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Abstract: This paper proposes a method for correcting and adjusting the usual or regular estimates of Tau correlation 

coefficients for the possibility of ties within and between observations in the population being correlated. The index here 

called C-Tat for ‘ties adjusted Tau correlation coefficient’ is formulated to intrinsically and structurally adjust and correct 

the estimated Tau correlation coefficient for the possible presence of tied observations in the sampled populations and for 

the fact that the estimates obtained are often dependent on, that is, vary depending on which of the two populations under 

study has its assigned ranks arranged in their natural order and which has its assigned ranks arranged in their natural order 

and which has its assigned ranks tagged along. The proposed method is illustrated with some sample data and shown to 

yield more reliable and efficient estimates of tau correlation coefficients than the usual method which is able to give the 

same estimates only if there are no tied observations what-so-ever in the sampled populations. 
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1. Introduction 

The Kendall’s tau, correction coefficient 
k

ρ is the non-

parametric equivalence of the well known Pearson’s 

moment correlation coefficient
pρ  commonly used in 

parametric statistics to measure the strength of association 

between two continuous normally distributed populations. 

Here the populations of interest X and Y need not be 

continuous and normally distributed but only need to be 

measured on at least the ordinal scale. If random sample 

observations drawn from these populations are each ranked 

in the usual way, the Kendall’s sample tau correlation 

coefficient kr  will give a measure of the degree of 

association or correlation between the two sets of ranks. To 

calculate an estimate of the Kendall’s tau correlation 

coefficient we first rank the n sample observations drawn 

from population X either from the smallest to the largest or 

from –the largest to the smallest. The n sample observations 

drawn from populations Y are similarly ranked. Tied 

observations in each sample are as usual assigned their 

mean ranks. 

The ranks assigned to one of the samples, for example 

those assigned to observations from X are now arranged in 

their natural order from ‘1’ through ‘n’ together with the 

labels of the subjects or respondents with these ranks. The 

ranks assigned to the observations in the sample drawn 

from the second population Y say, are then juxtaposed 

against the naturally arranged ranks for the corresponding 

subjects in the sample drawn from the first population X. 

Interest is now to determine the degree of agreement 

between the rankings of observations from X with these 

from Y. since the ranks of observations from X are already 

arranged in their natural order; interest is then actually, in 

determining how many pairs of ranks of observations form 

population Y are also in their natural order relative to each 

other. 

Now the maximum possible total number of agreements 

between the ranks assigned to observations from population 

X and Y would be obtained if the rankings are in perfect 

agreement, in this case when the rankings of observations 

from Y are also in their natural order as those for 

observations from populations X. This is the rationale for 

Kendall’s tau correlation coefficient between two 

populations X and Y which is estimated as the ratio of the 

actual observed total agreement score to the total maximum 

possible score under perfect agreement, where the total 
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maximum possible agreement score is 

( )1
max

2 2

n nn
S

− 
= = 
 

                            (1) 

This is the basis for the estimation of Kendall’s tau 

correlation coefficient between populations X and Y as 

maxk

Sa
rxy

S
r = =                                (2) 

Where Sa  is the total sum of 1s (or+) and –1s (or-) 

obtained by comparing members of each pair of the ranks 

assigned to observations from one of the variables Y say in 

relation. To each other when these observations are 

arranged in accordance with the naturally ordered ranks of 

the observations from the other variable X say. Thus 

Kendall’s tau correlation coefficient between two 

populations is estimated as the ratio of the actual observed 

total agreement score to the total maximum possible score 

under perfect agreement. However the approach in 

Equation 2 does not immediately provide for the possible 

presence of ties in either the X or Y variable or in both. 

Although an alternative formulae exists for the estimation 

of tau when ties occur in the data, this formulae is however 

often tedious to use in practice. The estimate of the 

corresponding standard deviation is also cumbersome to 

evaluate. Moreover, the estimates obtained are not always 

independent of which of the two samples has its ranks 

arranged in their natural order and which of the samples has 

its ranks tagged along. Different estimates are often 

obtained. 

We here propose a more formatted and generalized 

method that covers situations in which there are no tied 

observations in any of the two populations of interest when 

only one of the populations has tied observations, as well as 

when there are equal and unequal number of tied 

observations in the two populations. 

2. The Proposed Method 

Let 
ix  and 

i
y  be the ith observation in random 

samples of size ‘n’ drawn from populations X and Y 

respectively which may be measurements on at least the 

ordinal scale, for i =1, 2,…,n. suppose the ‘n’ observations 

xi drawn from population X are ranked from the smallest to 

the largest say, and the ‘n’ observations 
i

y  drawn from 

population Y are similarly ranked. Tied observations in 

each sample are as usual assigned their mean ranks. 

Furthermore suppose 
ix  is assigned the ranks of rix and 

yi the rank of riy for i =1,2,…,n. To correct or to adjust for 

the fact that the estimated correlation coefficient is not 

always independent of which of the two populations has the 

ranks assigned to the observations from it as the ones that 

are naturally ordered and which has the ranks assigned to 

its observations as the ones that are tagged along, these two 

sets of ranks would each here be required to alternately 

play each of these two roles. 

Hence, first suppose that the xi observations from 

population X have been arranged in their natural order from 

the smallest to the largest so that rix = i, i =1,2,…,n, and 

that the ranks riy for observations 
i

y  from Y have each 

been arranged to correspond with the now naturally ordered 

ranks i for their sister observation xi from population X. 

Define 

1,

; . 0,

1,

if rjy nky

ujk y x if rjy rky

if rjy rky

<
= =
− >

                          (3) 

for j =1,2,…,n-1; k = 2,3,…,n; j < k. That is provided that 

the rank assigned to the kth observation from population Y 

comes after, that is succeeds the rank assigned to the jth 

observation from the same population when these 

observations are arranged in accordance with the natural 

ordering or ranking of the corresponding observations from 

population X ( )kj <   

Let 

( )

( )

( )

0

; . 1 ;

; . 0 ;

; . 1

y

y

y

P ujk y x

P ujk y x

P ujk y x

+

−

= =

= =

= = −

∏

∏

∏

                  (4) 

Where 

0

1
y y y

+ −

+ + =∏ ∏ ∏                        (5) 

and 
0

0,
y

=∏ if there are no ties in population Y. 

Note that by their specifications Equations 3-5 have 

provided adjustments for the possible presence of ties in 

population Y. 

Now let  

1

1 2

; . .
n n

j k
j k

Sy ujk y x
−

= =
<

= ∑ ∑                     (6) 

Now from Equations (3) and (4) we have that 

( )

( )
2

; . ;

; .

y y

y y y y

E ujk y x

Var ujk y x

+ −

+ − + −

= −

 = + − − 
 

∏ ∏

∏ ∏ ∏ ∏
    (7) 

Similarly, 
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( ) ( )
1

1 2

; .
n n

j k
j k

E Sy E ujk y x
−

= =
<

= ∑ ∑  

That is:  

( ) ( )

( )

21
2

1
2 1

y y

y y

E Sy n n n

n n

+ −

+ −

 = − − 
 

 = − − 
 

∏ ∏

∏ ∏
               (8) 

Note that 
0

,y y yand
+ −

∏ ∏ ∏ are respectively the 

probabilities that the rank assigned to the jth observation 

from population Y is less than, equal to or greater than the 

rank assigned to the kth observation from the same 

population if the rank assigned to the kth observation 

succeeds the rank assigned to the jth observation from Y 

when these observations are arranged in accordance with 

the natural ordering of the ranks assigned to their sister 

observations from population X these probabilities are 

estimated as   

 

( )

( )

( )

00

2 ;
1

2

2 ;
1

2
1

y y

y

y

y

y

y

f f

n n n

f

n n

f

n n

∩
+ ++

∩

∩
−−
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− 

 
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=
−

=
−

∏

∏
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                          (9) 

where fy
+
, fy

o
 and fy

-
 are respectively the number of 1s, 0s 

and -1s in the frequency distribution of the ½ n(n-1) values 

of these number in ujk;y.x, j = 1,2,…,n-1;  k=2,3,…,n: j < k. 

Hence the sample estimate of the observed total number 

of times the rankings of observations from population Y are 

in their natural order and consistent with the natural 

ordering of the ranks of observations from population X 

less the number of times they are out of order is from 

Equation8   

( )1
2 1 y y y ySy n n f f

+ −∩
+ − = − − = − 

 
∏ ∏            (10) 

As noted above if these rankings are in their natural order, 

then the maximum possible total number of arrangement or 

scores is Smax= ,
2

n








 (see Eqn (1)). Hence the Kendall’s 

tau correlation coefficient between X and Y may be 

estimated using Equation 10 in Equation 2 as 

( )

( )

1
2 1

1max 1
2

y y

y

n n
S

rxy xry
S n n

∩ ∩
+ −

−∏ ∏
 

−  
 = = =
−

 

Or 

( )
( )

2

1

y y

y y

f f
rxy xry

n n

∩ ∩ + −+ − −
= = − =

−∏ ∏           (11) 

Notes that the variance of Sy is from Equation 6 

( ) ( ) is7Eqnfromwhich,x.y;ujkVarSyVar
1n

kj
1j

n

2k

∑ ∑
−

<
= =

=  

( ) ( )
2

1
2 1 y y y yVar Sy n n

+ − + −   = − + − −   
   
∏ ∏ ∏ ∏     (12) 

A sample estimate of this variance is 

( ) ( )
2

1 1
2 y y y yVar Sy n n

∩ ∩ ∩ ∩
+ − + −   

   = − + − −
      
   

∏ ∏ ∏ ∏     (13) 

Note that Equations 10 and 13 have been adjusted for the 

possibility of ties in population Y. 

The estimated variance of rxy = xry is  

( ) ( )

( )( )
( )

( )

( ) ( )

)

( )

222
4

2

/
2

4

1 1

13 1

2( ( )

1

y

y y y y

n
Var rxy Var xry Var S

Var SySy
Var

n n n n

which from Eqn s

Var rxy Var xry

n n

∩ ∩ ∩ ∩
+ − + −

  = =   
  

= =
− −

=

+ − −
=

−

∏ ∏ ∏ ∏

         (14) 

The null hypothesis 

( ); : 1 1xy o i xy o say oHo Versus Hρ ρ ρ ρ ρ= > − ≤ ≤      (15) 

May be tested using the test statistic 

( )
( ) is (14) and (11) Equations fromwhich 
rxyVar

rxy
2

0
2 ρ−

=χ
 

( )( )

)

2

2

2

1

2

y y o

y y y y

n n ρ

χ

∩ ∩
+ −

∩ ∩ ∩ ∩
+ − + −

 
 − − −
  
 =

   
   + − −
      
   

∏ ∏

∏ ∏ ∏ ∏
       (16) 

Which has approximately a chi- square distribution with 

I degree of freedom for sufficiently large. ( )10nn ≥  

The null hypothesis H0 is rejected at the α level of 

significance if  
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2 2

1 ;1αχ χ −
≥                                   (17) 

Otherwise H0 is accepted   

Equation 11 and 16 can not be correctly used to estimate 

tau correlation coefficient and test appropriate null 

hypothesis unless there are no tied observations in the data, 

that is unless there are no tired observations in both 

populations X and Y. this is because even though Sy of 

Equation 11 by specifications has been adjusted, for the 

possible presence of ties in population Y, its denominator 

Smax has not been so adjusted. Further more as noted 

above rxy is not always independent of which sample has 

its assigned ranks arranged in their natural order and which 

sample has its assigned ranks tagged along. Eqns 11 and 16 

therefore need to be appropriately modified. Thus Smax of  

Eqn 11 needs to be modified to reflect the possible presence 

of tied observations in population Y. this is done by 

subtracting fy
o
, the observed number of ties in population y 

from Smax, thereby obtaining. 

max. max
2

o o

y y

n
S C S f f

 
= − = − 

 
                 (18) 

Now using Eqn 18 in Eqn 11 yields an estimates of the 

ties corrected or adjusted tau correlation coefficient 

between population  x and y, when there are ties 

observations in Y as 

( )









−









−

=
−








−
==

−+
−+

2

n
/f1

2

n
/ff

f
2

n
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c.maxS

S
c.xry

o

y

yy

0

y

yyy
 

That is: 

.

1 1

y y

o o

y y

xry
xry c

∩ ∩
+ +

∩ ∩

−
= =

− −

∏ ∏

∏ ∏
                      (19) 

Note from Eqn 19 that failure to adjust xry for the 

presence of ties in Y would lead to an underestimation of 

the true Tau correlation coefficient, a bias that is seen to 

increase with the number of tried observations in Y, that is 

with∏
o

y

.The variance of xry.c is estimated as  

( ) ( )
2

o

y

o

y

1

xryVar
1/xryVarc.xryVar
















−

=































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∏
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∩
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Is given in Equation 14 Hence, 

( )

( )

2

2

2

.

1 1

y y y y

o

y

Var xry c

n n

∩ ∩ ∩ ∩
+ − + −

∩

  
  + − −      =

 
 − −
  
 

∏ ∏ ∏ ∏

∏

          (20) 

To further adjust the estimate of the Tau correlation 

coefficient obtained in Equation 19 for the fact that in the 

presence of ties, its value depends on which of the two 

populations has its assigned ranks arranged in their natural 

order and which has its assigned ranks tagged along, we 

now interchange the rolls of X and Y so that observations 

drawn from Y now have their assigned ranks arranged in 

their natural order, and observations drawn from X have 

their ranks tagged along. We then define.  

1,

; . 0,

1,

if rjx rkx

Ujk x y if rjx rkx

if rjx rkx

<
= =
− >

                           (21) 

for j = 1, 2,..., n-1; k=2,3,…,n.  j < k. In other words 

provided that the rank assigned to the kth observation from 

population X comes after, that is succeeds the rank assigned 

to the jth observation from the same populations When 

these observations are arranged in accordance with the 

natural ordering or ranking of the corresponding 

observations from population  

Y (j < k), let 

( )

( )

( )

; . 1 ;

; . 0 ;

; . 1

x

o

x

x

P ujk x y

P ujk x y

P ujk x y

+

−

= =

= =

= = −

∏

∏

∏

                         (22) 

1
o

x x xwhere
+ −

+ + =∏ ∏ ∏                     (23) 

Xintiesnoarethereif,0and
o

x =∏  Also define 

1

1 2

; .
n n

x

j k
j k

S ujk x y
−

= =
<

= ∑ ∑                        (24) 

Now as before  

( )

( )
2

; . ;

; .

x x

x x x x

E ujk x y

Var ujk x y

+ −

+ − + −

= −

 = + − − 
 

∏ ∏

∏ ∏ ∏ ∏
    (25) 
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( ) ( )1
1

2
x x xAnd E S n n

+ − = − − 
 
∏ ∏               (26) 

Note that ,
o

x x xand
+ −

∏ ∏ ∏  are respectively the 

probabilities that the rank assigned to the jth observation 

from population X is less than, equal to or greater than the 

rank assigned to the kth observations from the same 

population if the rank assigned to the jth observation 

succeeds the rank assigned to the jth observation from X 

when these observations are arranged in accordance with 

the natural ordering of the ranks assigned to the 

observations from population Y. these probabilities are 

estimated as 

( ) ( ) ( )
02 2 2

; ;
1 1 1

o

x x x

x x x

f f f

n n n n n n

∩ ∩ ∩
+ −+ −

= = =
− − −∏ ∏ ∏     (27) 

where 
o

xxx ff,f −++
 are respectively the number of  1s, Os 

and –1s in the frequency distribution of the  1)-n(n ½

values of these numbers in ujk; x.y, f or j = 1,2,… ,n-1, k= 

2,3, ...,n-1; j < k. 

+1hence the sample estimate of the total number of times 

the rankings of observations from population x are in their 

natural order and consistent with the natural ordering of the 

ranks of observations from population Y less the number of 

times they are out of order is from Eqn (26) 

( )1
2 1x x x x xS n n f f

∩ ∩
+ −

+ −
 
 = − − = −
  
 

∏ ∏              (28) 

Therefore as before an estimate of Kendall’s Tan 

correlation coefficient not yet corrected for ties in X is 

( )
( )

2

max 1

x xx

x x

f fS
yrx

S n n

∩ ∩ + −+ − −
= = − =

−∏ ∏           (29) 

The corresponding estimate of the variance is 

( ) ( )

2

2

1

x x x x

Var yrx
n n

∩ ∩ ∩ ∩
+ − + −

  
  + −      =

−

∏ ∏ ∏ ∏
            (30) 

Hence the estimated ties adjusted or corrected tau 

correlation coefficient between X and Y when there are ties 

in X is obtained using Eqn 18 in Eqn 29 as 









−










=
−

==

2

n
/f1

2

n
/S

fmaxS

S
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S
c.yrx

o

x

x

o

x

xx
 

That is: 

.

1 1

x x

o o

x x

yrx
yrx c

∩ ∩
+ −

∩ ∩

−
= =

− −

∏ ∏

∏ ∏
                     (31) 

Also in Equation 20 the estimated variance of yrx.c is 

using Equation 30 

( )

( )

2

2

2

.

1 1

x x x x

o

x

Var yrx c

n n

∩ ∩ ∩ ∩
+ − + +

∩

  
  + − −      =

 
 − −
  
 

∏ ∏ ∏ ∏

∏

      (32) 

Now a sample estimate of the ties-adjusted or corrected 

tau (C-TAT) correlation coefficient between X and Y is the 

weighted average of the ties-adjusted tau correlation 

coefficient for tied observations in X and Y, where the 

weights are functions of the proportions of tied 

observations in each population namely 

∏∏

∏
∏ ∩∩

∩

∩

−−
















−

+















−=

o

y

o

x

0

y

o

x

2

c.xry1

c.yrx1c.rxy  

That is:  

( ) ( )
.

2 2

x x y y

o o o o

x y x y

yrx xry
rxy c

∩ ∩ ∩ ∩
+ − + −

∩ ∩ ∩ ∩

− + −
+= =

− − − −

∏ ∏ ∏ ∏

∏ ∏ ∏ ∏
      (33) 

Note that if there are no tied observations in populations 

X and Y, that is 

then,0

o

y

o

x == ∏∏  

 

rcy.c=rxy=xry.c=yrx.c=yrx=xry;that is 

.y y x xrxy

∩ ∩ ∩ ∩
+ − + −

= − = −∏ ∏ ∏ ∏ Hence, here, there is no need 

for adjustments. The estimated ties adjusted tau correlation 

coefficient remains unchanged no matter which of the two 

sampled populations has its assigned ranks arranged in their 

natural order and which has its assigned ranks tagged along. 

If the two populations have equal number of tied 

observations, that is if 
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In other cases in which the two populations have unequal 

number of tied Observations, that is when
,

o

y

o

x ∏∏ ≠
 the 

estimate obtained also depends on which of the sampled 

populations has its assigned ranks arranged in their in their 

natural order and which has its assigned rank tagged along. 

The estimated ties adjusted tau correlation coefficient is 

now taken as a weighted average of the two estimates (Eqn 

33) 

To estimate the variance of rxy.c of Equation 33 we have 

that 
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Where ( ) ( )xryVarandyrxVar  are given in Equations 30 

and 14 respectively it is easily shown that ( ) 0xry,yrxcov = . 

To do this is sufficient to show that 0=Sy)(Sx, Cov we here 

note that 

 )E(S and )E(S  where))E(SE(S-)SE(S=)S,(S Cov yxyxyxyx
are 

given in Equations 8 and 26 respectively, and 
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The three possible values urs; y.x and ugh;x.y can 

assume are 1, 0 and -1. It assumes the values 1 if urs; y.x 

and ugh;x.y both assume the value 1 or  

The value -1 with probability ;yxyx ∏∏∏∏
−−++

+  it 

assumes the value 0 if one of its two factors urs;y.x or 

ugh;x.y assumes the value 0 no matter the value assumed 

by the other factor with probability

;xx

o

yyy

o
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Therefore  
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Collecting terms we have that the variance of the 

estimated tau-correlation coefficient between X and Y 

when each of the two populations has ties observations is 

estimated as 
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Which from Equation 14 and 33 is 
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  34) 

or equivalently 
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Where Var (xry.c) and Var (yrx.c) are given in Eqns 20 and 

32 respectively to test the null hypothesis of Equation 15 

we may use the test statistic 

( )
( )

2

2
.

.
o

rxy c o

Var rxy c
χ

−
=

ℓ
                               (36) 

Which has approximately a chi-square distribution with 

1 degree of freedom for sufficiently large n (n≥10) where 

rxy.c and Var (rxy.c) are given in Equation 33 and 35 

respectively? H0 is rejected at the α  level of significance if 

Equation 17 is satisfied; otherwise H0 is accepted. 

3. Illustrative Example 

Let us use the following letter grades which are 

measurements on the ordinal scale earned by a random 

sample of students in two courses in statistics to illustrate 
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the estimation of ties adjusted tau (C-TAT) correlation coefficient when there are ties in the data. 

Table 1．A random sample of students grades in two courses 

Students Number  1 2 3 4 5 6 7 8 9 10 11 12 

Grade in course 1(xi) B C B C- F F A+ F C+ C A- C- 

Ranks of Grades in 

Course 1(rix) 
9.5 6.5 9.5 4.5 2 2 12 2 8 6.5 11 4.5 

Grade in course 2 (yi) E A- C+ C- B B F C+ B+ B+ F B- 

Rank of Grade in 

course 2 (riy) 
3 12 5.5 4 8.5 8.5 1.5 5.5 10.5 10.5 1.5 7 

 

The student grades in each course are ranked from the 

lowest (F) through the highest (A
+
) assigning the rank of 1 

to F, the rank of 2 to the next higher grades and finally the 

rank of 12 to the highest grade, A+. All tied grades in each 

course are as usual assigned their mean ranks. The results 

of the ranking are shown above, below each of the grades 

in the courses. To estimate ties adjusted tau correlation 

coefficient using these data we now arrange the ranks 

assigned to the grades in one of the courses, here course 1 

(rix) in their natural order. The rank (rix) of the grade 

earned by each student in the second course is then written 

along side the naturally ordered rank of the corresponding 

grade by the 

Student in course 1, the results are show in table 1 

To estimate the ties adjusted tau correlation coefficient 

when there are ties in Y. we apply Eqn 3 to the ranks riy in 

the second column of table 1 which is here for greater 

clarity presented in a tabular form (table 2) 

Table 2. Naturally ordered ranks for grade in course 2 (Y) in course 1 (X) with corresponding ranking for grades in Course 2 (Y) 

Students Number  5 6 8 4 12 2 10 9 1 3 11 7 

Natural Order of Ranks in 

Grade in course 1(rix) 
2 2 2 4.5 4.5 6.5 6.5 8 9.5 9.5 11 12 

Corresponding Ranks for 

Grades in Course 2(riy) 
8.5 8.5 5.5 4 7 12 10.5 10.5 3 5.5 1.5 1.5 

Table 3. Calculation of ujk;y.x (Eqn.3) for the data of  table 1 

Student No. 5 6 8 4 12 2 10 9 1 3 11 7 

Rank for course 2(rky) 8.5 8.5 5.5 4 7 12 10.5 10.5 3 5.5 1.5 1.5 

Student Number Rank for course 2(rjy)             

5 8.5  0 -1 -1 -1 1 1 1 -1 -1 -1 -1 

6 8.5   -1 -1 -1 1 1 1 -1 -1 -1 -1 

8 5.5    -1 1 1 1 1 -1 0 -1 -1 

4 4     1 1 1 1 -1 1 -1 -1 

12 7      1 1 1 -1 -1 -1 -1 

2 12       -1 -1 -1 -1 -1 -1 

10 10.5        0 -1 -1 -1 -1 

9 10.5         -1 -1 -1 -1 

1 3          1 -1 -1 

3 5.5           -1 -1 

11 1.5            0 

7 1.5             

 

Note that in table 2 we used the ranks assigned to the 

observations from X as the ones that are naturally ordered 

and the ranks assigned to the observations from Y as those 

that are tagged along. This enables the isolation and 

estimation of the effect of ties in Y using the results of the 

table 2. thus from table 2 we have that 

43fand;4f;19f y

o

yy === −+
 

Hence from Equation 9 we have that  
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Therefore from Equation 11, we obtain an estimate of an 

uncorrected or unadjusted tau correlation coefficient as: 

Xry=0.288-0.652= -0.364 

Therefore an estimate of the Tau correlation coefficient 

adjusted for ties in Y is from Equation 19 

0.288-0.652 0.364
Xry.c= =- 0.388

1-0.061 0.939
= −  

Also from Eqn 20 we have that 

2

2

2(0.288+0.652-(0.288-0652) )
Var (xry.c) =

12(12-1) (1-0.061)
 

1.616 
=    =0.014

116.424
 

Having obtained an estimate of tau correlation 

coefficient between X and Y using the ranks assigned to the 

observations from X as the ones that are naturally ordered 

and the ranks assigned to the observations from Y as the 

ones that are tagged along, we now interchange the roles of 

the ranks assigned to observations from X and Y to obtain 

an estimate of the Tau correlation coefficient yrx using Eqn 

22 

Table 3 shows the ranks assigned to the observations 

from Y arranged in their natural order together with the 

ranks of the corresponding observation from X 

Table 4. Naturally Ordered ranks for Students Grades in course 2 (Y) with corresponding ranks in course 1 (X) 

Students Number  7 11 1 4 3 8 12 5 6 9 10 2 

Natural Order of Ranks 

in Grade in course 2(riy) 
1.5 1.5 3 4 5.5 5.5 7 8.5 8.5 10.5 10.5 12 

Corresponding Ranks for 

Grades in Course 1(rix) 
12 11 9.5 4.5 9.5 2 4.5 2 2 8 6.5 6.5 

 

We now use the data of table 3 with Equation 22 to 

obtain an estimate of yrx. The results are presented in a 

tabular form (table 4) 

Table 5. Calculation of ujk;xy (Equation 22) for the data of table 3 

Student No. 7 11 1 4 3 8 12 5 6 9 10 2 

rank in course 1 (rkx) 12 11 9.5 4.5 9.5 2 4.5 2 2 8 6.5 6.5 

Student Number Rank in course 1(rjx)             

7 12  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

11 11   -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

1 9.5    -1 0 -1 -1 -1 -1 -1 -1 -1 

4 4.5     1 -1 0 -1 -1 1 1 1 

3 9.5      -1 -1 -1 -1 -1 -1 -1 

8 2       1 0 0 1 1 1 

12 4.5        -1 -1 1 1 1 

5 2         0 1 1 1 

6 2          1 1 1 

9 8           -1 -1 

2 6.5            0 

 

From table 4 we have  
017; 6; 43x x xf f f+ −= = =   

Hence from Equation 28 we have that 

o -

x x

17 6 43
= =0.258; = =0.091 and  = =0.652

66 66 66
x
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+
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Therefore using Equation 30 we have that the 

uncorrected or unadjusted Tau correlation coefficient 

between X and Y based on the ranks assigned to the 

observations from X with ties is estimated as yrx=0.258-

0.652=-0.394 

Hence an estimate of ties adjusted tau correlation 

coefficient based on X is from Equation 31 
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0.258-0.652 0.394
yrx.c= = - =-0.433.

1-0.991 0.909

 

The corresponding variance estimate (Equation 34) is 

2

2

2(0.258+0.652-(0.258-0.652) )
var (yrx.c)= 

12(12-1) (1-0.091)

1.51
                = =0.014

 109.032

 

Finally from Equation 36, we obtain an estimate of ties 

correlated or adjusted Tau correlation coefficient between 

students grades in course 1 (x) and course 2 (Y) as 

(0.288-0.652)+(0.258-0.652)
C-TAT=rxy.c=

2-0.061-0.091

0.758
                     =- =-0.410

1.848

 

The corresponding estimated variance is from Eqn 34 

( )

2

2

2(0.288+0.652-(0.288-0.652)2+0.258+0.652-(0.258-0.652) )
Var(rxy.c)=

 12(12-1) (2-0.061-0.091)

2 1.563 3.126
0.007

450.78 450.78
= = =

 

If interest is in testing the null hypothesis of Eqn 15 with 

0
o

ρ = we have from Eqn 36 that. 

( ) ( )
2

2
0.410 0 0.168

24.00 0.0000
0.007 0.007

P valueχ
− −

= = = =  

Which with 1 degree of freedom is highly statistically 

significant indicating strong (and inverse) association 

between student performance in the two courses. 

4. Conclusion 

In this paper, we have proposed, developed and 

discussed a modified ties adjusted method for the 

estimation of Tau Correlation Coefficient here called C-

TAT for ties adjusted tau Corrections Coefficient. C-TAT is 

developed and adjusted for the fact that often in the usual 

method used for the estimation of the regular Tau 

Correlations Coefficients; the value obtained depends on 

which of the two sample populations has its ranks arranged 

in their natural order and which has its assigned ranks 

tagged along. The value obtained also depends on whether 

or not there are ties within and between observations in the 

sampled populations. However, it is shown that proposed 

method gives essentially the same result as will be obtained 

with the usual Tau Correlation Coefficient when there are 

no ties and a better estimate of the Correction Coefficient 

when ties observations occurs in the samples. Furthermore, 

the proposed method is shown to be more robust than the 

parametric approach in that it can be used even when the 

usual assumption for the use of parametric methods are not 

satisfied by the data. More over, unlike the usual Tau 

Correlation Coefficient, the variance of the proposed C-

TAT can be readily estimated. 

However, the proposed statistics may be less powerful if 

the usual assumptions for the use of parametric methods are 

satisfied, one can easily fall back to the usual Tau 

Correlation Coefficient. 

Finally, the proposed method is illustrated with some 

sample data and shown to yield more reliable Coefficient 

estimates of Tau Correction Coefficients than the usual 

method that is unadjusted and uncorrelated for these 

problems. 

The value obtained also depends on whether or not there 

are ties within and between observations in the sampled 

populations. 

The proposed method is illustrated with some sample 

data and shown to yield more reliable and efficient 

estimates of tau correlation coefficients than the usual 

method that is unadjusted and uncorrelated for these 

problems. The two methods yield the same estimates if and 

only if there are no tied observations what so ever in the 

sampled populations. 
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