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Abstract: Systematic sampling is normally used in surveys of finite populations because of its appealing simplicity and 

efficiency. When properly applied, it can reflect stratification in the population and thus can be more precise than SRS. In 

systematic sampling technique, the sampling units are evenly spread over the whole population. This sampling scheme is very 

sensitive to correlation between units in the entire population. A positive autocorrelation reduces the precision while a negative 

autocorrelation will improve the precision compared to simple random sampling. The limitation of this sampling method is that, 

it is not possible to estimate the design variance that is unbiased. This study proposes an estimator for the design variance based 

on a non-parametric model for the population using local polynomial regression as the estimation technique. The non-parametric 

model is more flexible that it can hold for many practical situations. A simulation study is performed to enable the comparison of 

the efficiency of the proposed estimator to the existing ones. The performance measures used include: Relative Bias (RB) and 

Mean Square Error (MSE). From the simulation results, it can be seen that local polynomial estimator based on nonparametric 

model is consistent and design unbiased for the variance of systematic sample mean. The simulation study gave smaller values 

for the relative biases and mean squared errors for proposed estimator. 

Keywords: Systematic Sampling, Local Polynomial Regression, Non-Parametric Model, Design Variance 

 

1. Introduction 

1.1. Background of the Study 

Systematic sampling is a probability sampling technique 

where a sample is obtained by selecting every ��� element 

of the population where � is an integer greater than 1. The 

first number of the sample must be selected randomly from 

within the first � elements. The selection is done from an 

ordered list. It is a popular method of selection especially 

when units are many and are serially arranged from 1 to �. 

Suppose that � the total number of units is a multiple of the 

required sample size � and an integer �, such that � =��,a random number is selected between 1 and �. 
A sample which comprises of the first unit is selected 

randomly and every ��� unit, until the required sample size 

is obtained. The interval k divides the population into groups. 

In this method we are selecting one cluster of units with 

probability 
�	 .Since the first number is drawn at random 

from 1 to k, each unit in the supposedly equal clusters gets 

the same probability of selection 
�	. 

Systematic sampling is widely used in surveys of finite 

populations such as forest where other sampling scheme 

cannot be easily applied. This is due to its appealing 

simplicity and efficiency. When properly applied, the method 

picks up any obvious or hidden stratification in the 

population and thus can be more precise than simple random 

sampling. Also, systematic sampling is easy to implement, 

thus reducing costs. 

Since a systematic sample can be regarded as a random 

selection of one cluster, it is not possible to give an unbiased 

or even consistent design based estimator of the variance and 

this is the challenge faced by researchers who apply it in 

practice. There are two approaches that are proposed to 

solving this problem. One is to postulate a superpopulation 

model characterizing the population structure and to obtain 

model-unbiased estimators of variance Cochran(1977). The 

superpopulation model is used to describe the relationship 

between the auxiliary variable and the study variable. This 

approach may not yield satisfactory results because the 

model assumption is usually hard to verify in practice and the 
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unbiased estimators of variance can be sensitive to model 

assumption. The second approach is to take additional 

observations (supplementary sample) typically of smaller 

size than the first sample via simple random sampling 

Zinger(1980) or systematic sampling. 

Nonparametric regression is motivated by the fact that it 

provides a flexible way of studying the relationships between 

variables and also results in good estimators thus increasing 

their efficiency comparedto estimators obtained using 

designed based approaches. 

In this framework, this study is concerned with the 

estimation of the variance of systematic sample mean using a 

nonparametric approach(local polynomial regression 

technique) with the aid of a superpopulation model. It also 

offers the methodology to study the convergence properties 

of the proposed estimator. 

1.2. Literature Review 

Zinger(1980 ) pursued an approach defined as partially 

systematic sampling in which he obtained an unbiased 

estimator for the variance of systematic sample mean, 

however, his proposed estimator faced the challenge of not 

being able to prove for non negative variance except for the 

case of 
 = ��. Wu(1984) suggested difference estimator to 

tackle the problem faced by Zinger (1980 ) which was non 

negative for all 
 ≥ 	���	 . Rana (1989) following the work 

done by Zinger(1980) proposed a different estimator for 

variance of systematic sample mean that was unbiased and 

non negative for all Values of 
 . 

Wolter (2007) gives more comprehensive review on eight 

biased variance estimators and guidelines for choosing among 

them is given. The above variance estimation procedures are 

conditional on the design. In other words, they are 

design-based in the way that the finite population is treated as 

fixed. 

There also exist some model-based variance estimators 

where the populations are considered random realizations 

from a super population model. Montanari. G and Bartolucci. 

F(1998) came up with a model based variance estimator using 

OLS which was approximately unbiased for the variance of 

systematic sample mean under linear super-population model. 

However this estimator lacked some accuracy and efficiency 

due to a higher contribution of the bias if the systematic 

component of the super-population is not linear. Montanari. G 

and Bartolucci. F(2006) later proposed a new class of 

unbiased estimators of the variance of systematic sample 

mean that included some simple nonparametric estimators 

under the assumption that the population follows a super 

population model that satisfied some mild assumptions. They 

showed that, the estimator based on local polynomial 

regression as the estimation technique under the assumption 

that the population follows a linear trend and the errors are 

homoscedastic and uncorrelated. The simulation results 

showed that the LPR estimator performed better in terms of 

relative bias and mean square error as they all had small 

values. 

X. Li and J. Opsomer (2010) and Ayora. O(2014) also 

using the work that was proposed by Later Montanari. G and 

Bartolucci. F(2006) considered a broadly applicable model for 

the data, in which both the mean and the variance are left 

unspecied subject only to smoothness assumptions. They then 

came up with a model-based nonparametric variance estimator, 

in which both the mean and the variance functions of the data 

are estimated nonparametric ally using local polynomial 

regression as the smoothing technique. In their simulation 

experiment performed, it was evident that this estimator 

perform better giving small relative bias and mean square 

errors as compared to the other classical estimators discussed 

in Wolter (2007). 

This study considers a more applicable model in which the 

mean function is unspecified but the variance function is 

homoscedastic. The researcher proposes a model-based 

nonparametric estimator using local polynomial regression as 

the smoothing technique for variance of systematic sample 

means. It will later shows that the estimator proposed is model 

consistent for the design variance of the survey estimator, 

subject to the population smoothness assumptions. 

1.3. Statement of the Problem 

Variance estimation for systematic sample mean still 

remains an issue that has not been addressed as only 

estimation procedures which are not so robust have been 

proposed. In view of this, exact computation of a robust 

estimator for variance in the systematic sample mean or total 

mean still remains an open area of research. 

2. Methodology 

2.1. Introduction 

In this study, the researcher will first review Systematic 

sampling and the existing estimators of variance of systematic 

sample mean. Assumption used in developing the proposed 

estimator will be reviewed, then propose an estimator based 

on local polynomial regression using a nonparametric super 

population model. It will also provide the proof for the 

consistency of the proposed estimation and lastly compare the 

performance of the proposed estimator through a simulation 

study. 

In the current study, let �� , � = 1,2, … �  be finite 

population measurements of size N representing some survey 

characteristics and �� , � = 1,2, … � be a vector of auxiliary 

variables which is considered fixed. Let � be the sampling 

interval and ��. � = �	 be the probability of each element in 

the sample being selected from the population, then the 

systematic sample will consist of the observations �, � +�, … , � + �� − 1��  where � is the sample size and the ��� 

systematic sample will be �� , … , ������� !�� . Let �"  be the 

population mean, and �"� be the ��� systematic sample mean, 

then, the study is interested in estimating the variance of �"� 
which is defined by equation (3) . To estimate this variance, 

the study uses the local polynomial regression function #̂� = %�&����& '�����������& '����  discussed in Wand and Jones 

(1995) estimated from the ���  where '�� = (�)* +, -./�.0� 12 for � = 1,2, … , �  with ℎ  being the 
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smoothing parameter and ,�. � a kernel function. 

2.2. Review of Systematic Sampling 

Suppose that the population size is � units and the study 

variable ��  , � = 1,2, … , �  . Then the population mean is 

given as 

�" = �4 ∑ ��4�6�                    (1) 

To draw a systematic SYS we first sort the population using 

some criterion. For example we can sort by one of the 

auxiliary variables in��. If the study variable Y and auxiliary 

variable X are related through a certain function, sorting by X 

may provide a good spread of Y’s so that a systematic sample 

can pick up hidden structures in the population. If we sort the 

population by some criterion that is not related to Y at all, for 

instance sort by a variable Z which is independent of Y, then 

we will have a random permutation of the population. In this 

case systematic sampling is equivalent to SRSWOR. After 

sorting the population we randomly choose an element from 

the first k ones say the ��� one, then, this systematic sample 

consists of the observations �, � + �, … , � + �� − 1�  . Thus 

Systematic sampling amounts to the selection of a single 

complex sampling unit that constitutes the whole sample. A 

systematic sample is a 787  of one cluster unit from a 

population of �  cluster units. Table 1 illustrates this 

procedure. Each column corresponds to a possible sample 

systematic sample. The interval k divides the population into n 

rows of k elements each. One element from each row is 

selected and each element has the same location on each row. 

Table 1. Composition of k systematic Samples. 

9:;<=> ?@;A>B 1 2 3 … … � … � �� �� �D   ��   �  … … … … … … … … … … … … … … … … ������� !�� ������� !�� ������� !D� … … ������� !�� … ��  �"� �"� �"D … … �"�  … �"  
The population mean is estimated by the ��� sample mean 

given as  

�E = �� ∑ ����6�                     (2) 

The design based variance for this mean was first derived 

by Madow and Madow (1944) and is give by 

F)GH��"� = � ∑ ��"E − �"����6�             (3) 

But there is no unbiased design based estimate of F)GH��"� 

for the general variable Y. Among the eight estimators 

evaluatedby Wolter(2007) as the estimates of F)GH��"�  we 

look at the three main ones which are used in practice. One of 

the approaches is to treat the systematic sample as if it had 

been obtained by SRS. This estimator is defined by  

FIJKJ = ��L� ���� ∑ ��� − �"E���∈E             (4) 

where 

N = �� 

The other two estimators are based on pairwise differences 

and are recommended in Wolter (2007) as the best general 

purpose estimators of F)GH��"�, these estimators are defined 

as 

FIOP = ��L� ������� ∑ ��� − �������6�          (5) 

Which uses all successive pairwise differences and hence 

uses OL. The other estimator is defined by 

FI4O = ��L� �4 ∑ ���� − �������QR�6�           (6) 

This takes on successive NO. The three estimators are 

designed biased for F)GH��"� in general. 

The first estimator FIJKJ  is viewed suitable when the 

ordering of the population is thought to have no effect on �"E 

or is considered as a conservative estimator when the ordering 

is related to the variable Y. However, as discussed by X. Li 

and Opsomer (2010), the unbiasedness of FIJKJ  for 

uninformative ordering only holds if one averages over 

samples and over orderings of the population, so not design 

strictly design unbiasedness. 

The bias of FIJKJ for a fixed ordering of the population can 

be larger and either positive or negative. The last two 

estimators tended to have smaller bias in the simulation 

experiments discussed in Wolter(2007). To obtain an unbiased 

estimate of F)GH��"�, the following three designs have to be 

considered. 

1) Multiple systematic sampling using a randomly 

determined starting position for each systematic sampling 

stage. 

2) Systematic stratified - Two or more systematic samples 

(each with a different random start position) are taken within 

each stratum 

3) Two stage sampling where the sub samples are collected 

according to systematic sampling design 

4) Complementary systematic and random sampling where 

a systematic sample is supplemented by a random sample of 

size S from the remaining population units. 

2.3. Review of Local Polynomial Regression 

Nonparametric regression has become a rapidly developing 

and growing field of statistics. Nonparametric approaches to 

regression are flexible and data-analytic ways to estimate the 

regression function without the specification of a parametric 

model, that is, to let data find a suitable function that well 

explains the data. The Local modeling techniques with kernel 

weights provide a basic and easily understood nonparametric 

approach to regression. Local polynomial regression is a 

generalization of kernel regression since the regression 

function at a point x in kernel regression is estimated by a 

locally weighted average, which can be shown to correspond 

to fitting degree zero polynomials, that is, Nadaraya Watson 

estimator. Wand and Jones [1995] give a clear explanation of 

kernel smoothing including local polynomial regression. 
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Local polynomial regression has several advantages of 

other nonparametric approaches. This particular method is 

readily adapted to highly clustered, random, fixed designs and 

close to uniform designs, and on both interiors and boundaries. 

Local polynomial regression estimators don’t have boundary 

bias, that is, they adapt automatically to the boundary effect, 

and thus there is no need for any modifications for correcting 

the large bias problem at the boundary. 

Local polynomial estimators have high mini-max efficiency 

among the class of linear smoothers, including those ones 

produced by kernel smoothers and spline technique, both in 

the interior and at the boundary points. Fan [1992], Fan [1992] 

discusses in detail the local linear fit in comparison with the 

local constant fit and shows that the local linear regression 

smoothers have the desirable mean squared error (MSE), the 

design adaptation property, no boundary effects, and high 

asymptotic mini-max efficiency properties. Fan [1992] in their 

work were able to show that, local linear regression estimator 

adapts automatically to estimation at the boundary and they 

give expressions for the conditional MSE and mean integrated 

squared error (MISE) of the estimator. Wand and Jones [1995] 

extend the results of Fan [1992] on asymptotic bias and 

variance to the case of local polynomial estimators. Fan and 

Gijbels [1996] in their work, they emphasizes on 

methodologies with a particular focus on applications of local 

polynomial modeling techniques to various statistical 

problems including survival analysis, least square regression, 

nonlinear time series, robust regression, generalized linear 

models. Breidt and Opsomer [2000] apply local polynomial 

regression to model-assisted survey sampling. 

One of the important issues in nonparametric regression is 

the choice of the smoothing parameter (bandwidth). In most 

scenarios, bandwidth is often selected subjectively by eye, but 

there are other situations where it is necessary to have the 

bandwidth automatically selected from the data. In 

data-driven smoothing parameter selection, all methods try to 

estimate the optimal bandwidth value that minimizes the mean 

squared error (MSE) at a point x or the MSE over all values of 

x. Most bandwidth selection methods attempt to find a value 

for the MISE (Mean integrated squared error)-minimizing 

bandwidth, and thus those are called global bandwidth 

selection methods. Cross-validation (CV) technique is a 

well-known method of optimizing the bandwidth, using the 

leave one-out prediction technique. However, the smoothing 

parameter computed by the CV method is very variable and 

normally tends to under-smooth in practice that is, the chosen 

bandwidths tend to be very small. In the case of linear 

smoothers, calculation of the CV method is easy since the 

expression of the leave-one-out predictor is a linear function 

of the complete data predictor. Another approach to 

bandwidth selection is to estimate MISE directly based on the 

data. This method estimates the variance and the bias of the 

estimator, thus it minimizes the estimated MISE with respect 

to the bandwidth. This "plug-in" method is used mostly in 

kernel regression and local polynomial regression. Plug-in 

technique gives more stable performance. The theory, the 

choice of a global variable bandwidth based on the plug-in 

procedure for the local linear smoothers was discussed by Fan 

[1992]. 

Wand and Jones [1995] developed a simple direct plug-in 

bandwidth selector for local linear regression that is seen to 

work well in practice for a wide variety of functions and is 

shown to have appealing theoretical and practical properties. 

Fan and Gijbels [1995] propose a data-driven variable 

bandwidth selection procedure based on a residual squares 

criterion and show that local polynomial fitting using the 

variable bandwidth has spatial adaptation properties. 

2.4. Trade-Off Between Bias and Variance 

The choice of the bandwidth, h is of crucial importance tool 

for local polynomial regression. Smaller bandwidth results in 

less smoothing while larger bandwidth oversmooths the curve. 

There is a trade-off between variance and bias. Large values of 

bandwidth will reduce the variance since more points will be 

included in the estimate. However, as the bandwidth increases, 

the average distance between the local points and TU  will 

increase. This can result in a larger bias in the estimator. A 

natural way to choose a bandwidth and balance this trade-off 

is by minimizing the mean square error (MSE) Fan and 

Gijbels [1996]. Therefore one should choose an optimal 

bandwidth to minimize MSE so as to balance the trade-off 

between the bias and variance. 

In addition to selecting the optimal bandwidth, it is also 

important to select the appropriate order of polynomial to fit as 

when choosing a bandwidth, there is also trade-off between 

bias and variance. Higher order polynomials allow for precise 

fitting meaning the bias will be small but the order increases, 

so does the variance, but this increase is not constant. The 

asymptotic variance of #̂�T�  only increases whenever the 

order goes from odd to even. There is no loss when going from 

p = 0 to p = 1 but going form p = 1 to p = 2 will increase 

asymptotic variance. This suggests only considering 

odd-ordered polynomials since the gain in bias appear to be 

free with no associated cost in variance Fan and Gijbels 

[1996],Wand and Jones [1995]. 

Fan and Gijbels [1996] suggests an adaptive method of 

choosing the correct order of polynomial based on local factor, 

allowing p to vary for different points in the support of data. 

The resulting estimator has the property of being robust to 

bandwidth. This means that if the chosen bandwidth is large is 

too large, a higher order polynomial is chosen to better model 

the boundaries of the data. If the chosen bandwidth is too 

small, a lower order polynomial is chosen to help make the 

estimate numerically stable and reduce the variance. 

Therefore one should select an appropriate bandwidth and 

order of the polynomial to balance the trade-off between the 

bias and variance in order to give an appropriate amount of 

smoothing. 

2.5. Assumptions Used in Developing the Estimator in the 

Current Study 

To prove the convergence property of the proposed 

estimator, the study adopts a theoretical framework in which 

both the population size N, the sample size n and the sampling 

interval tend to infinity. A sample is the selected as described 

in section 3.1 



 American Journal of Theoretical and Applied Statistics 2015; 4(3): 201-310  205 

 

We make the following additional assumption on the study 

variable, the design and the smoothing parameter. 

A1: The errors V� are independent with a mean of zero and 

variance W4X�  and compact support, uniformly for all N 

A2: For each N, we consider the T�YZ as fixed with respect 

to the superpopulation model. TheT’s are independent and 

identically distributed. [�T� = \ N�]�(].�^ , where N�. � is the density function 

with compact support [). , `.] and N�T� > 0  

For all �d[). , `.]  

A3: The sample size � and the sampling interval �  are 

positive integers with �� = �. It is assumed that �, � → ∞ 

and allow � = g�1� or � → ∞ 

A4: As � → ∞ , it is assumed ℎ∗ → 0  and �ℎ∗ → ∞ 

where ℎ∗  �Z ℎi 

A5: The kernel function ,�. � is a compactly supported, 

bounded, symmetric kernel with \ jH!� ��j�(j = jH!���� 

assume that jH!���� ≠ 0 

A6: The �l + 1���  derivative of the mean function #�. � 

exists and is bounded on [). , `.] 
2.6. The Proposed Estimator 

This study employs a model based approach in which a 

consistent variance estimator of systematic sample means is 

proposed under a nonparametric model using local 

polynomial regression as the method of estimation. In the 

estimator the bias correction term considered by Montanari. G 

and Bartolucci. F(1998),(2006) is not considered here and also 

the variance function of the model is assumed to be 

Homoscedastic. In the estimation let � = ���, ��, �D, … , �4� 

be a vector of univariate auxiliary variable, then, the non 

parametric superpopulation model is given by 

� = #mT�n + V�                  (7) 

where 

oHm��p��n = #mT�n 

F)G4X�V� = W4X�  

and 

(�)*�q�, q�, qD, … q4� = W4X� ∑ 

Now the design variance in equation (3) can be written as 

F)GH(�") = � �R �&�Y 

where � = r&sr with s = t�& ⊗ 1  here ⊗ is the Kronecker 

product and  1  is a column vector of 1′Z of length �. 

Let #(. )  be a continuous and bounded function and 

define # = (#(T�), … , #(T4)) , it is assumed that q� ′Z  are 

bounded and positive where � = 1,2,3, … , � 

Under model (7), the expected value of F)GH(�"E) is  

o4XmF)GH(�"E) n = � �R #&�# + � �R ]G(�∑)W4X�    (8) 

To estimate o4XmF)GH(�"E) n  , the following local 

polynomial regression estimator for variance of systematic 

sample means is proposed 

FI4X(�"E) = � �R (#̂�&�#̂�) + � �R ]G(�∑)Ww4X�   (9) 

Here Ww4X� = (�� − #̂�)&∑���((�� − #̂�)�  

and #̂� = #̂(T�), … , #̂(T�) 

Where #̂(T�) is the local polynomial regression estimator 

obtained from the ��� sample #̂� = %�&(���& '�����)�����& '����  
Where % is the (l × 1) × 1 vector of the identity matrix 

having 1 in the first entry and other entries 0 . l denotes the 

degree of local polynomial regression. 

��� = y1 (T� − T�) ⋯ (T� − T�)H⋮           ⋱ ⋮1 (T� − T�) ⋯ (T� − T�)H} 

'�� = (�)*(,(./�.0� ))  � = 1,2, … , � 

Where ℎ is the smoothing parameter and ,(. ) the kernel 

function. 

In developing the current estimator, reference is made to 

Wand and Jones(1995) version of the local polynomial 

regression estimator. 

Under assumption A1-A6, the design variance is model 

consistent for the anticipated variance in the sense that 

F)GH(�"E) = o4XmF)GH(�"E) n = g - �√41    (10) 

And the local polynomial variance estimator is model 

consistent for the anticipated variance for the design variance 

in the sense that  

FI4X(�"E) − o -F)GH(�"E)1 = gHmℎiH!�n + gH - �√��1  (11) 

FI4X(�"E) − F)GH(�"E) = gHmℎiH!�n + gH - ����1   (12) 

And the best bandwidth should satisfy the condition ℎiH!� = g + 1�ℎi2 

which leads to  ℎi = ���
�R(���) the usual optimal rate for local 

polynomial regression. The bandwidth selection procedures 

such as plug-in or cross validation methods can be used in this 

case. This study provides the proof for the equation (11). The 

proof for equations 10 and 12 see X. Li(2006) 

2.7. Proof of Equation (11) 

From equation 11, 
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 FI4X��"E� − F)GH��"E� = � �R �#̂�&�#̂� − #&�#� + � �R ]G��∑)(Ww4X� − W4X� ) = # + ##          (13) 

The first term on the right hand of equation 13 can be written as 1��� (#̂�&�#̂� − #&�#) = 1��� (#̂� − #)&�(#̂� − #) + 1��� #&�(#̂� − #) + 1��� (#̂� − #)&#� 

= 1��� (#̂� − #)&�(#̂� − #) + 2��� #&�(#̂� − #) = � + 2� 

Note that #&�(#̂� − #) = #&�# because they are both scalars. 

By definition of matrix  , � can be written as  

� = 1� � �1� �m#̂(T�) − #(T�)n − 1��∈E/
� -#̂mT�n − #mT�n1�∈� �� 

�6�  

= 1� � �� 1�� �m#̂(T�) − #(T�)n�∈E/
�� + 1�� � 1�� � -#̂mT�n − #mT�n1�∈� �� − 2�� �m#̂(T�) − #(T�)n�∈E/

� -#̂mT�n − #mT�n1�∈� � 
�6�

= 1� �() + ` + �) 
�6�  

where 

) = � 1�� �m#̂(T�) − #(T�)n�∈E/
� 

` = 1�� � 1�� � -#̂mT�n − #mT�n1�∈� ��
 

� = − 2�� �m#̂(T�) − #(T�)n�∈E/
� -#̂mT�n − #mT�n1�∈�  

note that #̂(T�) − #(T�) = 7���� − #(T�) = 7��m#� − V�n − #(T�)= `�mT�n + 7��V� 

Here 7��  is the smoother matrix and 7�� = %�&(���& '�����)�����& '��  where ���  and '��  are 

defined. In this case for simplicity we will use ,��  to denote , -./�.0� 1. Now expanding the parentheses in ) the following 

expression is obtained 

o()) = ��R ∑ `��mT�n +��E/ ��R om∑ 7��V�V�&7��&��E/ n +��R om∑ `�mT�n`�(T�)��E/��E/,��� n +��R o -∑ ∑ 7��V�V�&7��&��E/,�����E/ 1     (14) 

 The right hand side of equation 14 has four terms; each part 

will be calculated one by one. 

(i) first let us investigate 
��R ∑ `��mT�n��E/ . Using the 

technique similar to the one used by Wand and Jones(1995). 

Let #� = (#(T�), … , #(T4)) 

Then by Taylor theorem  

#� = ��� � #mT�n��m.0n� + 8�m.0n 

where 

��m.0n = �#YmT�n, 12 #YYmT�n, … , 1l #HmT�n� 

And 8�m.0n is a vector of Taylor series remainder terms, 

therefore, `�mT�n = 7��#� − #mT�n = 7��8�m.0n
= %�& � ���� ⋯ ��(H!�)�⋮ ⋱ ⋮�(H!�)�� ⋯ �(H!�)(H!�)�� � ]��.](H!�)�� ≡ %�&��∗��� 

Under assumption A2 and A3 by lemma 2(��) Bredit and 

Opsomer (2000) for a certain point T� there are atleast l + 1 

points in the interval[T� − ℎ, T� + ℎ]. So ��∗ is invertible. 

Lemma 1: Assume that the kernel function ,��  is bounded 

above, then 1�ℎ ,��(T� − T�)� = g(ℎ�) 

Where G = 0,1,2, … 

The proof of lemma 1 is provided by X.Li(2006). Thus, 

suppose A4 holds, by lemma 1, we have �E�� = g(ℎE!���) 
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] � = g�ℎ !H� 

and 

`�mT�n = %�& � g�1� ⋯ g�ℎH�⋮ ⋱ ⋮g�ℎH� ⋯ g�ℎ�H���� +g�ℎH!��g�ℎH!��2 

Note that the order of a matrix is the same as its inverse, 

therefore, 

`�mT�n = g�ℎH!�� + g�ℎDH!�� = g�ℎH!��   (15) 

thus 

��R ∑ `��mT�n��E/ = ��R ∑ g�ℎ�H!����E/ = g -�R��R
� 1 (16) 

���� Now we compute  
��R om∑ 7��V�V�&7��&��E/ n in equation 

14 

1�� o �� 7��V�V�&7��&��E/
� = 1�� o �� 7��∑��7��&��E/

� 

%�&����& '�����������& '��∑���������& '��������%� 

= %�&��∗����∗��∗��%� 

Where ∑� is the variance covariance matrix of the model 7 

and  

∑� = (�)*�q�, q�, … , q�� 

��∗ = � ���� ⋯ ���H!���⋮ ⋱ ⋮��H!���� ⋯ ��H!���H!���� 

�E�� = 1��ℎ� � ,��� q��T� − T��E!��� = g �ℎE!��D� ��
�6�  

By lemma 1 X.Li (2006) shows that 

%�&��∗����∗��∗��%� = g + 1�ℎ2 

and thus 

��R om∑ 7��V�V�&7��&��E/ n = g - ��R�1      (17) 

�����  Thirdly we now compute ��R om∑ `�mT�n`��T����E/��E/,��� n in 14 and using the results in 

15 we get 

��R om∑ `�mT�n`��T����E/��E/,��� n = g�ℎ�H!��    (18) 

����  the last term on the right hand side of 14 is ��R o -∑ ∑ 7��V�V�&7��&��E/,�����E/ 1. 

X.Li (2006) shows that 

��R o -∑ ∑ 7��V�V�&7��&��E/,�����E/ 1 = g -��1    (19) 

Assumption A3 implies that �ℎ → ∞ and by 16, 17 and 19 

o�)� = g�ℎ�H!�� + g -��1        (20) 

Similarly, o�`� and o��� is calculated under A3  �ℎ → ∞, therefore 

o�`� = g�ℎ�H!�� + g -�41        (21) 

o��� = g�ℎ�H!�� + g -��1        (22) 

Also note that � > 0 and |�| = � thus by 20, 21 and 22 

o|�| = o��� = 1� �mo�)� + o�`� + o���n 
�6�= g�ℎ�H!�� + g +1�2 

this implies that 

� = g�ℎ�H!�� + g +1�2 

Next using a similar approach to that of A 

� = g�ℎH!�� + g + 1√�2 

Thus 

# = � + 2� = g�ℎ�H!�� + g - �√�1    (23) 

Now let us calculate ## in 13 

Ww4X� − W4X� = 1� � -�� − #mT�n1�
q�

�
�6� − W4X�

+ 1� � -#̂mT�n − #mT�n1�
q�

�
�6�

+ 2� � -�� − #̂mT�n1 -#̂mT�n − #mT�n1q�
�

�6�  

X. Li (2006) shows that 

�� ∑ -�0��m.0n1R
 0��6� − W4X� = gH - �√�1     (24) 

�� ∑ -�¡m.0n��m.0n1R
 0��6� = gH�ℎ�H!�� + gH - ���1    (25) 

and 

�� ∑ -�/��¡m.0n1-�¡m.0n��m.0n1 0��6� = gH�ℎH!�� + gH - �√��1   (26) 

Since 
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1��� ]G��∑) = g(1) 

And by 24, 25 and 26, we have  

� �R ]G(�∑)Ww4X� − W4X� = gH(ℎH!�) + gH - �√��1  (27) 

Therefore by 23 and 26  

FI4X(�"E) − o -F)GH(�"E)1 = gHmℎiH!�n + gH + 1√�ℎ2 

hence the result. 

2.8. Simulation Study 

To further investigate the statistical properties of the above 

variance estimators, a simulation study are was performed. 

For simplicity, the researcher considered the case where there 

was only one auxiliary variable x. It is also assumed that the 

errors are independently and normally distributed with 

homogeneous variances. Two super population models are 

examined. One is the linear model �� = 2T� + V�                 (28) 

Where � =  1,2, … , � 

And V�~�(0, W��) 

The quadratic model �� = 1 + 2(T� − 0.5)� + V�          (29) V�~�(0, W��) 

The bigger the 8�, the bigger the predictive power of the 

model. The two levels of 8�, that are achieved are 8� =  0: 75 "precise" model and 8� =  0: 25 the diffuse 

model. 

8� = 1 − 77o77� = 1 − ∑ V�����∑ (�� − �"�)����  

To draw a systematic sample, the population first needs to 

be sorted. Three ways are considered: (1) Sort by auxiliary 

variable T ; (2) Sort by �� , where ��� =  T�  +  ¦��  and ¦��~�(0, W§�0� . Choose W§�0� to make 8¨�� = 0.75 (3) Sort by �� , where ��� =  T�  +  ¦��  and ¦��~�(0, W§R0�  . Choose W§R0�  to make 8¨�� = 0.25. Populations of size � =  2000 is 

generated. To achieve this, 2000 values of model variable x 

from the uniform distribution on [0, 1] and 2000 values of 

error " from � (0, 1) were generated. Then 2000 values of 

response variable y computed by model 28 and 29. Two 

systematic samples of size � =  500 and � =  100 , with 

corresponding sampling intervals � =  4 and � =  20  are 

considered respectively. To draw a systematic sample, the data 

first sorted, either by T or �, from the smallest to the largest, 

then randomly choose an observation from the first � 

observations, say the ��� one. Then, the selected sample 

consists of the observations with the following subscripts: �, � +  �, … . � + (�  1)�. 

For each simulation, the corresponding F)GH(�"E) , o -F)GH(�"E)1 , �  FIOP , FI4O  and FIJKJ  is calculated. For FI4X(�"E)  it is calculated using two bandwidth values: ℎ =  0.50 and ℎ =  0.25, each simulation setting is repeated 

B = 10 000 times. The researcher then compare the 

performance of the nonparametric variance estimator FI4X(�"E) 

with the overlapping differences FIOP , he non-overlapping 

differences estimator , FI4O , which are recommended by 

Wolter [2007] and the simple random sampling estimator FIJKJ. 

The relative bias (RB) and the mean squared error (MSE) are 

calculated. Let FI  representF)GH(�"E),FI4X(�"E),FIOP , FI4O  and FIJKJ 

8� = oªHmFIn − oª(F)GH(�"E))oª(F)GH(�"E))  

r7o = oªXmFI − oª(F)GH(�"E))n�
 

where oª denotes the expectation under the superpopulation 

model r , and oªH denotes the expectation under both the 

model and design. 

3. Simulation Results and Discussion 

3.1. Introduction 

This section presents the results obtained through the 

simulation discussed in section 2.7. 

3.2. Results and Discussion 

Table 2 gives the relative biases of , FI4X(�"E), FIOP , FI4O and FIJKJ  for the sample of size n=500 for different sorting 

variables with homoscedastic errors. The relative biases for 

non parametric estimators are computed at different 

bandwidth. The results from table show that given a proper 

bandwidth is chosen, non parametric estimator performs well 

overall than other three estimators resulting to smaller biases 

with most biases being less than zero. Especially when the 

super-population model is linear, FI4X(�"E)  tends to favor 

bigger bandwidth. This is because local linear regression was 

used in the calculation of FI4X(�"E) . The bigger bandwidth 

results in more points in the neighborhood of T�  and because 

the local polynomial regression is local linear which is correct 

one for this population with linear trend, so having more 

points will increase the precision of each local linear 

regression. 

When the super-population model is quadratic, it tends to 

favor small bandwidth. This is because, as discussed above, 

for parametric estimation, linear regression will not estimate 

quadratic trend well. In other words, the wider the 

neighborhood, the more likely a quadratic trend will be seen 

there. Therefore local linear regression on that neighborhood 

could be bad. When the bandwidth is small, then the trend 

within each local interval will be approximated well by a 

linear trend. 

The estimator based on simple random sampling FIJKJ 

performed poorly, resulting in large biases in both cases as it 
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overestimated the true variance. 

It can also be seen that FIOP , and FI4O have smaller biases 

under linear and quadratic models when the population is 

sorted by T  before drawing a systematic sample. This is 

because FIOPand FI4O capture the population trend very well 

and thus very efficient. When the sorting variable is not 

related to the population that is sorting the population by �� 

and �� , overlapping and non overlapping difference 

estimators cannot capture the population trend well hence 

resulting to large biases and MSE. 

Table 3 gives the ratios of MSE for FI4X��"E�  that is 

evaluated at two bandwidth values (h=0.25 and h=0.5) 

obtained by dividing the MSE of other estimators by the MSE 

of FI4X��"E�  evaluated at a bandwidth ( h=0.1). The MSE 

measures the variability of an estimator and smaller MSE 

values are normally desired.  Therefore, it can be seen from 

this study that, FI4X��"E�  performs better than the variance 

estimators FIOP , FI4O and FIJKJ as it has smaller MSE values 

in almost all the cases of linear and quadratic models. 

Table 2. Relative Bias(%) for FI4X��"E� with bandwidth(h=0.1, 0.25, 0.5),FIOP, FI4O and FIJKJ with n=500. 

Mean function LINEAR QUADRATIC 

Sorting variable 1 0.75 0.25 1 0.75 0.25 
h=0.1 -0.937 -0.918 -0.783 -0.994 -0.974 -0.920 

h=0.25 -0.956 -0.526 -0.693 -0.940 -0.940 -0.905 

h=0.5 -0.946 -0.841 -0.870 -0.952 -0.929 -0.856 FIOP -0.298 0.160 0.473 0.111 0.343 -2.025 FI4O -0.304 0.162 0.465 0.120 0.341 -1.020 FIJKJ 0.300 0.169 4.58 12.036 0.476 -1.026 

Table 3. MSE(%) for FI4X��"E� with bandwidth( 0.25, 0.5),FIOP, FI4O and FIJKJ 

with n=500 divided by MSE of FI4X��"E�   with bandwidth h=0.1 and 

Homoscedastic errors. 

Mean function LINEAR QUADRATIC 

Sorting variable 1 0.75 0.25 1 0.75 0.25 

h=0.25 0.3 0.58 1.00 1.00 0.99 10.00 

h=0.5 0.56 0.23 1.00 1.10 1.01 10.99 FIOP 4.34 3.98 17.15 7.44 15.45 174.17 FI4O 4.39 4.12 17.25 7.47 16.47 174.10 FIJKJ 43.86 38.69 27.02 17.32 17.33 172.40 

4. Conclusions and Recommendation 

The aim of this study was to develop design unbiased 

estimator of variance of the systematic means using local 

polynomial regression as the estimation technique. This study 

reveals that, the estimator based on non parametric model (7) 

using local polynomial regression as the estimation technique FI4X��"E�  is a consistent estimator for the F)GH��"E� . In 

comparison to other estimator discussed in Wolter (2007), the 

local polynomial estimator FI4X��"E� performed better in all 

the three cases. Therefore, this estimator has proved to be 

consistent and unbiased in estimating the design variance of 

systematic sample mean. 

Hence, in practice, this study recommends the use of non 

parametric estimator FI4X��"E� for estimating the variance of 

systematic sample mean over the estimators proposed by 

Wolter (2007). 

Nomenclature 

MSE- Mean squared Error 

RB - Relative Bias 

NO -Non Overlapping difference 

OL-Ordinary Least Square 

SRS-Simple random sampling 

SRSWOR-Simple Random Sampling without Replacement 

NP-Non parametric model 
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