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Abstract: In this paper, we discuss three analytical time series models for selecting the more effective with an accurate 

forecasting models, among others. We analytically modify the stochastic realization utilizing (i) k-th  moving average, (ii) 

k-th weighted moving average, and (iii) k-th exponential weighted moving average processes. The examining methods have 

been applied for 1000 independent datasets for five different parameters with possible orders p q 5+ ≤ . We consider 

stationary data ( )0d = , and non-stationary data with first and second differences ( )1,2d = for ARIMA models.  We 

consider short term ( )50n = and long term, ( )500n =  observations. A similar forecasting models was developed and 

evaluated for the daily closing price of Stock Price of the PALTEL company in Palestine. The main finding is that, in most 

simulated datasets one or more of the proposed models give better forecast accuracy than the classical model (ARIMA). 

Specially, in most simulated datasets 3– time Exponential Weighted Moving Average based on Autoregressive Integrated 

Moving Average (EWMA3-ARIMA) is the best forecasting model among all other models. For PALTEL Stock Price, the 

best forecasting model is 3–time Moving Average based on Autoregressive Integrated Moving Average (MA3-ARIMA) 

among all other models. 

Keywords: Moving Average, Weighted Moving Average, Exponential Weighted Moving Average, Stationary, 

Forecasting Accuracy, ARIMA Models 

 

1. Introduction  

In this section, we introduce some literature review that 

have been developed recently. Trigg and Leach [15] 

initiated a study of automatically monitoring a forecasting 

process to assure that the forecast remains in control. They 

utilized a first order exponential model with data that 

contained jumps. 

Crane and Eeatly [6] applied the exponential process 

forecasts along with other independent variables into 

developing a multiple regression model. This combined 

forecasting procedure was applied in modeling some 

economic data series related to bank deposits.  

Shami and Snyder [11] focused on the relationship 

between the exponential smoothing methods of forecasting 

and the integrated autoregressive moving average models 

underlying them. They derived the general linear 

relationship between their parameters. They proposed to 

determine the pertinent quantities in this relation. This 

study was illustrated on common forms of exponential 

smoothing and also applied to a new seasonal form of 

exponential smoothing with seasonal indexes which always 

sum to zero.  

Billah et al. [3] used the application of exponential 

smoothing to forecast time series usually rely on three basic 

methods: simple exponential smoothing, trend corrected 

exponential smoothing, and seasonal variation thereof. A 

common approach to select the method appropriate to a 

particular time series is based on prediction validation on a 

withheld part of the sample using criteria such as the mean 

absolute percentage error. A second approach is to rely on 

the most appropriate general case of the three methods. A 

third approach may be based on information criterion when 
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maximum likelihood methods are used in conjunction with 

exponential smoothing to estimate the smoothing 

parameters. The results indicated that the information 

criterion approach appears to provide the best basis for an 

automated approach to method selection, provided that it is 

based on A kaike’s information criterion.    

Parthasarath and Levinson [10] studied the evaluating 

the accuracy of demand forecasters using a sample of 

recently completed projects in Minnesota and identified the 

factors influencing the inaccuracy in forecasts. The analysis 

indicated a general trend of underestimation in roadway 

traffic forecasts with factors. The comparison of 

demographic forecasts showed a trend of overestimation 

while the comparison of travel behavior characteristics 

indicates a lack of incorporation of fundamental shifts and 

societal changes. 

Steiner [14] showed proposed a version of exponentially 

weighted moving average (EWMA) control charts 

applicable to monitoring the grouped data for process shifts. 

The runs length properties of this new grouped EWMA 

charts are compared with similar results previously 

obtained for EWMA charts variables data with those for 

Cumulative Sum (CUSUM) schemes based on grouped 

data. Grouped data EWMA charts are shown to be nearly as 

efficient as variables based EWMA charts, and are thus an 

attractive alternative when collection of variables data is 

not feasible. In addition, grouped data EWMA charts are 

less affected by the inherent in grouped data than are 

grouped data CUSUM charts. 

Shih and Tsokos [12] showed a new time series that is 

based on the actual stochastic realization of a given 

phenomenon. The proposed model is based on modifying 

the given economic time series, { }tx , and smoothing it 

with k-time moving average to create a new time series, 

{ }ty . The basic analytical procedure are developed 

through the developing process of a forecasting model. A 

step by step procedure is mentioned for the final 

computational procedure for a non stationary time series. 

They evaluated the effectiveness of their proposed models 

by selecting a company from the Fortune (500) list, 

company XYZ the daily closing prices of the stock for 500 

days was used as their time series, { }tx , which was as 

usual non-stationary. They developed the classical time 

series forecasting model using Box and Jenkins 

methodology and also their proposed model, { }ty , based 

on a 3-way moving average smoothing procedure. The 

analytical form of the two forecasting models is presented 

and a comparison of them is also given. Based on the 

average mean residual, the proposed model was 

significantly more effective in such terms of predicting of 

the closing daily prices of the stock XYZ.           

Tsokos [16] investigated the effectiveness of developing 

a forecasting model of a given non stationary economic 

realization using a k-th moving average, a k-th weighted 

moving average and a k-th exponential weighted moving 

average process. They created a new non-stationary time 

series from the original realization using the three different 

weighted methods. Using real economic data, they 

formulated the best ARIMA model and compare short term 

forecasting results of the three proposed  models with that 

of the classical ARIMA model. In all cases the new models 

give better short term forecasting results than classical 

ARIMA model. 

Some times method of Box and Jenkins may be not 

optimal for giving a forecasting model for the actual data. 

For this reason, proposed technique has been developed by 

modifying a new k-time moving average time series in 

three proposed models (a k-th moving average, a k-th 

weighted moving average and a k-th exponential weighted 

moving average), In this paper, we compare these proposed 

models for forecasting accuracy with the classical ARIMA 

model by using simulation and real data set, namely daily 

closing price of Stock Price of the PALTEL company in 

Palestine. 

This paper is organized as follows: Sections 2 presents 

some fundamental definitions; Sections 3 displays the 

measures of forecasting accuracy; section 4 demonstrates 

the simulation study; results for PALTEL stock market data 

is shown in section 5; and Section 6 summarizes the 

important results and offers suggestions for future research. 

2. Fundamental Definitions 

In this section, we show some fundamental concepts that 

are essential for dealing with time series models. We 

introduce autoregressive integrated moving average model, 

ARIMA(p,d,q) and three additional models, namely the k-

th Simple Moving Average (SMA), the k-th Weighted 

Moving Average (WMA), and the k-th Exponential 

Weighted Moving Average (EWMA).  

2.1. Definition 1. (ARIMA model) 

The classical ( , , )ARIMA p d q  autoregressive integrated 

moving average is defined as 

( ) ( ) ( )1
d

p t q tB B x Bϕ θ ε− =                       (2.1) 

where, 
j

t t jB x x −= , (1 )dB−  is the difference filter, d  

is the degree of differencing of the series, 

( ) ( )2
1 21

p
p pB B B Bϕ ϕ ϕ ϕ= − − − −⋯ ,  and 

( ) ( )2
1 21

q
q qB B B Bθ θ θ θ= − − − −⋯ . 

2.2. Definition 2.  (The K-th SMA Process ) 

The k-th SMA process of a time series { }tx  is given by  

1

1

0

1
k

t t k j

j

y x
k

−

− + +
=

= ∑                                     (2.2) 

where, nkkt ,,1, …+= .  

It is clear that as k  increases, the number of 
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observations of { }ty  decreases, and the series  { }ty  gets 

closer and closer to the mean of the series{ }tx . In addition, 

when k n= , the series { }ty  reduces to a single 

observation, and equals to  µ , because  

1

n

j

j
t

x

y
n

µ== =
∑                                          (2.3) 

In time series analysis, the primary use for the k-th SMA 

is for smoothing a time series and it is very useful in 

discovering short – term, long – term trends and seasonal 

components of a time series.   

2.3. Definition 3.  (The SMA Back-Shift) 

Using the model that we developed for { }ty  in 

Definition (2) and subject to the Akaike’s  information 

criterion (AIC) criteria, we forecast values of  { }ty  and 

proceed to apply the back–shift operator to obtain estimates 

of the original phenomenon  { }tx , that is, 

1 2 1ˆ ˆt t t t t kx k y x x x− − − += − − − −⋯                    (2.4) 

2.4. Definition 4.  (The WMA Process)  

The k-th WMA process of a time series { }tx  is defined 

as: 

( )

1

1

0

( 1)

1 2

k

t k j

j
t

j x

z
k k

−

− + +
=

+

=
+

∑
                        (2.5) 

where,  , 1, ,t k k n= + … . 

Similar to the moving average process, as  k  increases, 

the number of observations of the series { }tz  decreases, 

and as  k n→  , from (2.2) the series { }tz  becomes  

( )
1

1 2

n

j

j
t

j x

z
n n

==
+

∑
                                      (2.6)  

The k-th WMA process puts more weight on the most 

recent observation, and the weight consistently decreases 

up to the first observation. In addition, it captures the 

original time series better than the SMA process, which is 

suitable for those analysts who believe the recent 

observations should weight more than the old ones. 

2.5. Definition 5.  (The WMA Back-Shift) 

Using the model that we developed for { }tz  in 

Definition (4) and subject to the AIC criteria, we forecast 

values of { }tz  and proceed to apply the back–shift 

operator to obtain estimates of the original phenomenon  

{ }tx , that is 

1 2 1ˆ[(1 ) /2] ( 1) ( 2)
ˆ t t t t k
t

k k z k x k x x
x

k

− − − ++ − − − − − −
=

⋯

                                           (2.7) 

2.6. Definition 6. (The EWMA Process) 

The k-th EWMA process of a time series{ }tx is defined 

as follows: 

1
1

1

0
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∑

∑
                   (2.8) 

where,  
, 1, ,t k k n= + …

, and the smoothing factor α  is 

defined as 

2

1k
α =

+ . 

As k increases, the number of observations the series 
{ }tv

 decreases, and it eventually reduces to a single 

observation when k n= . As k n→ , the series 
{ }tv

 

becomes   
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                         (2.9) 

Equation (2.9) shows that the exponential weighted 

moving average process weighs heavily on the most recent 

observation and decreases the weight exponentially as time 

decreases.  

The k-th EWMA serves pretty much the same purpose as 

those two average processes as we discussed in the 

Definitions (2 and 4). Instead of decreasing weight 

consistently as the WMA method, it decreases weight 

exponentially. This fits perfect for those analysts who care 

most on the recent observations and not pay too much 

attentions to the old ones. In addition, it is not difficult to 

see that the EWMA average catches the original series 

faster than both average processes as we discussed earlier. 

Hence, it is very useful in dealing with very aggressive 

time series. 
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2.7. Definition 7. (The EWMA Back-Shift) 

Using the model that we developed for { }tv in Definition 

(6) and subject to the AIC criteria, we forecast values of 

{ }tv  and proceed to apply the back – shift operator to 

obtain estimates of the original phenomenon { }tx , that is, 

 

2 1

1 2 11

0

ˆ
ˆ (1 ) (1 ) (1 )

(1 )

kt
t t t t kk

j

j

x x x x
ν α α α

α

−
− − − −−

=

= − − − − − − −
−∑

⋯

                      (2.10) 

3. Measures of Forecasting Accuracy 

Many measures of forecasting accuracy have been 

developed, and several authors have been discussed the 

fundamentals usage for these measurements and made 

comparisons among the accuracy of forecasting methods in 

univariate time series data, see for example Brockwell and 

Davis [5], Cryer and Chan [7], Harvey [8], Hyndman and 

Koehler [9], Shumway and Stoffer [13], Wei [17], among 

others. 

3.1. Scale – Dependent Measures 

There are some commonly used accuracy measures 

whose scale depends on the scale of the data. These 

measures are useful for comparing different models on the 

same set of data. The most commonly used scale – 

dependent measures are based on the absolute error or 

squared errors. For example  

2
t

t

t

Mean Square Error (MSE) = mean (e  )

Root Mean Square Error (RMSE) = MSE

Mean Absolute Error (MAE) = mean ( |e | )

Median Absolute Error (MDAE) = median (|e | )









                                                 (3.1) 

where, t t te x F= −  is the forecast error, tx  the 

observations at time t , tF   the forecast of tx . Historically, 

the RMSE and MSE have been  popular, largely because of 

their theoretical relevance in statistical modeling, Hyndman 

and Koehler [9]. However these measures are more 

sensitive to outliers than MAE or MDAE which has led 

some authors, for example, see Armstrong [1] to 

recommend using other forecast accuracy measures.  

3.2. Measures Based on Percentage Errors   

Percentage errors have the advantage of being scale – 

independent, and so are frequently used to compare 

forecast performance across different data sets. The most 

commonly used measures: 

t

t

2
t

Mean Absolute Percenatge  Error (MAPE) = mean ( |p | )

Median Absolute Percentage Error (MdAPE) = median(|p |)

Root MeanSquare Percentage Error (RMSPE) = mean( p )

Root MedianSquare Percentage Error (RMdSPE) = media 2
tn( p )









                            (3.2)  

where, the percentage error is given by
100 t

t
t

e
p

x
= , 

t t te x F= − , tx  the observations at time t , tF   the 

forecast of  tx . 

These measures have the disadvantages of being infinite 

or undefined if  0tx =  for any  t  in the period of interest, 

and having an extremely skewed distribution when any tx  

is close to zero, Hyndman and Koehler [9].  

 

3.3. Measures Based on Relative Errors  

An alternative way of scaling is to divide each error by 

the error obtained using another standard method 

forecasting. The relative error is defined as follows: 

*

t
t

t

e
r

e
=                                       (3. 3) 

where,  
*
te   is the forecast error obtained from the 



206 Samir K. Safi et al.:  Comparative Study on Forecasting Accuracy among Moving Average Models with Simulation and  

PALTEL Stock Market Data in Palestine  

 

benchmark method. Then we can define: 

t

t

t

Mean Relative Absolute Error (MRAE) = mean ( |r | )

Median Relative Absolute Error (MdRAE) = median (|r |)

Geometric Mean Relative Absolute Error (GMRAE) = gmean (|r |)







                                  (3.4)  

Armstrong, J., and Collopy, F. [2] recommended the 

GMRAE when the task involves calibrating a model for a 

set of time series. The GMRAE compares the absolute error 

of a given method to that from the random walk forecast. 

For selecting the most accurate methods, they 

recommended the MdRAE when few series are available. 

3.4. Relative Measures 

Rather than use relative errors, one can use relative 

measures. By letting MAEb denote the MAE from the 

benchmark method, then the relative MAE  is given by  

b

MAE
RELMAE

MAE
=                  (3.5) 

An advantage of this method is their interpretability. i.e., 

the relative MAE  measures the improvement possible. 

From the proposed forecast method relative to the 

benchmark forecast method. A ratio less than one indicates 

that the proposed method is more efficient than the 

benchmark method and if the ratio is close to one, then the 

proposed method is nearly as efficient as the benchmark 

method.  

4. Simulation Study 

In this section, we consider the robustness of various 

time series models, including the estimated k−th moving 

average and ARIMA models. These simulations examine 

the usefulness and effectiveness for the proposed model. In 

particular, how do the estimated k−th moving average 

models perform relative to the classical ARIMA model? We 

compare the finite sample efficiencies of ARIMA models 

relative to three k−th moving average models: the k−th 

simple moving average; k−th weighted moving average; 

and k-th exponential weighted moving average processes.  

Starting with a non-stationary time series of a short term 

and long term simulated data such that we applied 1000 

simulated data sets of each parameter for Autoregressive 

Moving Average models such that each data set of short 

term contains 50 observations and long term contains 500 

observations. we analytically use a k−th moving average, a 

k−th weighted moving average and k−th exponential 

moving average. A residual analysis based on the criteria of 

a forecast accuracy comparison of these forecasting models 

is given.  R-statistical software is used for fitting the 

different time series models. 

4.1. The Simulation Setup 

Two finite sample sizes, short term with size N=50, and 

long term with size N=500 are used.  In addition, four non-

stationary time series models are used; classical ARIMA; 

k−th moving average, a k−th weighted moving average; and 

k−th exponential moving average. We also generated a time 

series for each model of length 1000 for different orders of 

p and q with all possibilities 5p q+ ≤  with stationarity 

data ( 0d = ), and nonstationarity data with first and second 

differences ( 1,2d = ). 

We generate the four non-stationary time series models 

and select the most appropriate models with the smallest 

AIC and the smallest average mean square error. In 

addition, Shih and Tsokos [12] summarized the 

development of the model as follows:  

• Transforming the original times series { }tx  into 

t t t{y , z , v }  by using equations (2.2), (2.5), and 

(2.8), respectively. 

• Check for stationary of time series by determining 

the order of differencing d , where 0,1, 2,d = …  

according to KPSS test, Box et al. [4] until we 

achieve stationarity. 

• Deciding the order m  of the process, where 

m p q= + . 

• After ( , )d m  being selected, listing all possible set 

of ( , )p q  for p q m+ ≤ . 

• For each set of ( , )p q , estimating the parameters of 

each model, that is, 1 2 1 2, , , , , , ,p qϕ ϕ ϕ θ θ θ… … . 

• Compute the AIC for each model, and choose the 

one with smallest AIC.  

• Solve the estimates of the original time series by 

using equations (2.4), (2.7), and (2.10), respectively.  

4.2. The Simulated Selected Models 

Table (4.1) shows the selected simulated time series 

models based on the criterion that we have mentioned in 

section 3. 

 

 

 



 American Journal of Theoretical and Applied Statistics 2013; 2(6): 202-209 207 

 

 

Table 4.1. The Simulated Selected Models 

Models The Simulated Models 

Short term (N=50) 

ARIMA: (1,1,1)ARIMA  1 2 11.91 0.91 0.10t t t t tx x x ε ε− − −= − + +  

SMA: (2 ,1, 2)ARIMA  1 2 3 1 22.40 1.84 0.45 1.37 0.42t t t t t t ty y y y ε ε ε− − − − −= − + + + +  

WMA: (1,1, 2)ARIMA  1 2 1 21.94 0.94 1.63 0.67t t t t t tz z z ε ε ε− − − −= − + + +  

EWMA: (1,1, 2)ARIMA  1 2 1 21.93 0.93 1.56 0.56t t t t t tν ν ν ε ε ε− − − −= − + + +  

Long term (N=500) 

ARIMA: (1,1,1)ARIMA  1 2 11.92 0.92 0.92t t t t tx x x ε ε− − −= − + +  

SMA: (1,1, 4)ARIMA  t t 1 t 2 t t 1 t 2 t 3 t 4y 1.92y 0.92y 1.92 1.92 0.91 0.001− − − − − −= − + ε + ε + ε + ε + ε  

WMA: (1,1,3)ARIMA  1 2 1 2 31.91 0.91 1.60 0.10 0.34t t t t t t tz z z ε ε ε ε− − − − −= − + + + +  

EWMA: (1,1,3)ARIMA  1 2 1 2 31.91 0.91 1.43 0.75 0.26t t t t t t tν ν ν ε ε ε ε− − − − −= − + + + +  

 

4.3. The Simulation Results  

Table (4.2) shows the comparison between the proposed 

models versus classical models for short and long terms 

based on selected criterion of forecasting accuracy for 

simulated models. The results show that the EWMA3-

ARIMA model is preferable in selecting the most 

appropriate forecasting model over all the other models for 

short and long terms. In addition, the WMA3-ARIMA 

model performs better than the classical ARIMA model. 

Furthermore, the relative MAE  measures for EWMA3-

ARIMA to the classical ARIMA equal 0.9647. This result 

indicates that EWMA3-ARIMA model is more efficient 

than the other models for long and short terms. In addition, 

the WMA3-ARIMA model is more efficient than the 

classical ARIMA model based on relative MAE measures 

the Classical ARIMA model. The other measures of 

forecasting accuracy criterion mimic similar results. 

Table 4.2. Criterion of Forecasting Accuracy for Simulated Models 

Models 
Short term (N=50) Long term (N=500) 

RMSE MAE MdAE Relative MAE RMSE MAE MdAE Relative MAE 

Classical ARIMA 1.0693 0.8306 0.7276 1.0000 1.0043 0.7975 0.6906 1.0000 

MA3-ARIMA 1.2531 0.9597 0.7522 1.1554 1.0043 0.7961 0.6797 0.9982 

WMA3-ARIMA 1.0662 0.8147 0.5995 0.9809 1.0039 0.7959 0.6781 0.9980 

EWMA3-ARIMA 1.0408 0.8013 0.5872 0.9647 1.0025 0.7954 0.6748 0.9974 

 

Therefore, 3 – time Exponential Weighted Moving 

Average based on Autoregressive Moving Average 

(EWMA3-ARIMA) outperforms and preferable in selecting 

the most appropriate forecasting model over all the other 

models for short and long terms. This result of both short 

and long terms reveals that EWMA3-ARIMA outperform 

and offer consistent forecasting performance compared to 

ARIMA model and hence preferable as a robust forecasting 

model for simulated data. 

 

5. Illustrative Example: PALTEL Stock 

Market Data  

In this section, we consider a real data set called 

Palestinian Telecommunication (PALTEL) Stock Market 

Data. The proposed models have been applied for the daily 

closing price of PALTEL for 2266 days based on  ARIMA 

model and the three proposed models, namely SMA, WMA 

and EWMA,  based on the criteria of measures of 

forecasting accuracy that have mentioned in section 3.  
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Table 5.1. Selected Models for PALTEL Stock Market Data 

Models The Simulated Models 

ARIMA: (5,1,3)ARIMA  
1 2 3 4 5 6

1 2 3

1.532 1.291 0.422 0.424 0.1982 0.110

0.341 0.672 0.376

t t t t t t t

t t t t

x x x x x x x

ε ε ε ε
− − − − − −

− − −

− + − − + −
= − + +

 

SMA: (5,1,5)ARIMA  
1 2 3 4 5 6

1 2 3 4 5

2.069 1.783 0.389 0.486 0.252 0.092

0.124 0.638 0.011 0.864 0.355

t t t t t t t

t t t t t t

y y y y y y y

ε ε ε ε ε ε
− − − − − −

− − − − −

− + − − + −
= + + − + +

 

WMA: (6 ,1,3)ARIMA  
1 2 3 4 5 6 7

1 2 3

2.175 2.374 1.270 0.349 0.804 0.534 0.150

0.322 0.660 0.390

t t t t t t t t

t t t t

z z z z z z z z

ε ε ε ε
− − − − − − −

− − −

− + − − + − +
= − + +

 

EWMA: (2 ,1,6)ARIMA  
1 2 3 1 2

3 4 5 6

1.771 1.707 0.936 0.078 0.767

0.322 0.297 0.053 0.045

t t t t t t t

t t t t

ν ν ν ν ε ε ε
ε ε ε ε

− − − − −

− − − −

− + − = − +
+ + − −

 

 

5.1. Selected Models for PALTEL Stock Market Data 

Table (5.1) shows the selected real time series models 

based on the criterion that we have mentioned in section 3 

5.2. Criterion of Forecasting Accuracy  

Table (5.2) shows the comparison between the proposed 

models versus classical models for PALTEL stock market 

data based on selected criterion of forecasting accuracy. 

The results show that the MA3-ARIMA model outperforms 

in selecting the most appropriate forecasting model over all 

the other models for PALTEL data.  The other measures of 

forecasting accuracy criterion mimic similar results. 

Table 5.2. Criterion of Forecasting Accuracy for Real Data models 

Models RMSE MAE MdAE Relative MAE 

Classical ARIMA 0.1542743 0.0823962 0.0464750 1.0000000 

MA3-ARIMA 0.1542273 0.0822127 0.0460585 0.9977727 

WMA3-ARIMA 0.1549917 0.0825737 0.0468094 1.0021540 

EWMA3-ARIMA 0.1547963 0.0824992 0.0466163 1.0012500 

 

6. Conclusion and Future Research 

In this paper, we have examine the sensitivity of model 

selection based on criterion of forecasting accuracy for the 

classical ARIMA model and three proposed models, k-th 

moving average, k-th weighted moving average, and k-th 

exponential weighted moving average models. The main 

finding of the simulation result is that 3–days Exponential 

Weighted Moving Average based on Autoregressive 

Moving Average (EWMA3-ARIMA) is preferable, and 

outperforms, and more efficient than the classical ARIMA 

model for long and short terms data. In addition, for 

PALTEL stock market data, the 3–days Moving Average 

based on Autoregressive Moving Average (MA3-ARIMA) 

model outperforms in selecting the most appropriate 

forecasting model over all the other models. 

Many opportunities of future research are available. 

Determine the optimal value of k that will produce the 

smallest residuals and the best forecasting model based on 

criterion of forecasting accuracy. Examine the robustness 

and sensitivity of the proposed models when k changes. In 

addition, construct the confidence limits for short and long 

terms forecasting and compare the confidence ranges with 

other acceptable models.  
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