = . Set them 
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0 0 0 0 0 0[ , ),[ , 2 ), ,[ ( 1) , ).t t t t t t t t N t t N t+ ∆ + ∆ + ∆ + − ∆ + ∆⋯  

There is only one events choosing from 0 1 2, , ,A A A ⋯  in 

every 0 0[ , ( 1) ) ( 1,2 )t h t t h t h+ ∆ + + ∆ = ⋯， . The number of 

events 1 2, ,A A ⋯  happened in all small intervals are limited, 

while the number of 0A  happened during 0 0[ , )t t t+  is 

infinite.  To understand the process easier, we imagine there 
is a dice with infinite surfaces and each surface write one 
number 0,1, 2,⋯ . During time interval 0 0[ , )t t t+ , after 

t

t
N ∆=  (approximate to an integer) times of tossing, figure 

out the probability that total number is n. 

 

Figure 2. Divide t into infinity many interval of t∆ uniformly 

When N → +∞ , DCP distribution is equal to a 
conditional multinomial distribution that was produced by a 
generalized infinite times independent repetition trial, the 

pgf in one trial is 
0
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by Lemma 5. According to the pgf, we know ( )nP t  is the 

coefficient of ns  in the expansion formula of ( )P s , since 
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3.3. System of Differential Equation 

New we consider 1 2( ) ( , , )X t CP t tα λ α λ∼ ⋯ . 

If 1( ) ( , , )rX t CP t tα λ α λ∼ ⋯ , when i r> , we have 

0iα = .  

If 0i = , we have 0 0 0( ) ( ) ( ).P t t P t P t+ ∆ = ∆ By 

Chapman-Kolmogorov equation (it also called the total 
probability formula), solved the equation above by Lemma 2, 
then 
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By the independent increment, Chapman-Kolmogorov 
equation and superimposition, it is easy to see that 
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Let 0t∆ → , we obtain a difference-differential equation 
with initial conditions: 
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Equation (6) can also be represented by matrix, as follow: 
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We can obtain the equation ( ) ( )n nt t′P = QP , and the 

characteristic equation of the coefficient matrix P  is 
1det( ) ( ) 0nλ λ λ +′ ′− = − − =P E , so λ−  is a characteristic 

root of P . The solution of 1( ) 0n λ+ −F A =  is an arbitrary 

constant vector. Furthermore, cA  is a certain vector by the 
uniqueness of pmf and (4), and it won’t changed with the 
change of 1 2, ,α α ⋯ .  

Considering an extreme case:  if 1 1α = , then we have 
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By Lemma 3 and nI  is an n -dimension identity matrix. 

Thus we obtain 
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Solve this system of equation, we obtain  

(0,...,0,1)Tc =A
. 

Using the expression of particular solution to solve 

( ) , , ( )nc cλ λ− −⋯F A F A , we can get 
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According to Lemma 3, it will be noticed that the unique 
solution of (6) is as follow: 
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By the definition of n

iN , to show (1), we only consider 

the first row of ( )n tP . 

3.4. Matrix Differential Equation 

According to the proof in system of differential equation 
method, we have the identity in matrix form 

( ) ( )n nt t′P = QP , 

thus  
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Let 0t → , hence we have the initial condition: 
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By Lemma 4, we have 
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Because of (1,0, ,0)Tl = ⋯N C , if we choose the first row 

of ( )n tP , (1) is easy to be prove by the statement above. 

The following two methods is the derivation of the pmf by 
pgf. 

3.5. Faà di Bruno Formula 

Firstly, we give two approaches to prove Theorem 2. 
Similar to the binomial distribution approximate Poisson 
distribution, as well as the building method in the Section 
3.4, it is easily to obtain the parameter limited conditions of 
multinomial distribution approximate to DCP by pgf: 

1

1 1

( 1)

1 1

( ) lim [(1 ) ]

      lim[1 ( )]

k i

i
i

i

i N

i i
Np t

i i
N

t s
i N

i i
N

i i

P s p p s

t
s e

N

α λ

λ αλ α α
∞

=

∞ ∞

= = =→∞

−∞ ∞

→∞ = =

∑

= − +

= + − =

∑ ∑

∑ ∑

  

 . 

Or by defining the pgf as
0

( , )= ( ) i

ii
P t s P t s

∞
=∑ , substitute 

to (5) we can get the expression as an ODE 
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Thus we have 
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=
 . 

Let 1s = , by the definition of pgf, we know that (2) is the 
solution of the ODE above. 

Then, according to the inversion formula of generating 
function, as well as the generalized form of Leibniz 
formula—Faà di Bruno formula, it is immediately to get the 
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pmf of DCP. By the pgf of DCP, we have 

1 ( )

0
1

{( !) [ ( 1)] } ( )j jk ki j

i i
s

i

j t s tα λ α λ
∞

−

==
− =∑

 ，

1
( 1) ( )

0
[ ]

i
ii

t s i t

s
e e

λ α λ
∞
= − −

=

∑ =
. 

1

1 2

1 2
1 2

( 1)

0

1 2

, N 11 2
2

1
( ) [ ]

!

 
           [ ( ) ]

! ! !

i
ii

n

n u

n

t s

n s

kk k
i tn

k k k i k n
k k nk

n

n

n

i
n

P t e
n d

k

d

t e
k

s

k

λ α

λα α α λ

∞
= −

=

−

+ + += = ∈
+ + + =

∑→ =

=∑ ∑
⋯
⋯

⋯

⋯

 

Let i running from 1 to n, and the Theorem 1 is proved.  

3.6. Cauchy’S Integral Formula 

Utilizing the relationship of Cauchy formula of higher 
order derivative and power series as well as formula (4), we 
have the pmf 
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By the results of complex integration, a is an internal 
point in C : 

1,  11 1
.

0,  1 Z2 ( ) ,nC

n
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n ni z aπ
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=  ≠ ∈− 
∫

 

When l n= , (2) is clearly. 

3.7. Functional Equations 

When 0i = , the Chapman-Kolmogorov equation makes it 
obviously that 0 0 0( ) ( ) ( ).P t t P t P t+ ∆ = ∆ By Lemma 1, then 

we have 

0 ( )=e =1 ( ), ( 0)tP t t o tλ λ λ− ∆∆ − ∆ + ∆ >        (7) 

When 1i = , similarly, we have: 

1 0 1 1 0( ) ( ) ( ) ( ) ( ).P t t P t P t P t P t+ ∆ = ∆ + ∆        (8) 

By Lemma 1,  1 1 1( ) ( 0)tP t te λα α−∆ = ≥  is clearly to see 

by (7) and (8). 
Continually, we have formulas below:  
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Then we use mathematical induction method to prove that 
(2) is true.  

Moreover, we have  

  ( ), ( 1,( ) 2, )i it t o t iP λα∆ ∆ + == ∆ ⋯ , 

and it is easy to see the parameters of DCP process. iα  must 

be nonnegative constant due to ( ) 0iP t∆ ≥ .   

3.8. Compound Poisson Sum 

DCP process ( )X t  can be decomposed as 

1 2 ( )( ) N tX t Y Y Y= + + +⋯ , 

where iY  is i.i.d nonnegative integer-valued random 

variables with 1{ } jP Y j α= = , and ( ) ( )N t P tλ∼ . 

We first verify that the pgf is formula (2), by the 
conditional expectation and independence: 
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Hence, by independence, we can figure that 
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3.9. Sum of Weighted Poisson 

DCP process ( )X t can be decomposed as  

1 2( ) ( ) 2 ( ) ( )iX t Z t Z t iZ t= + + + +⋯ ⋯ , 

where ( )iZ t  is independent of each other, and 

( ) ( )i iZ t P tλ α∼ . 

We first verify that the pgf of ( )X t is formula (3), by the 

conditional expectation and independence: 
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To verify its pmf, by independence, we have:   
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Remark 3. The expectation of DCP process ( )X t  is  

1 1E ( ) E[ ]i i i iX t iZ i tα λ∞ ∞
= == Σ = Σ . 

E ( )X t  is finite ， iff 1i iiα∞
=Σ < ∞ . By independent 

increments property， 
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1( ) i iX t i tα λ∞
=− Σ  satisfies the definition of continuous- 

time martingale, 

E( ( ) ;  E( ( ) { ( ), } ( ), ( ).X t X t X t s X s s tτ) < ∞ ≤ ) = ∀ ≤  

Hence, 1( ) i iX t i tα λ∞
=− Σ  is called discrete compound 

Poisson martingale. 
The variance of discrete compound Poisson process 
( )X t is  

2
1 1D ( ) D[ ]i i i iX t iZ i tα λ∞ ∞

= == Σ = Σ . 

D ( )X t is finite, iff 2
1i ii α∞

=Σ < ∞ . Hence, ( )X t is a 

square-integrable martingale. 
Definition 3. (Square-integrable martingale,[27] p59) A 

square-integrable martingale 0{ ( )}tM t ≥  such that 

( )2E ( ) ( )] ( ), } ,  (0| { )[M t M s M s t s s tτ τ− ≤ = − ≤ ≤  

is called a normal martingale. 

The compensated and rescaled process 
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is a normal martingale (See Chapter 2 of [27]).  

3.10. Recursive Formula 

We begin by defining the indicator function 
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By using the recursive formula, and using mathematical 
induction method, it is clearly to get equation (6).  

3.11. Convolution 

According multinomial distribution expansion formula, 
compound Poisson sum property and Lemma 4 we get 

1

1
1

0

0 1

2
1 2

0

1

  , 1

{ ( ) } { ( ) ( ) } { ( ) }

( )
                  { }

!

1 ( )
                  { ( ) }

! !

                  
! !

n

n u

i

i ti

k
i k

n i t
i

n
i

kk

n

k k i k n
k

P X t n P X t n N t i P N t i

t e
P Y n

i

t e
P p s p s

n is

p p

k k

λ

λ

λ

λ

∞

=
−∞

= =
−∞

=

+ + = ∈
+

= = = = =

= =

∂= + +
∂

=

∑

∑ ∑

∑

⋯
⋯

⋯

⋯

⋯N

1

0
 

( ) ,n

u n

k k t

i
uk nk n

t e λλ
∞

+ + −

=
+ ++ =

∑ ∑ ⋯

  

where 
1

{ }
i

k
k

P Y n
=

=∑  is pmf of ith convolution of kY . 

3.11. Remark of the Methods 

Arguing from the Chapman-Kolmogorov equation, 
Whittaker [33] obtained the difference differential equation 
relating to ( )nP t , solving one by one, he gave the first 5 

probability expressions of  

( )( 0,1,2,3,4)nP t n = . 

Janossy [17] directly solve the Chapman-Kolmogorov 
equation to get the expression of ( )nP t , it shows that the 

superimposition condition in the definition of DCP process 
are unnecessary. Luders[24] name it Pollaczek-Geiringer 
distribution in memory of these two people's finding, and 
derived it by the method of sum of weight Poisson. Hofman 
[16] derive the expression of ( )nP t  by the use of Faà di 

Bruno formula, from the pdf of ( )nP t . Adelson [1] 

differentiate pgf of DCP distribution for several times and 
obtained the recurrence relation of pmf. 

Discrete compound Poisson distribution is most 
interesting discrete distribution, it’s hard to find other 
distributions have such many properties and the multiple 
approaches of proving the probability mass function of 
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discrete compound Poisson distribution. Among ten 
approaches, the system of differential equation, convolution, 
Matrix differential equation, Cauchy’s integral formula are 
original works, the other methods give a detail and vivid 
proof from other works. 

Let 1 1α =  in DCP distribution, except for method of 

compound Poisson sum, sum of weight Poisson and 
convolution, we obtain seven approaches to prove the pmf of 
Poisson distribution. 

When it comes to parameter estimation of DCP, see [18] 
and [34]. 

4. Probabilistic Number Theory 

In the probabilistic number theory, prime divisors of 
integers and the distribution of primes in short intervals 
have properties of Poisson distribution under some 
condition. The detail results are in this theoretical research 
papers: [15], [11], [8], [28] and [13].  Let ( )f m be a 

real-valued arithmetical function whose domain is positive 
integer {1,2, }⋯ . We say that strongly additive functions 

satisfies the following restriction. 
(i). ( ) ( ) ( )f m n f m f n+ = +  whenever ( , ) 1m n = . 

(ii). ( ) ( )kf p f p=  for all prime p and 1k ≥ . 

For example, let ( )f m  be the number of prime divisors 

of m. And the additive functions just satisfy (i). 
Then we have the following results due to Bekelis [3]. In 

Bekelis’s work, he give the necessary and sufficient 
conditions for the weak convergence of the distribution 
functions of strongly additive functions to the finite Poisson 
law convolutions. 
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function depend on x. Defined the pmf of u by 
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su

x x
x

u

v f m ssu e
λ=

∞ −

→∞ =

∑= ≤=∑
 

Hence 1 2,( , ,, ), ru CP λ λ λ∼ ⋯ ⋯ ⋯ . 

Theorem 5:  Let strongly additive functions ),(xf m  

( 1)x ≥  be as described above, and the limited pgf of  

(( ))x xv f m u=  is  

1
( 1)

0

( ) , ( 1)lim ( ,)
r ci

ii
su

x x
x

u

v f m ssu e
λ=

∞ −

→∞ =

∑= ≤=∑
 

if numbers , ( 1,2, , )jc j r= ⋯  are linearly independent 

over the field ℚ , then conditions (9) are satisfied (i.e., 
they are necessary and sufficient in this case). 

The proof of Theorem 4 and Theorem 5 is in [3], then 
rewrite the corresponding characteristic function to the pgf 
of (( ))x xv f m u= . 

Šiaulys [28] prove that if f  is a strongly additive 

function on prime number with ( ) {0,1}f p ∈ , then f is 

Poisson distributed on the integers under the condition that 
1r =  in (9). This is a special case of Theorem 4. 

Numerical example: Let ( ) ( )x x
p m

f m f p=∑  be the sum 

of ( )xf p  under condition that p m , where 

4

2

2 4

0,     ln ln   (ln ln )

( ) 1, ln ln (ln ln )

2 (ln ln ) (ln ln )
x

p x or p x

f p x p x

x p x

< >
= ≤ ≤
 ≤ ≤

 

Bekelis [3] obtain 

1 2
        

( ) 1 ( ) 2

1 1
lim ln 2,  lim ln 2

x x

x x
p x p x

f p f p

p p
λ λ

→∞ →∞≤ ≤
= =

= = = =∑ ∑
. 

Thus u  approximate to Hermite distribution with pmf 

1 2

[ ] [ ]22 2
1 )

0

(2

0

1 (ln 2)
( )

( 2 )! ! 4 ( ! !
)

2
(

)x x

u u
u i i u i

i i

eu
u i i u

v f m
i i

λ λλ λ− −

= =

− +=
− −
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Table 1. Frequent when x=1000, 10000, 20000 

Frequent 

number 

Theoretical 

frequent 

Frequent 

(x=1000) 

Frequents 

(x=10000) 

Frequents 

(x=20000) 

0 0.25 0.2407 0.3127 0.3064 

1 0.1733 0.282 0.2272 0.226 

2 0.2333 0.21 0.2165 0.2168 

3 0.134 0.161 0.1332 0.1344 

4 0.1041 0.064 0.0654 0.0678 

5 0.0516 0.026 0.0291 0.0316 

6 0.03 0.007 0.0093 0.01 

7 0.0132 0.003 0.0052 0.0051 

8 0.0063 0 0.0014 0.0017 

9 0.0025 0 0.0001 0.0003 

Notice that frequents under a sufficient large   are not 
equality theoretical frequents in Table 1 (just 3u =  is 
accurate). The ln ln 20000 2.29≈  is not sufficient large. 
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In order to obtain equality, we would have to let 
ln ln x → ∞  in some fashion. The convergence rate is very 
slow. Since limited conditions in computer, we can’t 
calculate the larger value of x in this paper by Matlab. 

Theorem 6. (Erdos-Wintner, 1939): A necessary and 
sufficient condition for a real additive function ( )f m  to 

have a limiting distribution is that the following three series 
converge simultaneously for at least one value of the 
positive real number R :  

2

    

( ) ( ) ( )

1 ( ) ( )
;  ;

f p R f p R f p R

f p f p

p p p> ≤ ≤
∑ ∑ ∑

 

When these conditions are satisfied, the characteristic 
function of the limit law is given by the convergent product  

1 ( )

0

( ) [ (1 ) ]
vv i f p

vp

p p e
τϕ τ

∞
− −

=
= −∑∏

 

The limit law is necessarily pure. It is continuous if, and 

only if 1

( ) 0f p

p
−

≠
= ∞∑ . 

For further explanation for Erdos-Wintner theorem, see 
[9] and [29]. Using Erdos-Wintner theorem, we have the 
following theorem 

Proposition 1. In the Erdos-Wintner theorem, if 

( ) 0

1

f p p≠
< ∞∑  and ( )f m takes non-negative integer value, 

then ( )ϕ τ approximate to a discrete compound Poisson 

distribution with pgf 

1 ( ) 1

( ) 0 1 ( ) 0

(1 )

( ) , ( 1)

vv f p

f p v f p

p p s p

P s e s

∞
− − −

≠ = ≠
− −∑ ∑ ∑

= ≤
 

Proof: Rewrite the characteristic function ( )ϕ τ  to the 

pgf, and notice that 1 xx e+ ≈  for a sufficient small 

1 ( )

1

(1 ) 1
vv f p

v

x p p s
∞

− −

=
= −∑ ≪ , then  
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5. (S,s) Inventory Policies under 

Stuttering Poisson Demand 

Considering the sales of an enterprise, the interval is 
a week, and the week sales are random. Then 
management decides whether to order goods to satisfy 
the needs of next week. One of the most simple 

inventory strategy is (s,S) inventory policies: the lower 
bound of s, the upper bound of S .When the inventory at 
weekend is less than s ,order stocks to reach S, 
otherwise, don’t order.  

In fact, we need to take ordering fee, storage fee, out 
of stock payment and purchase fee into account and 
then formulate an inventory strategy to minimize the 
total average cost. Generally speaking, the arrival of 
demand satisfies the property of discrete stationary 
independent increments process. But a customer may 
purchase the same goods more than one once, so we can 
assume that the random demand satisfies stuttering 
Poisson distribution.    

Suppose that each ordering fee is 0c , the bid of each 

good is 1c , the storage fee of each good is 2c   and 

the loss of each good that out of store is 3c . In order to 

facilitate computation, we assume that the weekly sale r 
is a nonnegative integer-valued random variable, and 
the pmf is ( )p r . If the stock in the end of the week is x, 

order quantity is u, so the stock at the beginning of the 
next week is x u+ , storage capacity in every week 
is x u r+ − . 

According to (S, s) inventory strategy, if x s≥ , order 
quantity 0u = ; if x s< , 0u >  and the constraint 
is x u S+ = . Now we determine (S, s) through figuring 
out the minimum of the average cost. The storage cost 
and the expected value of back-order loss in a week is  

2 30
( ) ( ) ( ) ( ) ( )

x

x
L x c x r p r dr c r x p r dr

∞
= − + −∫ ∫

 

The average cost in a week is the sum of order cost, 
bid cost, storage cost and the back-order loss, 

0 1 ( ), 0
( )

( ), 0

c c u L x u u
J u

L x u

+ + + >
=  =

 

Determination of S: 
Now we take the derivative and second derivative of 

the average cost function about   

1 2 30

2 3 3 10

( )
( ) ( )

         ====( ) ( ) ( )

x u

x u

S x u S

dJ u
c c p r dr c p r dr

du

c c p r dr c c

+ ∞

+

= +

= + −

+ − −

∫ ∫

∫

 

Let
( )

0
dJ u

du
= , then we can solve that when S satisfies 

3 1

0
2 3

( )
S c c

p r dr
c c

−
=

+∫
, 

then, ( )J u  reaches the minimum. 

Determination of s: 
Then, determine the order number s according to x. If 

management decide to order some goods, and the number is 
u, since x u S+ = , the total cost is 

1 0 1( ) ( )J c c S x L S= + − +  

If the management decides no to order any new good, 
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then the total cost would be 2 ( )J L x= . 
It's obvious that the cost has to meet the 

constraint 2 1J J≤ , so we have: 

1 0 1( ) ( ).c x L x c c S L S+ ≤ + +  

Let 1 0 1( ) ( ) [ ( )]F x c x L x c c S L S= + − + + , set s is the 

minimum positive root that makes ( ) 0F x =  satisfied. That 

is 

min{ 0 ( ) 0}s x F x= > =  

Generally speaking, we could only use graphical method 
(numerical method) to find the minimum positive root. 
When ( )p r  is discrete random variable, the method to 

determine (S,s) is similar to the consecutive  situation, the 

only change is to replace ∫ with Σ . For more information 
about inventory strategy of (S,s) , see Veinott [30] and 
Porteus [26]. 

For instance, in a day, assuming that the coming 
customers in a shoe store are Poisson distributed with 
parameter 50λ = . But because the shoes are durable goods, 
we can suppose that the probability of buying a pair of 
shoes once for a customer is 0.8, and the probability of 
buying two pair of the same shoes once is very small, such 
as 0.8 0.2× . If we suppose that the probability of a client 

buying  ( 1)i i ≥  pair of shoes is 10.8 0.2i−× , we conclude 

that the amount of sold shoes is stuttering Poisson 
distributed with parameter 0.2α = . Assume that each 
ordering fee 0 400c = , the purchase price of each pair of 

shoes 1 60c = , the storage fee of each pair of shoes 2 1c = , 

the out of stock damage of each pair of shoes 3 100c = . 

Then using Maple16 to plot and solve the equation 

3 1

0
2 3

40
( )

101

S c c
p r dr

c c

−
= =

+∫
. 

Under the same λ , it is obviously that when r  
subjects to stuttering SPD, 60AS = , 43As = ; but if r  

subjects to Poisson distribution(PD), 47BS = , 12Bs = . 
It is easily seen that S in stuttering Poisson distribution is 

bigger than in Poisson distribution under the same λ . The 
demands may arrive in superimposition. We need to increase 
storage to satisfy demands. High-tech and quantificational 
inventory management is an effective way to reduce 
enterprise cost and to improve the quality of service. Due to 
the uncertainty of customer's arrival, in many cases, 
stuttering Poisson distribution is closer to the real life 
applying to some more general case. And it can also be used 
in other stochastic process with the characteristic of 
superposition, such insurance claims data [34]. 

 

Figure 4. determine S when r subjects to SPD or PD. 

 

(a) 

 

(b) 

Figure 5. The graph of ( )F n  ((a):SPD; (b):PD ). 
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