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Abstract: Large datasets, where the number of predictors p is larger than the sample sizes n, have become very popular in 

recent years. These datasets pose great challenges for building a linear good prediction model. In addition, when dataset contains 

a fraction of outliers and other contaminations, linear regression becomes a difficult problem. Therefore, we need methods that 

are sparse and robust at the same time. In this paper, we implemented the approach of MM estimation and proposed L1-Penalized 

MM-estimation (MM-Lasso). Our proposed estimator combining sparse LTS sparse estimator to penalized M-estimators to get 

sparse model estimation with high breakdown value and good prediction. We implemented MM-Lasso by using C programming 

language. Simulation study demonstrates the favorable prediction performance of MM-Lasso. 

Keywords: MM Estimate, Sparse Model, LTS Estimate, Robust Regression 

 

1. Introduction 

In modern real-world applications, high-dimensional 

datasets, where the total number of variables p is much larger 

than sample size n, but the number of important variables is 

typically smaller than n, are not uncommon. Examples are 

gene expression microarray data and functional Magnetic 

Resonance Imaging (fMRI) data. A typical goal in sparse 

high-dimensional model fitting is to ensure high prediction 

accuracy and discovering relevant predictive variables. 

However, ill-conditioned design matrix in high-dimensional 

model makes statistical estimation is fundamentally different 

from the estimation problems in the classical settings. 

Regularized or penalized estimations have been widely 

used to overcome the computational problems with high- 

dimensional data and to improve prediction accuracy. A 

penalty parameter can be added to the objective function on 

the regression coefficients to tradeoff between variance and 

bias as ridge estimation [1]. A popular approach is the least 

absolute shrinkage and selection operator (Lasso) [2] that uses 

the L1 penalty. 

Consider the linear regression problem in the matrix form 

                (1) 

where y is an n-vector of random responses, X an n × p design 

matrix, β a p-vector of parameters, and an n-vector of iid 

random errors have zero expected value. With a penalty 

parameter λ, the Lasso estimate of is 

      (2) 

where the loss function L is 

     (3) 

As with ridge regression (Lasso) shrinks the coefficients, 

however. L1-penalty forces some of the coefficient estimates 

to be exactly equal to zero if the tuning parameter λ is 

sufficiently large, i.e., to produce sparse model estimates that 

are highly interpretable. Hence, much like best subset 

selection, the Lasso performs variable selection. It can 

effectively select important explanatory variables and 

estimate regression parameters simultaneously. In contrast to 

classical L0 penalized variable selection methods, AIC, BIC, 

CP and so on, the Lasso is computationally feasible for 

high-dimensional data. A fast algorithm for computing the 

Lasso is available through the framework of least angle 

regression (LARS) [3]. The satisfactory finite-sample 

performance of Lasso under normal errors has been 

demonstrated numerically in [2], and its statistical properties 

have been studied (e.g [4, 5]). 
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The main drawback of the Lasso is that it is not robust to 

outliers. The breakdown point of the Lasso is 1/n [6] i.e., 

even a single outlier can severely distort the Lasso estimate 

completely.  

To produce more robust estimator than Lasso, the least 

absolute deviations (LAD) regression is combined with Lasso 

regression to produce an estimator called LAD-lasso [7], 

     (4) 

All estimators mentioned until now, are a special case of a 

more general estimator, the penalized M-estimator [8], 

     (5) 

with loss function ρ : R → R and penalty function J : R → R. 

Using convex loss functions make these estimators non robust 

with respect to leverage points and result in a breakdown point 

of 1/n [6]. 

A robust version of ridge regression was proposed by [9], 

using L2 penalized MM-estimators. Even though the resulting 

estimates are not sparse, prediction accuracy is improved by 

shrinking the coefficients, and the computational issues with 

high-dimensional robust estimators are overcome due to the 

regularization. 

Ref [10] proposed a robust estimator with respect to 

leverage points, called RLARS. RLARS is a robust version of 

the stepwise algorithm LARS which is computationally very 

efficient but sensitive to outliers. A main drawback of the 

RLARS algorithm is the lack of a natural definition, since it is 

not optimizing a clearly defined objective function. 

A popular robust estimator is the least trimmed squares 

(LTS) estimator [11]. Although its simple definition and fast 

computation make it interesting for practical application, it 

cannot be computed for high-dimensional data (p > n). 

Combining the Lasso estimator with the LTS estimator, 

developed the sparse LTS-estimator [6], 

    (6) 

where  denotes the squared residuals and 

r2(1) (β) ≤ . .. ≤ r2(n) (β) their order statistics. Here λ ≥ 0 is a 

penalty term and h ≤ n the size of the subsample that is deemed 

to consist of non-outlying observations. This estimator can be 

applied to high-dimensional data with good prediction 

performance and high robustness. It also has a high 

breakdown point [6]. 

However, sparse LTS can be applied to high-dimensional 

data, it should be noted that its efficiency is an issue. In this 

paper, we attempt to combine reweighting sparse LTS 

estimator with penalized M-estimators (Tukey’s biweight 

functions with L1-penalty). We employ the approach of MM 

estimation which was first proposed in [12]; using sparse LTS 

as an initial estimator for computing L1-penalized M-estimator 

yields L1- penalized MM-estimator. 

The rest of the paper is organized as follows. In Section 2, 

we illustrate the proposed algorithm to combine high 

breakdown value estimation and efficient estimation. Section 

3 presents the results of a simulation study that compares the 

performance of the estimated models by the root mean 

squared prediction error (RMSPE). In addition concerning 

sparsity, the estimated models are evaluated by the false 

positive rate (FPR) and the false negative rate (FNR). The 

results indicate that, L1-Penalized MM-estimation yields a 

model that achieves excellent prediction accuracy with a 

sparse representation of the predictors in the model. Finally, 

Section 4 concludes. 

2. L1-Penalized MM-Estimation 

To combine high breakdown value estimation with efficient 

estimation under the normal model, the approach of MM 

estimation is employed. The L1-Penalized MM-estimation 

(henceforth MM-Lasso) can be constructed by a three-stage 

procedure. In the first stage, we compute an initial consistent 

estimator with high breakdown point(BDP) but possibly 

low normal efficiency. In the second stage, we compute a 

robust M-scale estimator of the residuals based on the initial 

estimate. In the third stage, we compute an L1-Penalized M 

estimator with fixed scale ; starting the iterations from ; 

and using a loss function that ensures the desired efficiency. 

Here, efficiency will be loosely defined as similarity with the 

classical lasso estimator at the normal model. 

Let ρ0(r) = ρBI(r/k0), ρ(r) = ρBI(r/k1), and assume that each of 

the ρ-functions is bounded even in the sense of [13]. The scale 

M estimator (an M-scale for short) satisfies 

            (7) 

Where  is the number of non-zero estimated parameters in

which depends on  

To obtain consistency when the errors are normal, the 

constant δ satisfies δ = EΦ [ρ (Z)], with Φ the standard normal 

distribution. Note that if ρ(t) = t2 and δ = 1 then = s the 

residual standard deviation . The MM-Lasso is defined with 

    (8) 

where the factor before the summation is employed to 

make the estimator coincide with the classical one when ρ(t) = 

t2. Let ρ satisfy ρ ≤ ρ0, from [13] it is easy to show if satisfies 

L(x, y, ) ≤ L(x, y, ), then ’s BDP is not less than that of

. The value of k0 should be chosen in order to attain high 

breakdown point of the MM-Lasso. The choice of k1 will to 

determine asymptotic efficiency of the estimate without 

affecting its breakdown point. In order to let ρ ≤ ρ0 , we must 

have k1 ≥ k0; the larger the k1 is, the higher efficiency the 

MM-Lasso can attain at the normal distribution. 
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2.1. IRLS Algorithm 

The penalty function in equation (2) is convex but it is a 

non-differentiable function, hence it is difficult to obtain 

analytic form solution of equation (2). Here we can obtain an 

approximate closed form solution as in [2]: 

  (9) 

where the L1 Penalization had a similar form to an L2 norm 

with a weight |βj|. Iteratively re-weighted least squares (IRLS) 

algorithm for the Lasso estimate in equation (9) can be 

obtained by computing the ridge regression iteratively as: 

     (10) 

where ( )Λ i is the generalized inverse (pseudo-inverse) of 

matrix= diag and i = 0,1... is the 

iteration number. Similarly, an iteratively re-weighted least 

squares (IRLS) algorithm for the MM-Lasso estimate. Define 

,        (11) 

Let 

 

    (12) 

by differentiating of (5) with respect to β and setting the 

derivative to zero, one gets, 

         (13) 

and 

  (14) 

Since for the chosen ρ, W(t) is a decreasing function of |t|, 

observations with larger residuals will receive lower weight w. 

The iteration will stop until a maximum number is reached or 

the difference between two successive iteration steps is small 

enough. 

The following is the procedure to obtain the estimator  

1) A high breakdown estimator is used to find an initial 

estimate 
0β̂ (in this paper we choose sparse LTS 

estimator in [6]). Using this estimate the residuals, ri ( 0β̂ ) 

=
0

ˆxi iy β′− , are computed, for 1≤ i ≤ n. 

2) Using these residuals from the robust fit, an M-estimate 

of scale σ̂ with high BDP is computed from (6). 

3) At each iteration with σ̂ remains fixed throughout, 

calculate residuals ( 1)j

ir
− and associated weight ( )( 1)j

ir
−w

according to the weight function. 

4) Solve the following for iteratively re-weighted least 

squares (IRLS) equation, 

 

Steps 3) and 4) are repeated until  becomes 

less than tolerance. 

2.2. Weight Functions and Choosing the Constants 

Several types of weight functions are proposed for IRLS 

algorithm in literature. Each set of functions given includes 

tuning constants, which allow for the shape of the function to 

be slightly altered. Beaton and Tukey [14] proposed the IRLS 

algorithm with Tukey’s bisquare function that enables to 

remove the influence of extreme outliers completely from the 

estimation. 

   (15) 

    (16) 

where = is called a redescending function, and the 

value kBI for bisquare function is a tuning constant. In 

particular, The value k0 =2.937 such that the asymptotically 

consistent scale estimate has the breakdown value of 25%, 

while the value k1 = 3.44 yields 0.85 asymptotic efficiency at 

the normal model when λ = 0 [11]. 

However, the scale estimate requires a correction for 

high dimensional data. According to [15], there are two 

problems appear when fitting a standard MM estimator to data 

with a high ratio p/n: 

(1) The scale based on the residuals from the initial 

regression estimator underestimates the true error scale. 

(2) Even if the scale is correctly estimated, the actual 

efficiency of the MM estimator can be much lower than 

the nominal one. For this reason, σ̂ is corrected using (9) 

in [15] as 

 with k1 = 1.29, k2 = - 6.02. 

2.3. Choosing the Penalty Parameter 

We propose to select λ by the estimated prediction error of 

MM-Lasso for different values of λ via cross-validation. We 

can use the k-fold cross validation process, which requires 

recomputing the estimate k times. For k = n (“leave-one-out”) 

we can use an approximation to avoid recomputing. 

Call the fit of yi computed without using the i-th 

observation; i.e., y-i = , where is the MM-Lasso 

estimate computed without observation i. Then a first-order 
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Taylor approximation of the estimator yields the approximate 

prediction errors 

        (16) 

with 

 

where, and ti are defined in (11)-(12), xi is the i-th row of X 

defined in (13) and is the generalized inverse 

(pseudo-inverse) defined in (10). Given the prediction errors

, we compute a robust mean squared error 

(MSE) as , whereτ is a “τ -scale” with tuning constant

= 5 [16], and choose the λ minimizing this MSE. 

3. Simulation Study 

To investigate the behaviour of our robust estimator, a 

simulation study for comparing the performance of various 

sparse estimators are performed in R (R Development Core 

Team, 2011) with package simFrame[17], which is a general 

framework for simulation studies in statistics. As in [6] we 

make a comparison with the lasso, the LAD-Lasso, robust 

least angle regression (RLARS) and Sparse LTS with 

reweighted step. Sparse LTS is evaluated for the subset size  

 to guarantee a breakdown point of 25%. All 

computations are carried out in R version 3.1.2 (R 

Development Core Team, 2011) using the packages robustHD 

[18] for sparse LTS and RLARS, quantreg [19] for the 

LAD-Lasso and lars [20] for the Lasso. We implemented 

MM-Lasso by using C programming language. 

For every generated sample, an optimal value of the 

shrinkage parameter λ is selected. The penalty parameters for 

MM-Lasso are chosen using k-fold cross validation process as 

described in subsection 2.4, and the other methods are 

optimized via BIC as described in [6]. 

3.1. Sampling Schemes 

In this study we take the three configurations from [6] to 

represent low, moderate and high dimensional data. Firstly in 

the case of n > p, we create a linear model. From k = 6 latent 

independent standard normal variables, L1 , L2 , ... , Lk and an 

independent normal error variable e with standard deviation σ, 

the response variable y is constructed as 

y = L1 + L2 + · · · + Lk + σε,      (16) 

The value of σ is chosen so that the signal to noise ratio is 

equal to 3. A set of p = 50 candidate predictors is then 

constructed as follows. Let e1, ..., ed be independent standard 

normal variables and let 

Xi = Li + τei, i = 1, ..., k 

Xk+1 = L1 + δek+1 

Xk+2 = L1 + δek+2 

Xk+3 = L2 + δek+3 

Xk+4 = L2 + δek+4 

⋮  

X3k-1 = Lk + δe3k-1 

X3k = Lk + δe3k 

and Xi = ei , i = 3k + 1, ..., p 

The constants δ = 5 and τ = 0.3 are chosen so that corr(X1, 

Xk+1) = corr(X1, Xk+2) = corr(X2, Xk+3) = · · · = corr(Xk, X3k) = 

0.5. Note that covariates X1, ..., Xk are “low noise” 

perturbations of the latent variables and constitute our “target 

covariates”. Variables X3k+1, ..., Xd are independent noise 

covariates and variables Xk+1, ..., X3. The number of 

observations is set to n = 150. 

The case of moderate high-dimensional data is represented 

by the second configuration. We generate n = 100 

observations from a p-dimensional normal distribution N(0, Σ), 

with p = 250. The covariance matrix Σ = (Σ ij) 1≤i,j≤p is given 

by Σij = 0.5
|i−j|

, creating correlated predictor variables. Using 

the coefficient vector β = (βj) 1≤ j≤ p with β1 = β7 = 1.5, β2 = 

0.5, β4 = β11 = 1, and βj = 0 for j ∈ {1, . . . , p}\{1, 2, 4, 7, 11}, 

the response variable is generated according to the regression 

model (1), where the error terms follow a normal distribution 

with σ = 0.5. 

Finally, the third configuration covers the case of high 

dimensional data with n = 100 observations and p = 500 

variables. The first 250 predictor variables are generated from 

a multivariate normal distribution N(0, Σ) with Σij = 0.6
|i−j|

. 

Furthermore, the remaining 250 covariates are standard 

normal variables. Then the response variable is generated 

according to (1), where the coefficient vector β = (βj) 1≤ j≤ p is 

given by βj = 1 for 1 ≤ j ≤ 10 and βj = 0 for 11 ≤ j ≤ p, and the 

error terms follow a standard normal distribution. 

To allow for a fraction of outliers we considered the 

following sampling distributions, listed in increasing order of 

difficulty 

1. No contamination. 

2. Vertical outliers: 10% of the error terms in the regression 

model follow a normal N(20, σ) instead of a N(0, σ). 3. 

Leverage points: Same as in 2, but the 10% contaminated 

observations contain high-leverage values by drawing the 

predictor variables from independent N(50,1) distributions. 

4. The outliers form a dense cluster: Keeping the 

contamination level at 10%, outliers in the predictor variables 

are drawn from independent N(10, 0.01) distributions. Let 

denote such a leverage point. Then the values of the response 

variable of the contaminated observations are generated by 

 with γ = (−1/p) 1≤j≤p. The parameter η controls the 

magnitude of the leverage effect and is varied from 1 to 25 in 

five equidistant steps. 
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3.2. Simulation Results 

In this subsection, the results for the different data scheme 

are presented and discussed. The performance of the estimated 

models are compared by the root mean squared prediction 

error (RMSPE). For this purpose, we generate n additional 

observations from the respective sampling schemes (without 

outliers) as test data, and this in each simulation run. The 

RMSPE of the oracle estimator, which uses the true coefficient 

values β, is computed as a standard for the evaluated methods. 

In addition considering sparsity, the estimated models are 

evaluated by the false positive rate (FPR) and the false 

negative rate (FNR). Both FPR and FNR should be as small as 

possible for a sparse estimator. RMSPE, FPR and FNR, 

averaged over 100 simulation runs, are reported for every 

method. 

3.2.1. The First Sampling Scheme 

The simulation results for the first data are represented in 

table 1. It can be seen that when there is no contamination in 

the data LAD-Lasso, RLARS and Lasso have excellent 

performance in RMSPE and FPR, while sparse LTS and 

MM-Lasso have a good prediction, but they have larger FPR 

than other methods. In addition, MM-Lasso improves the 

estimates of sparse LTS, which is reflected in the lower values 

for RMSPE and FPR. On the other hand, there are no false 

negatives in all of these methods. 

In the case of vertical outliers, the higher values of RMSPE 

and FPR show that Lasso is non-robust estimator.  

All of methods are still have excellent performance in 

RMSPE but sparse LTS and MM-Lasso have considerable 

values of FPR. As showed in Table 1 RMSPE and FPR of 

MM-Lasso are 1.1765, 0.237 while sparse LTS have RMSPE 

and FPR equals 1.2378, 0.293 respectively. Ultimately, 

MM-Lasso has a significant improvement over Sparse LTS. In 

the third scenario, when we introduce leverage points in 

addition to vertical outliers, RLARS, MM-Lasso, and sparse 

LTS have a good performance. However, the RMSPE and FPR 

of RLARS increased (1.1210 to 1.2236, and 0.029 to 0.126, 

respectively) also the FPR of sparse LTS (0.293 to 0.319) and 

MM-Lasso (0.237 to 0.250) slightly increase. MM-Lasso still 

increases the performance of sparse LTS in RMSPE and FPR 

(1.1792 and 0.250 respectively). LAD-lasso has large RMSPE 

and suffers from false positives, while Lasso has large 

RMSPE and FNR. This suggests that the leverage points have 

a bad leverage effect. 

Figure 1 refers to the results for the fourth contamination 

setting. The RMSPE for the more robust methods is plotted as 

a function of the parameter η. RLARS has a considerably 

higher RMSPE than MM-Lasso and sparse LTS for lower 

values of η, but the RMSPE gradually decreases with 

increasing η. The RMSPE of sparse LTS in beginning slightly 

increased then decreased in the next steps. However, 

MM-Lasso has the lowest RMSPE; thus, their overall 

performance is the best. 

 

Figure 1. Root mean squared prediction error (RMSPE) for the first 

simulation scheme, with n =150 and p = 50, and for the fourth contamination 

setting. 

Table 1. Results for the first simulation scheme, with n = 150 and p = 50. 

Method 
No contamination Vertical outliers Leverage points 

RMSPE FPR FNR RMSPE FPR FNR RMSPE FPR FNR 

Lasso 1.1778 0.080 0.000 1.7376 0.225 0.088 2.5205 0.066 0.766 

LAD-Lasso 1.1316 0.092 0.000 1.1640 0.161 0.000 1.9939 0.316 0.002 

RLARS 1.1450 0.066 0.000 1.1210 0.029 0.000 1.2236 0.126 0.030 

Sparse LTS 1.2623 0.265 0.000 1.2378 0.293 0.000 1.2345 0.319 0.000 

MM-Lassoa 1.1705 0.213 0.000 1.1765 0.237 0.000 1.1792 0.250 0.000 

Oracle 1.1073 
  

1.1073 
  

1.1073 
  

a Proposed method.         

 

3.2.2. The Second Sampling Scheme 

Table 2 shows the simulation results for the second data 

configuration (the moderate high-dimensional data). In the 

case without contamination, MM-Lasso, and RLARS have the 

best performance. Also, the LAD-Lasso and Lasso have 

excellent prediction performance but a slightly higher FPR 

than the other methods, followed by sparse LTS. In the case of 

vertical outliers, RLARS still has excellent prediction 

performance despite some false negatives. We notice that 

RMSPE and FPR of MM-Lasso are 0.5766 and 0.034 

respectively. While, for Sparse LTS are 0.6688, 0.039 

respectively. Hence, MM-Lasso achieves good sparse 

prediction without false negative. Drastically, Lasso is 

non-robust against vertical outliers.  

In the scenario with additional leverage points, it can be 

concluded that sparse LTS has RMSPE equal 0.6691 and FPR 

equal 0.039 also MM-Lasso has RMSPE equal 0.5738 and 
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FPR equal 0.035. It means that there is stability in these 

methods. For RLARS, there is small increase in the RMSPE, 

FPR and FNR. On the other hand, LAD-Lasso already has a 

considerably large RMSPE, and again a slightly higher FPR 

than the other methods. Furthermore, the Lasso is still highly 

influenced by the outliers, which is reflected in a very high 

FNR and poor prediction performance. Briefly, compared to 

other methods MM-Lasso is deemed a best performance.  

Figure 2 clarifies the results for the fourth contamination 

setting. As in first scheme, we plotted the RMSPE for the 

more robust methods. The RMSPE of RLARS is gradually 

decreasing. The RMSPE of MM-Lasso and sparse LTS have 

constant low values. MM-Lasso clearly performs best for all 

values of η. 

Table 2. Results for the second simulation scheme, with n = 100 and p =250. 

Method 
No contamination Vertical outliers Leverage points 

RMSPE FPR FNR RMSPE FPR FNR RMSPE FPR FNR 

Lasso 0.5848 0.105 0.000 2.3551 0.185 0.092 2.6857 0.013 0.632 

LAD-Lasso 0.6020 0.067 0.000 0.7446 0.011 0.000 1.8398 0.096 0.112 

RLARS 0.5506 0.016 0.000 0.6092 0.015 0.055 0.7901 0.072 0.098 

Sparse LTS 0.7195 0.028 0.000 0.6688 0.039 0.000 0.6691 0.039 0.000 

MM-Lassoa 0.5526 0.022 0.000 0.5766 0.034 0.000 0.5738 0.035 0.000 

Oracle 0.4998 
  

0.4998 
  

0.4998 
  

a Proposed method.         

 

 

Figure 2. Root mean squared prediction error (RMSPE) for the second 

simulation scheme, with n =100 and p = 250, and for the fourth 

contamination setting. 

3.2.3. The Third Sampling Scheme 

Table 3 presents the simulation results for the high 

dimensional data configuration. When the data is free from 

contamination, the sparse LTS is characterized as the lowest 

efficiency due to have larger values of RMSPE than other 

methods. In the other hand, MM-Lasso and RLARS have 

considerably better performance in this case. Lasso and 

LAD-Lasso have a good behavior. With vertical outliers, the 

RMSPE for the Lasso increases extremely due to a high FNR, 

while LAD-Lasso still has good prediction performance. In 

addition, RLARS has a larger FNR, resulting in a slightly 

lower RMSPE. When leverage points are introduced, 

MM-Lasso exhibits the lowest RMSPE and sparse LTS keep 

its excellent behavior. 

Figure 3 shows the results for the fourth contamination 

setting. It can be seen that RMSPE of RLARS is higher in the 

beginning, and then decreases continuously in the remaining 

steps. MM-Lasso and Sparse LTS have low and constant 

values for RMSPE but MM-Lasso is close to Oracle. 

 

Figure 3. Root mean squared prediction error (RMSPE) for the third 

simulation scheme, with n =100 and p =500, and for the fourth contamination 

setting. 

3.3. Summary of the Simulation Results 

This study shows that MM-Lasso has RMSPE values close 

to Oracle, and does not suffer from any false positives at all. 

Hence, MM-Lasso is the best overall performance. Sparse 

LTS generally have good prediction accuracy; however, 

MM-Lasso can improve this prediction. Although RLARS has 

good achievement, contamination data makes FNR values 

increased. These simulation results also enhance that the 

Lasso is not robust to outliers and LAD-Lasso is not robust 
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against bad leverage points but is resistant to vertical outliers.  

Table 3. Results for the third simulation scheme, with n =100 and p = 500. 

Method No contamination Vertical outliers Leverage points 

 
RMSPE FPR FNR RMSPE FPR FNR RMSPE FPR FNR 

Lasso 0.6114 0.073 0.000 3.3311 0.061 0.280 3.6073 0.054 0.350 

LAD-Lasso 0.6493 0.023 0.000 0.8316 0.006 0.000 2.8667 0.074 0.132 

RLARS 0.5767 0.009 0.000 0.8954 0.009 0.081 1.4805 0.052 0.112 

Sparse LTS 0.9804 0.006 0.000 0.7912 0.005 0.000 0.7520 0.005 0.001 

MM-Lassoa 0.5429 0.005 0.000 0.5626 0.004 0.000 0.5725 0.005 0.000 

Oracle 0.4983 
  

0.4983 
  

0.4983 
  

a Proposed method.         

 

4. Conclusion 

Sparse Least trimmed squares (Sparse LTS) is a robust, 

shrinkage and selection regression estimation with high 

breakdown value and good prediction estimation, However, it 

should be noted that efficiency is an issue with sparse LTS. 

Our proposed estimator MM-Lasso, an approach of MM 

estimation, used sparse LTS estimator as initial estimator to 

penalized M-estimators (Tukey’s biweight functions with 

L1-penalty). Our model, MM-Lasso can improve prediction 

estimation of sparse LTS and its overall performance is the 

best. 
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