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Abstract: The present paper attempts to model the maximum likelihood estimation of reliability rate and the related 

statistical properties. Reliability in general refers to the probability that a component or system is able to perform its function 

satisfactorily during a specific period under normal operating conditions. It is estimated as the fraction of time the unit/system 

is available for operation. For practical purposes, reliability rate is usually estimated using maximum likelihood estimator 

(MLE) from sample observations. No study has gone beyond this to analyze the statistical properties of the MLE of reliability 

rate; the present study is an attempt at such an inquiry. We derive the density function of reliability rate and also the moments; 

however, it is found that an evaluation of these two moments is very difficult as the series converge very slowly. 
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1. Introduction 

Reliability in its broad sense refers to the probability that a 

component or system comprising components is able to 

perform its intended function satisfactorily during a specified 

period of time under normal operating conditions [1]. A 

simple representation of the life history of repairable electric 

power system component during the useful life period is by a 

two-state model, the possible states being labeled ‘up’ 

(functioning) and ‘down’ (unavailable). Thus, when the 

component fails it is said to undergo a transition from the up 

to the down state, and conversely, when repairs are over, it is 

said to return from the down to the up state. This idea then 

facilitates interpreting the concept of reliability in terms of 

the fraction of total time the component spends in the up-

state.  

Thus suppose that the mode of performance of a 

component of a system may be represented by a Bernoulli 

random variable, Xi, with values 1 and 0 according as the 

component is functioning or not functioning. Then Pi = 

Pr{Xi = 1} = 1 – Pr{Xi = 0} is the reliability of the ith 

component. 

Assume that a component functions for some time after 

which it fails and remains in that non-functioning state. The 

time duration, t, for which it functions is its life time. The 

number of failures per unit of time of the component is its 

hazard (failure) rate and the number of repairs per unit time is 

its repair rate.  

Usually the failure and repair rates are assumed to be 

constant; this leads to the assumption that the time-to-failure 

and the time-to-repair variables follow exponential 

distribution. The exponential distribution is one of the two 

(the other being the geometric distribution) unique 

distributions with the memoryless or no-ageing property. 

That is, future lifetime of a component remains the same 

irrespective of its previous use, if its lifetime distribution is 

exponential. 

Thus we assume that the time-to-failure, X, is an 

exponential variable with parameter ρ, so that its density 

function, viz., failure (hazard) density function, f(x), is given 

by f(x) =      







 −
ρρ
x

exp
1 , for x > 0. The parameter 1/ρ is 

the constant failure (hazard) rate. For an exponential 

distribution of the above form, the mean is given by ρ. Hence 

the mean-time-to-failure (MTTF) of the power plant is equal 

to ρ; this is also known as the expected survival time. The 

probability of a plant surviving at time t in a constant failure 

rate environment, i.e., its survival function, denoted by R(t), 
is then obtained by integrating the failure density function, 

f(x), and is given by R(t) = exp(−x/ρ). The complement of 

this survival probability is the probability of failure in time t, 

given by 1−exp(−x/ρ). 
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Similarly we assume an exponential model with parameter 

ω for the time-to-repair variable Y, so that the density 

function of Y, viz., the repair density function, g(y), is g(y) 

= 






 −
ωω
y

exp
1

, for y > 0. In this model, 1/ω is the constant 

repair rate and its reciprocal, ω, is the mean down (repair) 

time (MDT) or the expected outage time. The sum of MTTF 

and MDT is termed the mean-time-between-failures (MTBF) 

or cycle time.  

 In the case of a power generating system, for example, its 

ability to meet the demand for power at any given time 

represents its reliability. One of the major determinants of the 

system reliability is the reliability of the power generating 

unit, as it relies on the frequency with which a unit is likely 

to fall out of service due to a forced outage. Forced outages 

occur when a unit is thrown out of service due to unexpected 

causes such as break down, equipment malfunction, etc., and 

are usually of a random nature. On the other hand, preventive 

maintenance is a planned one, intended to ensure the proper 

running conditions of the units. Generator deratings that 

follow equipment troubles and changes in operating 

conditions as well as the age of the equipment also lead to 

shortages. 

The failure pattern of a given unit is usually described by 

its forced outage rate (denoted here by O), computed as a 

percentage of the unit’s forced outage (down) time relative to 

the total service plus forced outage time. That is, 

O = Down Time / (Down Time + Service Time), 

where 

forced outage (down) time = time, usually in hours, during 

which a unit is unavailable because of a forced outage, and 

service time = total time (in hours) during which the unit is 

actually operated. 

It should be noted that the complement of the outage rate 

(O) is the availability rate, representing the fraction of time 

the unit is available for operation; this then represents the 

reliability rate; i.e., reliability rate, R = 1 – O. 

This study is an attempt at modeling the maximum 

likelihood estimation of R. 

2. The Long-Run and Instantaneous RRRRs 

The probabilistic approach to system reliability analysis 

views the system as a stochastic process evolving over time. 

At any moment the system may change from one state to 

another because of events such as component outages or 

planned maintenance. Corresponding to a pair of states, say (i, 
j), there is a conditional probability of transition from the 

state i to the state j. The transition probabilities are defined 

with reference to the regularity postulate of Poisson process 

which states that for any  t > 0, the probability of exactly one 

occurrence during the time interval (t, t+h) is  )(
1

hoh +
ρ

,  

h being infinitesimally small, where the parameter  is 

independent of the state of the system at  t which is 

characterized by the number of events that have occurred 

between 0 and t. Then the probability of no change occurring 

in (t, t+h) is   )(
1

1 hoh +−
ρ ; and the probability of more than 

one occurrence is o(h). o(h)  is used as a symbol to denote a 

function of h which tends to 0 more rapidly than h; i.e., 

as h → 0, o(h)/h = 0. 

Also note that the interval times of a Poisson process with 

mean t
ρ
1

 are identically and independently distributed 

random variables (iid rvs) which follow the negative 

exponential law with mean ρ. 

In a Markov process for a system, let the state space 

comprise two states, `up’ (operating) and `down’ (under 

repair (due to outage)), denoted by 1 and 0 respectively. We 

assume that the length of operating period (i.e., the time-to-

failure, denoted by X) and that of the period under repair (i.e., 

the down-time, denoted by Y) are independent rvs having 

negative exponential distributions with means ρ  (which we 

call mean time-to-failure, MTTF) and ω (mean down-time, 

MDT) respectively. The sum of MTTF and MDT is known as 

mean time-between-failure (MTBF) or cycle time. The 

parameter 1/ρ is the failure (hazard) rate and 1/ω, the repair 

rate. 

Let Pij(h), (i, j = 0,1) be the probability of the transition 

of state from i to j in a small interval of time h. Then the four 

transition probabilities (see for example [2])  are given by 

P01(h) = Pr{Z(t +h) =1 | Z(t) = 0} = )(
1

hoh +
ω

 

P00(h) = Pr{Z(t +h) =0 | Z(t) = 0} = )(
1

1 hoh +−
ω

 

P10(h) = Pr{Z(t +h) =0 | Z(t) = 1} = )(
1

hoh +
ρ

 

P11(h) = Pr{Z(t +h) =1 | Z(t) = 1} = )(
1

1 hoh +−
ρ

        (1) 

The Chapman – Kolmogorov forward equations for a time-

homogeneous process is given by 

Pij(t +h) = ΣPik(t)Pkj(h),        (k = 0,1)                        (2) 

For different values of i, j = 0,1, we get four equations; for 

example, when i, j = 0, 

P00(t + h) = P00(t) P00(h) + P01(t) P10(h) 

= )}(
1

){()}(
1

1){( 0100 hohtPhohtP +++−
ρω      (3) 

Taking the limit as h → 0, 

)(
1

)(
1)(

0100
00 tPtP
dt

tdP

ρω
+−=                          (4) 

Since 
1=∑

j
ijP

  ∀ i, we use P00(t) + P01(t) = 1, to get 
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ρωρ
1

)(
11)(

00
00 =







 ++ tP
dt

tdP
.                  (5) 

The solution of this non-homogeneous differential 

equation subject to the initial condition P00(0) = 1 gives the 

probability that the unit continues to remain in outage, i. e., 

00

(1/ )
( )

(1/ ) (1/ )

(1/ ) 1 1
exp

(1/ ) (1/ )

P t

t

ρ
ρ ω

ω
ρ ω ρ ω

=
+

  + − +  +   

 

= 















 +−
+

+
+

t
ωρωρ

ρ
ωρ

ω 11
exp .       (6) 

Hence, the transition probability that the unit becomes 

available after repair due to forced outage is: 

















+−

+
−

+=−= tP tP ωρωρ
ρ

ωρ
ρ 11

exp)(1 0001          (7) 

Similarly, the solution of the other differential equation, 

when i, j = 1, with the initial condition P11 = 1 gives the 

probability that the unit continues to remain in operating state, 

i. e., 
















 +−
+

+
+

= ttP
ωρωρ

ω
ωρ

ρ 11
exp)(11              (8) 

and hence  the transition probability that the unit falls into 

outage state from the operating state is:             
















 +−
+

−
+

=−= ttPtP
ωρωρ

ω
ωρ

ω 11
exp)(1)( 1110         (9) 

When t → ∞, these probabilities are known as limiting 

state probabilities that give the steady-state (or stationary or 

long-run) probabilities: 

∞→t
lim P00(t) = 

∞→t
lim P10(t) = ω/(ρ + ω)          (10) 

and 

∞→t
lim P11(t) = ∞→t

lim P01(t) = ρ/(ρ + ω).          (11) 

Now P00(∞) = P10(∞) = O =  
ωρ

ω
+

=  
MDTMTTF

MDT

+
  (12) 

gives the forced outage rate (O) as defined earlier, and 

P11(∞) = P01(∞) =  R = 
ωρ

ρ
+

 =  
MDTMTTF

MTTF

+
 = 1 – O   (13) 

is the reliability rate. 

Note that the limiting distributions are independent of the 

initial state. 

Equations (7) and (8) as such gives the `instantaneous’ 

measures  (i. e., at time t) of R, denoted by R11(t) and R01(t) 

respectively,  and (6) and (9), those outage rate, O00(t) and 

O10(t) respectively. Note the distinction between the 

instantaneous measures of the same rate. 

3. Expected Duration of a State 

Given the Markov process {Z(t), t ≥ 0}, with two states 

{0, 1}, we can  find the expected length of time in (0, t), 

which we denote by ηij(t),   (i, j = 0, 1), that the process 

spends in state j, having started at Z(0) = i,  (i = 0, 1) 
initially. 

Let Wij(t) be an indicator function defined as 

Wij(t) = 1,   if {Z(t) = j | Z(0) = i}, 

= 0,   if {Z(t) ≠ j | Z(0) = i}.                                      (14) 

Thus E(Wij(t)) = Pij(t).                (15) 

Then the expected length of time spent in state j is given 

by 

ηij(t)=E

















∫
t

dijW

0

)( ττ = [ ]∫
t

dijWE

0

)( ττ = ∫
t

dijP

0

)( ττ . (16) 

In particular, the expected duration of time during which 

the unit continues to remain in outage is 

00η (t) = ∫
t

dP

0

)(00 ττ  = ∫ +
+

+

t

0
ωρ

ρ
ωρ

ω
 exp
















 +− τ
ωρ
11

dτ 

= ωρ
ω
+
t

 + 



























 +−−
+

t
ωρωρ

ωρ 11
exp1

2)(

2
.              (17) 

Similarly, the expected period of time when the unit 

continues to remain available in operation is 

)(11 tη  = ωρ
ρ
+
t

 + 




























+−−

+
t

ωρωρ

ρω 11
exp1

2)(

2
,   (18) 

the expected duration during which it is in outage after 

having been in the operating state is: 

=)(10 tη  
ωρ

ω
+
t

 − 



























 +−−
+

t
ωρωρ

ρω 11
exp1

2)(

2
,  (19) 

and the expected length of time during which it is available 

after the outage state is : 
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=)(01 tη   ωρ
ρ
+
t

 − 




























+−−

+
t

ωρωρ

ωρ 11
exp1

2)(

2
.     (20) 

Now, 
n

t

t

)(00lim
η

∞→
 = 

n

t

t

)(10lim
η

∞→
 = O, and 

n

t

t

)(11lim
η

∞→
 = 

n

t

t

)(01lim
η

∞→
 = 1 – O = Reliability Rate (R). 

(21) 

Taking ρ + ω = t on an average  (since MTTF + MDT = 

MTBF or cycle time), it may be seen that )(00 tη > ω > 

)(10 tη  and )(11 tη  > ρ > )(01 tη . Evidently, the two 

bounds are not equi-distant; i.e., )(00 tη  - ω  > ω - )(10 tη , 

and )(11 tη  - ρ > ρ - )(01 tη . Moreover, in the limit, it can be 

seen that  

O = 
ρ

ηη 1000 −
, and 

R = 1 –O = 
ω

ηη 0111 −
.                         (22) 

4. Maximum Likelihood Estimation of R 

In practice, the parameters of the exponential models 

assumed for the time-to-failure (X) and the time-to-repair (Y) 

variables usually are unknown, and so is the R. Hence the 

need to estimate it from sample observations. 

Note that the R is determined by ρ and ω, the parameters 

of the models for X and Y. Therefore we can use the result of 

[3]  to find the maximum likelihood estimators (MLE) of the 

R by substituting the MLE of these parameters into (12) (and 

13)). These estimators are obtained from a sample of n 

observations on X and Y. 

The maximum likelihood procedure [4]  yields the 

following estimators: 

the MLE of MTTF (ρ) = ∑xi/n = x , and 

the MLE of MDT (ω) = ∑yi/n = y . 

Thus the MLE of R = 
∑ ∑

∑
+ iyix

ix
.           (23) 

Similarly, the MLE of outage rate, O, and those of the 

instantaneous rates, )(00 tO , )(10 tO , )(11 tR , and )(01 tR  as 

well as of the expected durations, may also be obtained. 

5. Distributional Properties of R 

In this section, we analyze the statistical properties of the 

MLE of R given by (23). 

Since the n sample observations on X (the time-to-failure, 

or survival time) and Y (the time-to-repair or outage time) are 

drawn from two independent exponential populations with 

parameters ρ and ω respectively, it follows that 

ρ
∑= iX

U
2

 and  
ω
∑= iY

V
2

                 (24) 

are two independent chi-square variables with 2n degrees 

of freedom (df). Remember that the moment generating 

function (mgf) of the χ2 distribution with n degrees of 

freedom is given by  ( ) 2/21 nt −− ; we can find that the mgf 

of U (and of V) is ( ) nt −− 21 .     

The MLE of R can now be rewritten in terms of these two 

variables as 

VU

U
R

ωρ
ρ
+

= .                      (25) 

Given that the density function of a χ2 variate is given by 








−
−









Γ

2
2

1
exp

1
22

)2/(2/2

1 χχ
n

nn
,    χ2 > 0, 

we find the joint density of these two independent chi-

square variables as  








 +−−−

Γ
)(

2

1
exp11

2)(22

1
VUnVnU

nn ,   U, V >0. (26) 

Now using the transformation technique and (25), which 

gives V

RR

U

ρ
ω

2)1(

1

−
=

∂
∂

,  (V is taken here as a constant; in 

(25) V or U does not affect each other thru R.) we get the 

joint density of R and V: 

1 1 2 1

2 2

1 1
(1 ) exp 1

2 12 ( )

n

n n n

n

R
R R V V

Rn

ω ω
ρ ρ

− − − −     
− − +    −Γ     

,0<R<1;  V>0.  

(27) 

If we now integrate out the ‘extra’ variable V, we obtain 

the marginal density for R as: 

n
nn

n
RRR

n

n
Rf

2
11

2
1)1(

)(

)2(
)(

−
−−
















 −−−







=

ρ
ωρ

ρ
ω

Γ

Γ
,0<R<1.  (28) 

Similarly, it is easy to derive the marginal density element 

of the outage factor, O, as 

n
nn

n
OOO

n

n
Og

2
11

2
1)1(

)(

)2(
)(

−
−−
















 −−−






=
ω

ρω
ω
ρ

Γ

Γ
,0<O<1.  (28 a) 

It goes without saying that the two are equal, since O = (1 

– R). 

The distribution presents some interesting features. It is 

symmetric about R = 0.5 but wide-U-shaped, unlike most 

other common distributions: the density falls as R increases 

till R = 0.5 and rises beyond that (Fig. 1). This behaviour 
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stems from the combined effect of certain related terms in the 

distribution: thus in (28), the product of Rn–1 and (1 – R)n–1 

traces a U-curve over the R-values; so is that of   
n










ρ
ω and 

n

R
2

1

−
















 −−
ρ

ωρ . Note that the first term is a constant for a 

given n. Also note that for a given R,  ρ and ω are determined 

in terms of 








ρ
ω

according to (12):  
ρ
ω+

=
1

1
R

, which also 

gives one parameter in terms of another: say, ωρ
R

R

−
=

1
.  

 

Fig. 1. A Typical R-Distribution 

Now, given the density function of  R, we can find its s
th

 

raw moment as 

1

0

[ ] ( )
s s

E R R f R dR= ∫  

= 
( )

∫
−

−−+















 −−−






 1

0

2
11

2
1)1(

)(

2
dRRRR

n

n
n

nsn
n

ρ
ωρ

ρ
ω

Γ

Γ
.  (29) 

The result of this is obtained with the help of Euler’s 

integral representation of the Gauss hyper-geometric series: 

dtaZtbctbt
bcb

c
zcbaH −−−−−−

−ΓΓ
Γ= ∫ )1(1)1(

1

0

1
)()(

)(
);;,(  

( ) ( )
( )∑

∞

=
=

0
!

k
k

kZ

kc
kbka

,    ℜc > ℜb > 0.                (30) 

where Pochhammer’s symbol 

(a)k = a (a+1) (a+2)….(a+k−1);        (a)0 = 1. 

Now comparing (29) and (30), we have 

a = 2n,  b = n + s,  c – b = n,    and  c = 2n + s; and 

∑
∞

=








 −

+
+










+
+=

0
!)2(

)()2(

)2(

)(

)(

)2(
][

k

k

k

kk
n

s
ksn

snn

sn

sn

n

n
RE

ρ
ωρ

ρ
ω

Γ
Γ

Γ
Γ      (31) 

Putting s = 1 and 2 in (31) yields the first two raw 

moments and thence the mean and variance of R: 

!)2(

)1(
][

0
kkn

n
nRE

k

k

k
n 







 −

+
+









= ∑

∞

=

ρ
ωρ

ρ
ω ;    and     (32) 

( )

0

2

( 2)
[ ] ( 1)

(2 1)(2 )

[ ]
!

n

k

k

k

n
Var R n n

n k n k

E R
k

ω
ρ

ρ ω
ρ

∞

=
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It is very difficult to evaluate these two moments as the 

series converge very slowly unless ρ and ω are nearly equal, 

a rare situation in general. This in turn precludes us from 

applying direct analytic methods to study the distributional 

characteristics of the reliability rate.  

6. Conclusion 

This paper has attempted to model the maximum 

likelihood estimation of reliability rate and the related 

statistical properties. Some of the empirical expositions of the 

reliability analysis presented here have already been done 

(for example,[2], [5], [6]), while this paper serves as a 

theoretical background. We present the instantaneous and 

long run reliability rate (and its complement outage rate) in 

the framework of a Markov process and consider its 

Maximum Likelihood estimate. From this we derive the 

density function of reliability rate and thence its moments. 

The major conclusion here is that the expression we have 

derived for analyzing the distributional properties of the 

reliability rate is less amenable to empirical estimation.  
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