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Abstract: Generalized linear models (GLMs) form a class of fixed effects regression models for several types of dependent 
variable, whether continuous, dichotomous or counts. Common GLMs include linear regression, Logistic regression and Poison 
regression. These models have typically been used a lot in modeling of data arising from a heterogeneous population under the 
assumption of independence. However, in applied science and in real life situations in general, one is confronted with collection of 
correlated data (Mark Aerts et al, 2005). This generic term embraces a multitude of data structures, such as multivariate 
observations, clustered data, repeated measurements, longitudinal data, and spatially correlated data. Generalized Linear Mixed 
Models (GLMMs) are able to handle extraordinary range of complications in regression-type analyses. They are often used to 
handle correlations that arise in longitudinal and other clustered data. This study sought to fit GLMMs to Kenya integrated 
household data collected in 2005/6 to explain different factors and their influence on an individual morbidity in Kenya. The 
cluster variable was used to introduce the random effect in this data. From the analysis, it was deduced that gender increases the 
log-odds of an individual getting a disease, while people who are living in good housing conditions reduces the log-odds of an 
individual experiencing morbidity. Main source of drinking water and the human waste disposal method were significant in 
explaining individual morbidity in Kenya. This study can however be extended to incorporate other factors such as income level 
of individuals. Individuals with low level of income are believed to be more likely to experience environmental health related 
diseases than individuals with higher levels of income. 

Keywords: Generalized Linear Mixed Effects Model GLMEM, Maximum Likelihood ML,  
Restricted Maximum Likelihood REML, Marginal Quasi Likelihood MQL,  
Demographic and Health Surveys DHS, Deviance Information Criteria DIC, Akaike Information Criteria AIC 

 

1. Introduction 

1.1. Background of the Study 

Generalized linear mixed models (GLMMs) continue to 
grow in popularity due to their ability to directly 
acknowledge multiple levels of dependency and model 
different data type. GLMMs extend the generalized linear 
model, as proposed by Nelder and Wedderburn (1972) and 
comprehensively described in Mc Cullaghand Nelder (1989), 
by adding normally distributed random effects on the linear 

predictor scale in order to include the concept of correlated 
data such as clustered data. 

GLMM is one of the most useful structures in modern 
statistics, allowing many complications to be handled within 
the familiar linear model framework. The fitting of such 
models has been the subject of a great deal of research over 
the past decade. Early contributions to fitting various forms 
of the GLMM include Stiratelli, Laird and Ware (1984), 
Anderson and Aitkin (1985), Gilmour, Anderson and Rae 
(1985), Schall (1991), and Breslow and Clayton (1993). 

Most literature on GLMM is around grouped data. For any 
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model, parameter estimation is always one of the most 
important aspects of statistical inference. Many researchers 
have made efforts to estimate parameters using GLMMs. For 
instance, Hall; Hall, (2000) applied Maximum Likelihood 
(ML) estimation and Yau and Lee, (2001) applied 
hierarchical likelihood method of estimation to zero-inflated 
(ZI) mixed models. In this project, ML for normal random 
effect of GLMMs and Restricted maximum likelihood 
(REML) method when assuming random effect distribution is 
unknown will be used. 

This study seeks to fit generalized linear mixed effects 
model to house hold data that was collected in 2005/6. In this 
survey, clusters were randomly selected across all the 
districts in Kenya. In each selected cluster, households were 
randomly selected with equal probability in each cluster; 
members in the selected households were interviewed. This 
study therefore proposes that cluster variable will introduce 
the random effect in this data. It is assumed that members in 
the same cluster are more likely to experience similar 
morbidity structures compared to members in different 
clusters. 

1.2. Literature Review 

Generalized linear mixed effects models have been used 
for long time and more so by epidemiologists in the analysis 
of dichotomous data. Most of the recent contributions to the 
use of GLMMs was a study by Kandala, Nyovani, (2004). 
Their study aimed at describing the spatial variation in the 
prevalence of diarrhea, cough and fever among children 
under 5 years using the 1992 Demographic and Health 
surveys (DHS) of Malawi and Zambia. Individual data record 
was constructed for 3660 children in Malawi and 5268 
children in Zambia. Each record represents a child and 
consists of morbidity information and a list of covariates. 

Geo-additive logistic analyzes was used on the probability 
of a child being ill with malaria, cough, and diarrhea during 
the preference period to determine the socio-economic, 
demographic variables that are associated with these three 
ailments while simultaneously controlling for spatial 
dependence in the data and possibly nonlinear effects of 
covariates. 

The response variable applied was defined as 
yit=1: if a child i was ill during the preference period t 

0: if a child i survive the illness, 
Two models were fit in this data: simpler parametric probit 

model and probit model with dynamic and spatial effects for 
the probability of falling ill at month t. 

M1: nit=X’itB 
M2: nit=f1(age)+f2(mab)+funstr(dist)+fstr(dist)+X’itB 
The fixed effects in model M1 included all the covariates 

with constant fixed effects. When the two models were 
compared, it turned out that model M2 was superior in terms 
of Deviance Information Criteria (DIC) [Spiegelhalter et. al., 
2002] which is a method used for model comparison. In 
addition, model M2 in the DIC, accounted for the unobserved 
heterogeneity that might exist in the data, which cannot be 
captured by the covariates. 

The effects of f1 and f2 were modeled by cubic penalized 
splines with second order random walk penalty. Spatial 
affects fstr(s) were experimented with different prior 
assumptions. 

In both countries models were estimated where either a 
structured or an unstructured effect was included as well as a 
model where both effects were included. As a result there 
was clear evidence for both countries of spatial correlation 
among neighboring districts. Hence, a spatially correlated 
effect fstr was included into the predictors of the final models. 
Additionally, an unstructured effect funstr was included 
because there was evidence of local extra variation in the 
highly urbanized areas in Malawi and Zambia. 

Including the spatial component funstr+fstr(dist) increases 
model complexity. With such model, it is assumed that 
random components at the contextual level (district) are 
mutually independent. The estimates of the presumed spatial 
correlated districts level random effects showed strong 
evidence of spatial dependence. 

Hedeker and Gibbons (2003) described a random effects 
ordinal probit regression model, examining longitudinal data 
collected in the NIMHS chizophrenia Collaborative Study on 
treatment related changes in overall severity. The dependent 
variable was item 79 of the Inpatient Multidimensional 
Psychiatric Scale (IMPS; [30]), scored as: (a) normal or 
borderline mentally ill, (b) mildly or moderately ill, (c) 
markedly ill, and (d) severely or among the most extremely 
ill. In this study, patients were randomly assigned to receive 
one of four medications: placebo, chlorpromazine, 
fluphenazine, orthioridazine. 

Here, a logistic GLMM with random intercept and trend 
was fit to these data using SAS PROC NLMIXED with 
adaptive quadrature. Fixed effects included a dummy-coded 
drug effect placebo=0 and drug=1), a time effect (square root 
of week; this was used to linearize the relationship between 
the cumulative logits and week) and a drug by time 
interaction. 

The results indicated that the treatment groups do not 
significantly differ at baseline (drug effect), the placebo 
group does improve overtime (significant negative time 
effect), and the drug group has greater improvement overtime 
relative to the placebo group (significant negative drug by 
time interaction). Thus, the analysis supports use of the drug, 
relative to placebo, in the treatment of schizophrenia. 
Comparing this model to a simpler random intercepts model 
yields clear evidence of significant variation in both the 
individual intercept and time-trends likelihood-ratio. 

Also, a moderate negative association between the 
intercept and linear time terms is indicated, expressed as a 
correlation it equals -.40, suggesting that those patients with 
the highest initial severity show the greatest improvement 
across time (e.g., largest negative time trends). This latter 
finding could be a result of a floor effect’, in that patient with 
low initial severity scores cannot exhibit large negative time-
trends due to the limited range in the ordinal outcome 
variable.  

There were more work on morbidity and factors associated 
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to morbidity that involved GLMM that was done in (2002) 
by Narayan, Sarah B. et al, (2002). This analysis sought to 
examine trends and differentials in diarrhea prevalence and 
treatment in Brazil between 1986 and 1996 using data from 
Demographic and Health Survey program. Information on 
child health, health-related behavior, use of health care 
services and several other topics was collected. The survey 
was based on a multistage clustered sampling scheme. A total 
of 8,369 dwellings units was selected for the survey across 
337 primary sampling units (PSUs) whereby PSUs 
represented the entire country. Interviews were completed 
with 5,892 women aged 15 to 44 years and information on 
diarrhea was obtained for 3,183 children born to these 
women. 

Multilevel logistic regression was used to model the 
relationship between the diarrhea prevalence and the 
background and intermediate factors. The dependent variable 
was a binary response, yijk, that indicated whether the ith child 
of the jth family living in the kth community had diarrhea 
(yijk= 1) or not (yijk =0). The probability of a child having 
diarrhea was defined as pijk = pr (yijk=1) and logit 
transformation of pijk modeled as a linear function of the 
covariates in the model: 

Log [pijk / (1-pijk)] = X’ijkβ1+X’jkβ2+X’kβ3+ujk+vk 

ujk represents a family-level random effect and vk a 
community-level random effect that are each normally 
distributed with a zero mean and variance δu

2 and δv
2 

respectively. Xijk represents background child covariates, Xjk 
family covariates and Xk community covariates.  

Model below included intermediate child covariates (Wijk) 
and intermediate family covariates (Wjk). 

Log [pijk / (1-Pijk)] = W’ijkγ1 + W’jkγ2 + X’ijkβ1+ X’jkβ2 + X’k 
β3 + ujk + vk 

The two models above allowed them study how 
background factors directly and indirectly affected diarrhea 
prevalence. The first model showed the total effect of each 
background factor on diarrhea prevalence. 

This study showed that the family and the community 
random effects were statistically significant in both models; 
although unobserved family effects were far more important 
than unobserved community effects. The variance of the 
family random effect (2.33) was more than six times as large 
as the variance for the cluster random effect (0.35). The intra-
family level correlation was .45 while the intra-cluster 
correlation was only .06. 

The large family-level variance indicates that there was a 
strong correlation in the chances of siblings having diarrhea 
that may be the result of important unmeasured maternal 
characteristics and household environmental factors (Sastry, 
1997). 

The study also found that here were significant effects on 
diarrhea of child age, mother’s education, father’s education, 
parent’s marital status, rural-urban place of residence, and 
region of residence. 

More work to the use of GLMMs was a study by Gruder, 
Gruderet AL, (1993). This study aimed at describing 
smoking cessation, whereby 489 individuals were 
randomized into three groups; Control, discussion, or social 
support conditions. The control group was given a self help 
manual and encouraged to watch twenty television programs 
on smoking cessation. Subjects on the experimental groups 
were in addition given a chance to participate in group 
meetings and were given further training in support and 
relapse prevention. To analyze the data as binary response 
variables, the two experimental groups were combined 
together into one category called experimental group. Data 
were collected at four telephone interviews: post 
intervention, and 6, 12, and 24 months later. Smoking 
abstinence rates at these four times were as follows: 

-Control group: =109, 97, 92, 
-Experimental group: =380, 357, 337, and 295 
Two logistic GLMM were fit to this data i.e. a random 

intercept model and a random intercept and linear trend of 
time model. In this study, the analysis was based on the 
probability of smoking abstinence and not the probability of 
smoking. The fixed effect were the group, with 0=control and 
1=experimental. Based on a likelihood-ratio test, the random 
intercept and linear trend of time model was preferred (with 
a–2log likelihood ratio=1594.7) to the random intercept 
model (with a-2 log likelihood ratio=1631.0). As a result, 
there was a clear evidence of subjects varying by both the 
intercepts and the time trends. Both models had a non 
singular time effect, but the treatment was highly significant. 
Interaction between condition and time was non-significant 
in the both models, which suggested declining condition over 
time. The interaction was non-significant in the random 
intercepts and time trend model, but was significant in the 
random intercept model. 

This study showed that the significance of model terms can 
highly depend on the structure of the random effects. 
Therefore, a researcher must decide upon a reasonable model 
for the random effects as well as for fixed effects. A 
recommended approach is to perform a sequential model 
selection procedure such as stepwise regression analysis. 
Here one includes all the possible covariates of interest into 
the model and selects between the possible models of random 
effects using model fit criteria such as the likelihood ratio 
test, Deviance analysis, Akaike Information Criteria among 
others. In this study, I shall take advantage of the superiority 
of Akaike Information Criteria of being adjusted for both the 
sample size and the number of parameters in the model. For 
model selection criterion, I shall use the backward stepwise 
selection, whereby the model with a smaller AIC value being 
preferred to the model with larger value. 

Carla J. Machado and Ken Hill July (2003) [19] used data 
for the (1998)–birth cohort, City of S. Paulo, Brazil. The 
hypothesis was that early infant morbidity may produce 
adverse outcomes in subsequent life. The duo used Apgar 
units to estimate early infant morbidities, with a low Apgar 
score being a convenient measure of early infant morbidity. 
The study used determinants of early infant morbidity (sex, 
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plurality, mode of delivery, prior losses, gestation age, 
prenatal care and birth weight, parity and maternal age, race, 
maternal education and community development). 

Information was extracted from 2009,628 birth records, 
and used multivariate logistic regression to assess the effect 
of each independent variable on Apgar score less than seven 
at one minute and Apgar score less than seven at five 
minutes. 

The outcome variable was whether or not an infant had an 
Apgar score below seven at one minute or not and whether or 
not an infant had an Apgar score below seven at five minutes. 
The explanatory variables were classified as; 

1. Proximate determinants-birth weight, gestation age, 
prenatal care, sex, plurality, prior losses and mode of 
delivery 

2. Less proximate determinates- parity and maternal age 
3. Distal determinants- race, maternal education and 

community development 
To obtain an adjusted odds ratio, a multivariate logistic 

regression model was used in order to model the two 
dichotomous outcomes. Because characteristics of mothers 
and infants from the same community were related, the 
standard errors were corrected for lack of independence 
between observations using the Huber/White Sandwich 
correction, which assumes that observations are independent 
across clusters but not within clusters (the community of 
mother’s residence at the time of birth). 

From their results, Low birth weight, prematurity and 
community development had strong prediction of morbidity. 
Maternal education showed strong negative correlation with 
both Apgar scores. The negative correlations between 
maternal schooling and Apgar scores were observed after 
prenatal care, parity and maternal age were included in the 
model. Children of very young adolescent mothers had lower 
Apgar scores at one minute (but not at five minutes) than 
those born to mothers aged 15 to 19. Parity one or higher was 
associated with decreased odds of low Apgar scores. 
Cesarean section and operative delivery were also strongly 
associated with higher odds of early infant morbidity. 

2. Methodology 

2.1. Data and Variables 

The data for this study comes from the Kenya Integrated 
Household Budget Survey (KIHBS) conducted by Kenya 
National Bureau of Statistics in (2005/6). In KIHBS, data 
was collected over a period of 12 months, which covered all 
possible seasons. This survey was to collect a wide spectrum 
of socio-economic indicators required to measure, monitor 
and analyze the progress made in improving living standards. 
The Household Questionnaire was designed to collect 
information on the following: demographics, housing, 
education, health, agriculture and livestock, enterprises, 
expenditure and consumption, among others. 

The Survey was conducted in 1,343 randomly selected 
clusters across all districts in Kenya and comprised 861 rural 

and 482 urban clusters, 10 households were randomly 
selected with equal probability in each cluster resulting in a 
total sample size of 13,430 households. This study is 
confined to members of the household who experienced any 
sort of disease at the time of the study. This produces a data 
set comprising about 66,725 individuals. 

Dependent Variable: The outcome variable of interest 
(morbidity) asked whether a member of household had 
suffered from environmental health related disease. This 
variable is binary in nature with values (1=household 
member had environmental health related disease, 0= 
household member had not experienced environmental health 
related disease). 

Explanatory Variables: This study used explanatory 
variables available in the Kenya Integrated Household Budget 
Survey data. These include socio economic and demographic 
variables. The socio economic variables used in the study 
include gender, highest level of education, individual working 
status, main source of drinking water, housing condition and 
means of human waste disposal. The demographic variable 
used is area of residence i.e. rural/urban. 

2.2. Exponential Distribution Family 

The distribution of a random variable yi (with mean µi) is 
said to belong to the exponential family if it has a probability 
density function of the form; 

 

Φ is a constant dispersion parameter, θi is the natural or 
canonical parameter that can be expressed as some function 
of mean µi and kθi is a cumulant generating function. Among 
many of the common distributions that are known to belong 
to this distribution include; Normal, Gamma, Poisson and 
Binomial. 

2.3. Generalized Linear Models (GLM’s) 

The generalized linear model (GLM) refers to a larger 
class of models popularized by Mc Cullaghand Nelder (1982, 
2nd edition 1989). In these models, the response variable yi is 
assumed to follow an exponential family distribution with 
mean µi, which is assumed to be some (often nonlinear) 
function of xT

iβ. 
They represent a class of fixed effects regression models 

for several types of dependent variables (i.e. continuous, 
dichotomous, counts). Thus, it can be said that the 
generalized linear model involves logistic models for binary 
dependent variables, log linear analysis, Poisson regression, 
etc. 

There are three components to any GLMs: 
1. Random Component– refers to the probability 

distribution of the response variable (Y); e.g. normal 
distribution for Y in the linear regression, or binomial 
distribution for Y in the binary logistic regression. Yi’s 

are independent and random variables with mean 
E(Yi)=µi, and are member of the exponential family of 
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distributions. 
2. Systematic Component-specifies the explanatory 

variables (X1, X2, ... Xk) in the model, more specifically 
their linear combination in creating the so called linear 
predictor; e.g., β0+β1x1+β2x2 

3. Link Function, η org(µ)-specifies the link between 
random and systematic components. It say show the 
expected value of the response relates to the linear 
predictor of explanatory variables; e.g., η= 

g(E(Yi))=E(Yi) for linear regression, or η=logit(π) for 
logistic regression. 

Generalized linear models are based on the following 
assumptions: 

• The data Y1, Y2,..., Yn are independently distributed, 
i.e., cases are independent. 

• The dependent variable Yi does NOT need to be 
normally distributed, but it typically assumes a 
distribution from an exponential family (e.g. binomial, 
Poisson, multinomial, normal) 

• GLM does NOT assume a linear relationship between 
the dependent variable and the independent variables, 
but it does assume linear relationship between the 
transformed response in terms of the link function and 
the explanatory variables; e.g., for binary logistic 
regression logit (π) = β0 + βX. 

• Independent (explanatory) variables can be even the 
power terms or some other nonlinear transformations of 
the original independent variables. 

• The homogeneity of variance does NOT need to be 
satisfied and errors need to be independent but NOT 
normally distributed. 

• It uses maximum likelihood estimation (MLE) rather 
than ordinary least squares (OLS) to estimate the 
parameters, and thus relies on large-sample 
approximations. 

2.4. Generalized Linear Mixed Models (GLMMs) 

The generalized linear mixed model (GLMMs) is an 
extension to the generalized linear models in which the linear 
predictor contains random effects in addition to the usual 
fixed effects. They extend the idea of linear mixed models to 
non-normal data. 

The general form of the model (in matrix notation) is: 

y=Xβ+Zγ+ε 

Where y is a column vector, the outcome variable; X is a 
matrix of the p predictor variables; β is a column vector of 
the fixed-effects regression coefficients (the "betas"); Z is the 
design matrix for the q random effects (the random 
complement to the fixed X); γ is a vector of the random 
effects (the random complement to the fixed β); and ε is a 
column vector of the residuals, that part of y that is not 
explained by the model, Xβ+Zγ 

The inclusion of random effects in the predictor is to 
account for over dispersion, correlation and heterogeneity in 
the data. Since correlation is a natural feature of clustered 

data as much as in the longitudinal data, GLMMs have been 
used extensively for such data Aitkin,(1996), Stiratelli et al, 
(1984); Zegeretal, (1988). 

GLMMs for a cluster data are defined as follows: 
Suppose that the observations on the ith

 cluster consists of 
response yij, covariates xij and zij associated with the fixed and 
random effects respectively, for i=1, 2, 3,…..., K and j=1, 2, 
3,……., ti. Given a p-dimensional vector of unobservable 
random effects bi, yij are independent with means 
E(yij/bi)=µij(bij) and variance var(yij/bi)=a(ϕ)υ(µij(bi)). Here 
the conditional mean depend on the random effect. 

The GLMMs consists of the following parts; 
1. The linear predictor ƞij(bi)=x

T
ijβ+zijbi with yij 

independent and from the distribution density of the 
form; 

fi(yij|bi, β, Φ )=exp[ 1−Φ (yij ijθ -ψ ( ijθ ))+c(yij, Φ )] 

2. The random part conditional on random effects bi, y’ijs 
are independent random variables with conditional 
densities belonging to exponential dispersion family 
and have conditional means and variance 

3. The link function which is defined as h E 

(yij/µi)=x
T

ijβ+zijbi. Here, h is called the link function and 
xij and zij are p and q vectors of known covariates. β is a 
p-dimensional vector of unknown fixed regressor 
coefficients and bi~N(0, D). Since our response variable 
is binary, we show this illustration using logistic 
regression model; 

Logit Pr (yij=1/µi)=β0+µi+β1xij 

This model shows that each individual in our data is 
exposed to own probability of a normal response (y=1) which 
is given by 

 

The model also indicates that an individual’s odds of a 
normal response are multiples of exp (β1). The basic principle 
of the random effects model is that there exists a natural 
heterogeneity among subjects in a subset of the regression 
coefficients e.g. in the intercepts. The fundamental 
assumptions of the random effects model is that b’is are 
independent of the explanatory variables. 

There are certain assumptions that are made in random 
effects models:- 

1. The conditional distribution of yij given bi follow a 
distribution from the exponential family of distributions 
with pdf f(yij/bi; β). 

2. Given µi, the clustered observation yi1, yi2,…., yni, are 
independent 

3. The bi’s are independent and identically distributed. 

2.5. Maximum Likelihood Estimation 

In maximum likelihood estimation, bi variables from a 
random effects distribution. This assumption suggests that by 
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understanding the variability of the overall population, we 
can learn about an individual’s coefficient. Here, the 
likelihood function for the unknown parameter δ, which is 
defined to include both β and elements of G, where 
bi~i.i.df(µi, G) is: 

 

This is simply the marginal distribution of Y obtained by 
integrating the joint distribution of Y and b with respect to b. 
The maximum likelihood is found by solving the score 
function which we obtain by setting the first derivative of the 
likelihood function above with respect to δ to 0. 

The complete data score for β has the form; 

 

Where µij(bi)= E(yij|bi)=ƞ¯1(x’ij+d’ijbi) 
These observed data score equations are obtained by 

taking the expectation of the complete data equations with 
respect to the conditional distribution of the unobserved 
random effects given the data. The score function for G is 
given as; 

 

2.6. Logistic Regression for Binary Data 

Considering the nature of the response variable in this 
study, we introduce literature behind logistic regression 
models as a parametric tool for modeling binary data. 
Logistic regression models are the most widely used models 
for categorical response data. 

Consider the explanatory variable X of a binary response 
variable Y and let 

π(x) = prob (Y = 1|X = x) = 1- prob (Y =0|X = x) 

This yield to the logistic regression model; 

 

In this model the log-odd, which are also called the logits 
has the linear relationship given by; 

 

which is the logit link function to the linear predictor. The 
sign of the β (log odds) determines the slope of the curve i.e. 
whether π(x) is falling or rising. For quantitative x with β > 0, 
the curve of π(x) has the shape of the cumulative distribution 
function of the logistic distribution, and since the logistic 
distribution is symmetric, then the π(x) approaches 0 and 1 at 
the same rate. 

Taking exponent of the above equation we get 

 

This shows that the odds ratios are exponential functions 
of x. Therefore, the odds increases multiplicatively by eβ for 
every 1-unit increase in x. i.e. eβ is an odds ratio, the odds at 
X = x+1 divided by the odds at X = x. 

2.7. Inference in Logistic Regression 

Wald (1943) showed that the parameter estimators in 
logistic regression models have (asymptotic) large-sample 
normal distributions. Thus, inference in logistic regression 
models can use the Wald, likelihood-ratio methods. 

For the model with predictor Logit [π(x)]=� +βx we test 
the null hypothes is H0:β=0 against H1 ≠ 0. The wald test 

uses the log likelihood at β, with the test statistics being z=

)(β
β

SE
. The likelihood ratio test has a χ2 distribution with 1 

degree of freedom and uses twice the difference between the 
maximized log likelihood at β and at β=0. One way of 
checking for the model fitness is by using the likelihood ratio 
test to compare the fitted model with a more complex model. 
Another way of checking for model fit is by checking for any 
way that the model fails. This procedure checks for the 
model’s lack of fit other than model fit. 

2.8. Mixed Effects Models for Binary Data 

In marginal modeling and marginal distributions of 
clustered responses, the joint dependence structure is treated 
as a nuisance. There is an alternative approach of using 
cluster-level terms in the model. These terms are unobserved, 
taking different values for observations in different clusters. 
They are treated as varying randomly, hence are called 
random effects. Random effects models for normal responses 
are well established and only recently have random effects 
been used much in models for categorical data. Due to the 
nature of our outcome variable, we shall narrow this to 
logistic-normal model. Random effects models for 
categorical clustered data in an ordinary linear model, fixed 
effects refer to parameters that describe a factor’s effects and 
they apply to all categories of interest. Generalized linear 
models extend ordinary regression by allowing non-normal 
responses and a link function of the mean, while GLMMs 
allows random effects as well as fixed effects in the linear 
predictor. 

2.9. The Model 

If we let yit denote observation tin cluster i, t=1,.., Ti. We 
further let xit denote a column vector of values of explanatory 
variables, for fixed effect model parameters β. Again, let µi 
denote the vector of random effect values for cluster i. This is 
common to all observation in a specific cluster. Let zit donate 
column vector of their explanatory variables. Conditional on 
µi, a GLMM resembles an ordinary GLM. The linear 
predictor for the model is defined as; 
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g(µit)=xT
itβ+zTµi 

Where the mean µit= E(Yit|µi) and g(.) is the link function. 
It’s further assumed that µi~N(0, ∑). We shall introduce here 
the inter-class and the intra-class correlation in mixed effects 
model. The intra-class correlation is given by: 

 

Where τ2 is the within group variation, and σ2 is the overall 
variation, i.e. residual error. The variability of among µi 
induces a non-negative correlation for the marginal 
distribution that is averaged over the subjects. Observations 
within the same cluster i share the same mean µi. Random 
effects also enter into our model as any other explanatory 
variables. The purpose of including random effects in a 
model include among others; 

� They at times will represent the heterogeneity in the 
data that is caused by not observing certain predictors. 
Therefore, random effects model the unobserved 
predictors by reflecting these terms that would have 
been in the model. 

� They provide a way of explaining the over-dispersion in 
basic models that do not have these effects. 

� They reflect terms that would otherwise be in the fixed 
effects part of the model if certain predictors would be 
included in the model. 

� They represent random measurement errors in the in 
dependent variables. 

2.10. Binary Responses 

The univariate random effect model is of the form;  

logit (P[Yit = 1/µi]) = xT
it β + µit 

Where µi independent ~ N (0, σ2) variates. This model is a 
special case of a generalized linear mixed model and g(.) is 
the usual logit link function. Let Ф denote the cumulative 
density function (cdf) that is the inverse link function. Then, 
for any s ≠ t, 

 

You shall notice that both Ф (xT
isβ + µi) and Ф (xT

itβ + µi) 
are monotonically increasing with µi, therefore are non-
negatively correlated. At each t, the predictor variable j pdf 
of x is interchangeable for clustered data, a factor that is 
common also with longitudinal data, where observations in 
close together time wise are likely to be more correlated than 
observations that are further apart. In estimation, the 
interpretation is a around the fixed effects, with the random 
effects used for example, σ the estimate of the standard 
deviation of the random intercept may be used to predict the 
population’s degree of heterogeneity. 

σ = 0-The model simplifies to a logistics regression model, 
with all observations independent of each other. Recall the 

log odds ratio given by; 

logit [P (Yit= 1|ui)] – logit[P(Yhs = 1|µh)] = (xit– xhs)
Tβ + (µi - µh) 

recall that (µi- µh) ~ N(0, 2σ). Thus, 100(1-α)% of the log 
odds fall with the following range; 

 

σ >0 – the log-odds ratio of two observations in same cluster 

3. Results 

3.1. Introduction 

Statistical tools for Microsoft excel, SPSS and R were used 
for data input and analysis. Some of the explanatory variables 
were categorized before starting the analysis into two or more 
categories to make the analysis and interpretations more 
meaningful. Exploratory data analysis is done using SPSS 
and R, data is then fed into models for further analysis. 

3.2. Variable Descriptions 

1. Diseased:-This is a binary variable defined as 1 if an 
environmental health related disease occurred or 0 if it 
didn’t occur to an individual 

2. Gender:- sex of an individual-coded as 1=Male, 
0=Female thus it’s a categorical variable with 2 levels 

3. Highest education attained:-it’s a categorical variable 
with four levels coded 0=None, 1=primary, 
2=secondary and 4=tertiary 

4. Current working status:-A categorical variable coded 
1=working and 0=Not working. 

5. Area of Residence:- A categorical variable with 
1=Rural and 0=Urban 

6. Main source of drinking water:-is a categorical variable 
coded 1-safe drinking water and 0=unsafe drinking 
water 

7. Human waste disposal:-A binary variable defined as 1 if 
one use hygienic human waste disposal means or 0 if 
not 

8. Housing condition:-is a binary variable coded 1 if has 
good housing condition and 0 if has poor housing 
condition 

9. Clust:-clustering variable 

3.3. Modeling Individual Morbidity Using Generalized 

Linear Mixed Model 

We fit a GLMM effect model to the individual morbidity 
data described above. The dependent variable is “diseased”, 
as a measure of whether an individual experienced 
environmental health related disease. 

The generalized linear mixed effects model with logit link 
is defined as below: 

Logit [Pr(yij=1|µi)]=β0+µi+βixij 
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The model takes the form; 

logit[(Prob(diseasedij)=1|µi)]=β0+µi+β1(gender)ij+β2(educati
on)ij+………+β7(housing)ij+b0(clust). 

We begin by showing the distribution of different 
dependent variables. The table below shows all the variables 

that were fitted in the model. 

3.4. Exploratory Data Analysis 

In this section we seek to show the distribution of the 
dependent variable compared to some selected covariates.

Table 1. Summary statistics (Categorical variables) 

Variable Category Descriptive Percentage 

Gender 
Male 32,918 49.3 

Female 33,807 50.7 

Area of residence 
Rural 47,126 70.9 

Urban 19,351 29.1 

Working status 
Working 14,895 66.9 

Not working 7,374 33.1 

Source of drinking water 
Protected source 32,870 50.1 

Unprotected source 32,732 49.9 

Human waste disposal 
Hygienic waste disposal 31,158 47.5 

Unhygienic waste disposal 34,495 52.5 

Highest Education 

None 28,731 61.1 

Primary 9,920 21.1 

Secondary 4,896 10.4 

Tertiary 3,505 7.4 

Housing condition 
Good housing condition 38,788 59.3 

Poor housing condition 26,670 40.7 

Table 2. Cross-tab of all covariates against the dependent variable “diseased” 

Variable Level Non diseased diseased Total Cramer's V 

Gender 
Male 50.3 45.6 49.3 

0.037 
Female 49.7 54.4 50.7 

Area of residence 
Rural 71.1 70.1 70.9 

0.009 
Urban 28.9 29.9 29.1 

Working status 
Working 66.4 69.2 66.9 

0.023 
Not working 33.6 30.8 33.1 

Main source water 
Protected source 49.8 51.2 50.1 

0.011 
Unprotected source 50.2 48.8 49.9 

Human waste disposal 
Hygienic waste disposal 46.9 49.5 .5 

0.02 
Unhygienic waste disposal 53.1 50.5 52.5 

Highest education 

None 60.4 64.2 61.1 

0.033 
Primary 21.4 19.5 21.1 

Secondary 10.7 8.9 10.4 

Tertiary 7.5 7.4 7.4 

Housing condition 
Good housing condition 59.1 59.8 59.3 

0.005 
Poor housing condition 40.9 40.2 40.7 

 

3.5. Model Fitting 

We fit a GLMEM using the Imer command in R which 
contains functions for estimation of multilevel or hierarchical 
regression models. β represents the coefficients of fixed 

effects while b’s represent the coefficients of the random part. 
A generalized linear mixed effect model for all explanatory 

variables in R produced the model in the table 3 below. 
Table 3 shows the fitted GLM with outcome “diseased”. 

This model uses a logit link to estimate the factors that drive 
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morbidity incidences. We use this model to compare the 
results from the GLMEM reported previously. 

Table 3a. Model 1 Null linear mixed model by REML. 

AIC BIC Log Link Deviance REML dev 

63774 63792 -31885 63857 63770 

Table 3b. Random effects. 

Groups Name Variance Std. Dev 

Clusters 
Intercept 

0.011986 0.10948 

Residual 0.147679 0.38429 

Table 3c. Fixed effects. 

 Estimate Std. Error z value Pr(>|z|) 

Intercept 1.53199 0.02271 67.45 <2e-16*** 

The above model is an empty model i.e. model fitted 

without including the explanatory variables. The variance 
component corresponding to the random intercept is 
0.011986. 

The two variance components can be used to partition the 
variance across levels. The interclass correlation coefficient 
is equal to; 

 meaning that roughly 

0.08% of the variance is attributed to the cluster-level. The 
strength of the intra-cluster correlation determines show 
observations within a given cluster are likely to be similar to 
each other. Thus, a higher intra-cluster correlation gives a 
more pronounced “clustering effect.” 

To explain some of the cluster-level variance, we 
incorporate the explanatory variables in the empty model. 
The table below shows the GLMM for the random intercept 
and fixed predictors in individual level using REML. 

Table 4. Model 2: GLMM for the random intercept and fixed predictors 

using REML. 

AIC BIC Log link deviance REML dev 

3946 4023 -1961 3855 3922 

Random effects 

Groups Name Variance Std. Dev 

Clusters Intercept 
 

0.0077387 
0.08797 

Residual  
 

0.1393540 
0.37330 

Fixed effects 

 Estimates Std. Error z value Pr(>|z|) 

(intercept) 1.35917 0.13153 10.334 <2e-16*** 

Male 0.26122 0.08322 3.139 0.00170 

Urban -0.11217 0.13598 -0.825 0.40943 

Working -0.06090 0.09769 -0.623 0.53304 

Unprotected 

water source 
0.01772 0.10003 0.177 0.85938 

Unhygienic 

waste disposal 
0.10290 0.09925 1.037 0.09984 

Primary -0.01127 0.10086 -0.112 0.91103 

Secondary 0.15345 0.13454 1.141 0.25407 

Tertiary 0.04185 0.12827 0.326 0.74420 

Poor housing 

condition 
0.23273 0.10640 2.187 0.02872 

The variance component corresponding to the random 

intercept has decreases to 0.0077387, indicating that the 
inclusion of the explanatory variables has accounted for the 
some of the unexplained variance. Comparing both the AIC 
and BIC statistics in both models above, it is clear that the 
model 2 is preferable to the model 1since it gives smaller 
values of AIC and BIC. 

From the GLMM model above; gender, human waste 
disposal and housing condition are significant in predicting 
the probability of an individual getting an environmental 
health related disease. However, area of residence, education 
and working condition and main source of water are 
insignificant. 

The GLMM model is of the form 

logit [(prob(diseasedij) = 1/µi] = β0 + µi + β1(gender)ij + 
β2(human waste disposal)ij + β3(housing condition)ij 

The GLMM outputs above indicates that with group of the 
female as the reference group; then the log of odds of getting 
an environmental health related disease increases by 0.0017.  

Holding other variables constant; an individual living in 
poor housing condition is about 3% more likely to have the 
disease compared to an individual living in a good housing 
condition. Also the odds of getting an environmental health 
related disease is exp (0.09984) = 1.10499 times for 
unhygienic waste disposal compared to hygienic means of 
human waste disposal. 

Table 5. A generalized linear model for “diseased”. 

AIC 4002.792 

 
Estimate Std. Error z value p-value 

(intercept) 1.232434 0.11169 11.034 2.00E-16 

Male 0.24782 0.080393 3.083 0.002052 

Urban -0.108088 0.104391 -1.035 0.300476 

Working -0.097075 0.09077 -1.069 0.28486 

Unprotected source 0.041063 0.083227 0.493 0.001744 

Unhygienic waste 

disposal 
0.145195 0.087092 1.667 0.095486 

Poor housing condition 0.323525 0.089386 3.619 0.000295 

Primary 0.002356 0.096739 0.024 0.980572 

Secondary 0.182476 0.12824 1.423 0.154758 

Tertiary 0.056151 0.121077 0.464 0.64282 

The Akaike Information Criteria (AIC) for GLM model 

was 4002.792 which is a measure of goodness of fit that 
takes the number of fitted parameters into account. This 
value is larger as compared to AIC in the GLMM model. 
Thus GLMM model is preferable to GLM in modeling 
clustered data. 

From the GLM model above; gender, human waste 
disposal, housing condition and main source of drinking 
water are significant in predicting the probability of an 
individual getting an environmental health related disease. 
However, area of residence, education and working condition 
are insignificant. 

Hence the GLM model would be 
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ln
)1(1

)1(

xyP

xyP

=−
=

=β0+β1(gender)+β2(housing 

condition)+β3(main source of water)+β4(human waste 
disposal) 

The GLM outputs above indicates that with group of the 
female as the reference group; then the log of odds of 
getting an environmental health related disease increases by 
0.24782. For the main source of water variable, the odds of 
getting an environmental health related disease is exp 
(0.041063) = 1.0419 times for unprotected main source of 
water compared to protected source of water. Holding other 
variables constant; an individual living in poor housing 
condition is about 38% more likely to have the disease 
compared to an individual living in a good housing 
condition. Also the odds of getting an environmental health 
related disease is exp (0.145195) = 1.1563 times for 
unhygienic waste disposal compared to hygienic means of 
human waste disposal. 

4. Conclusions, Recommendations and 

Suggestions for Further Studies 

4.1. Conclusions 

This study was set to determine factors that are associated 
with the probability of an individual in a population 
experiencing an environmental health related disease in 
Kenya. It was also set to develop a statistical model that 
describes the influence of these factors while accounting for 
inter-class correlation in the data. The study found that 
individual morbidity is associated with some social, 
economic and demographic factors in the country. The study 
applied both GLM and GLMM models to model household 
data that was collected in 2005/6 to investigate factors 
associated with environmental health related diseases. 
Further, the study applied Akaike Information Criteria (AIC) 
to determine the preferable model in modeling clustered data. 

From the analysis, it was found that, these verity of 
environmental health related disease is likely to increase with 
gender where by a female individual is likely to get a disease 
than a male individual. This outcome supports the idea that 
gender-specific differences in morbidity and mortality may 
be explained by genetic factors and by their differential 
response to the environment. 

People living in poor housing conditions were found to be 
more likely to get a disease than those from good housing 
condition. Main source of drinking water was also significant 
in explaining individual morbidity in Kenya with an 
individual using unprotected main source of water found 
more likely to get a disease than an individual using 
protected main source of water. 

Means of human waste disposal was another factor found 
affecting the disease outcome where by an individual using 
unhygienic waste disposal was more likely to have an 
environmental health related disease than the one using 
hygienic means. 

However, the study found that area of residence; working 
condition and education level do not affect the diseased 
outcome. 

On the statistical model that account for inter-class 
correlation in the data, it was found that the value of AIC in 
GLM model was larger compared to AIC value in GLMM 
model. According to Akaike’s theory, the most accurate 
model has the smallest AIC hence; for this study, it could 
conclude that GLMM model is more preferable to GLM in 
modeling clustered household data. 

4.2. Recommendations 

Efforts to address the plight of the environmental health 
related disease should be more focused to individuals living 
in poor conditions and should not only be focus in offering 
facilities but also economic empowerment. 

4.3. Suggestions for Further Studies 

This study can be extended to incorporate income level of 
individuals. Individuals with low level of income are believed 
to be more likely to experience environmental health related 
diseases than individuals with higher levels of income. 

Further studies should also be carried out to focus on 
mapping the areas which are mostly affected in the country 
and developing an effective model to address the issue. 
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