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Abstract: To measure the output of a geothermal well, also known as amount of megawatts of a well, discharge tests are 

done between two to four months after drilling of the well to collect the relevant types of data which includes wellhead 

pressure, lip pressure and the weir height. After collection of these data, [8] formula is applied in determining the well output. 

These data exhibits skewness and excess kurtosis also known as heavy – tailedness, an attempt to fit ordinary least squares 

(OLS) model to such data leads to model misspecification. Therefore, in this study, robust non-parametric estimation has been 

used to fit these data as applied by [1]. The model is known to be robust to outliers which characterize the wells data, 

robustness signifies insensitivity to deviations from the strict model assumptions. A comparison between the robust method 

used and OLS method has also been made with graphical illustrations. The results show that locally weighted regression 

(loess) method used with a smoothing parameter of 0.07 and a polynomial of order 2 fits the geothermal well discharge data. It 

was confirmed that geothermal well discharge data is characterized by outliers which may affect the ultimate determination of 

the value of a well output and therefore there is need for further statistical data processing to remove the errors before Russel 

James method is applied. 
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1. Introduction 

Geothermal exploration in Kenya dates back more than 40 

years ago [5] where it was recognized that the central Rift 

Valley could contain a geothermal energy resource. In 1956 

two wells were drilled with the second one X2 reaching a 

depth of 1035 meters. A detailed exploration of the 

geothermal resources in the Menengai area was conducted in 

2004 and later with infill work in 2010. Geo-scientific 

investigations comprising geology, geophysics, geochemistry 

and heat loss measurements were utilized in searching for 

indicators for the existence of geothermal resources in the 

area [12]. Findings presented in [9] and [10] point to the 

existence of exploitable geothermal resources within the 

Menengai caldera, Ol-Rongai and OlBanita calderas to the 

northwest of the Menengai caldera. [12] proceeds and 

concludes that the existence is evidenced by active strong 

surface manifestations and young lava's, signifying an active 

heat source. 

Drilling activities in Menengai geothermal field begun in 

February 2011 [12]. During drilling there are several tests 

that take place to determine reservoir properties. When well 

drilling is completed, a wellhead is fitted at the top of the 

well to control the steam as well as enable other relevant tests 

to be carried. This includes the discharge test which takes 

place between 2 to 4 months after completion of the drilling 

process. One of the basic tasks of a geothermal reservoir 

engineer is to measure the fluid flow from a discharging well 

and its energy content as well as to analyze the flow 

characteristics of the well. After 2 to 4 months heat up, the 

well is opened up and allowed to flow to the atmosphere. 

Geothermal high temperature wells are usually discharged 
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into a silencer which also acts as a steam – water separator at 

atmospheric pressure [6]. 

There are several methods applied to determine a 

geothermal well output using the discharge data, of interest is 

the lip pressure method which was used in calculating the 

output of wells at the Menengai Caldera. The lip pressure 

method is based on an empirical formula developed by 

Russel James in 1962 [6]. 

To use the lip pressure method, the steam – water mixture 

is discharged through an approximately sized pipe into a 

silencer or some other simple device to separate the steam 

and water phases at atmospheric pressure [6]. Water flow 

from the silencer is commonly measured by the weir – box 

method [4]. [11] reiterated that well MW-01 was discharged 

in May, 2011. In determining the flow characteristics of the 

well, James lip pressure method was used. Discharge pipes of 

varying sizes; 8", 6", 5", 4" and 3" were used during 

discharge test. From the discharge tests, well-head pressure 

(WHP), lip pressure (PC) and the weir height data are 

collected which are used in estimation of the well output. 

2. Literature Review 

2.1. Non-parametric Regression 

[7] denotes that there are generally two strategies for 

fitting a smooth curve which are parametric and non-

parametric. The parametric methods require one to specify 

the functional form of the relationship in advance while non-

parametric does not. He acknowledges that parametric fitting 

is a very effective way to summarize a relationship when the 

structure in the data is known but the challenge is that the 

“correct” structure of the data is almost always unknown. 

This causes researchers to risk fitting smooth curve that 

misrepresents the structure within data. Furthermore, he 

points out that non-parametric smoothing address this 

problem by locating smooth curve among data points without 

requiring any advance specification of functional relationship 

between variables. 

2.2. Local Polynomial Regression 

Local regression is actually an approach to fitting curves 

and surfaces to data by smoothing [3]. It involves finding the 

value of parametric function to those observations in a 

neighborhood of a certain point of independent variables. 

Local polynomial regression are majorly used in providing an 

explanatory graphical tool as this gives insight into the 

behavior of the data and help in choosing parametric models, 

provide additional regression diagnostics to check the 

adequacy of parametric models fitted to the data and lastly to 

use locally weighted regression estimate as the estimated 

regression surface, without resorting to a parametric class of 

functions [2]. 

2.3. Regression Surface & Regression Errors 

[7] states that although the locally weighted regression, 

also known as loess, procedure is non-parametric where 

functional form of the final smooth curve need not be 

specified, there are some parameters that must be selected 

prior to the fitting procedure. This guarantees that the loess 

curve passes through the center of the empirical data points. 

There are four items that must be selected in order to carry 

out locally weighted regression: the smoothing parameter (α), 

the degree of the polynomial (λ), the weight function and 

number of iterations. Out of these the most critical during 

local regression are the smoothing parameter and the order of 

the polynomial [7]. 

In locally weighted regression analysis, a decision has to 

be made on whether the data follows a Gaussian distribution 

or a symmetric distribution which depends on the type of 

error distribution; errors with tails that are stretched out leads 

to symmetric distribution while those that are independent 

random variables with mean 0 are termed to be normally 

distributed or having a Gaussian distribution. Errors with 

symmetric distribution lead to robust methods of estimation. 

3. Findings and Discussion 

3.1. Selection of Smoothing Parameter (α) 

The smoothing parameter (α) also known as bandwidth, 

determines the width of the sliding window. It gives the 

proportion of observations that is to be used in each local 

regression [7]. [1] explains that increasing α increases the 

smoothness of the smoothed points (��,�, ���) . He further 

proposes that the goal in choosing of α is picking a value as 

large as possible to minimize the variability in the smoothed 

points without distorting the pattern in the data. That is, the 
� 
should have as little bias as possible and a small variance as 

possible. [3] explain that there is need to strike a balance 

between bias and variance when selecting the α parameter. 

Nearest neighbor smoothing parameter are widely used for 

local regression due to its flexibility in fitting most of the 

data. A fixed smoothing parameter estimate often has 

dramatic swings in variance due to large changes in the 

density of the data in the design space leading to 

unacceptably noisy fits [3]. 

[7] states that the α parameter is chosen as a value between 0 

and 1. He further explains that the fitted curve becomes 

smoother with larger values of the smoothing parameter because 

wider fitting windows, larger α, means that idiosyncratic 

observations will tend to cancel each other out and therefore 

have proportionally less influence on the local regressions. 

Secondly, larger α values means that fewer observations will 

change when moving from one fitting window to the next. The 

above factors stabilize the local regression lines and fitted 

values, thereby producing a smoother curve. 

The α parameter gives the proportion of observations to be 

used in each local regression. The smoothing parameter is 

specified as a value between 0 - 1 [7]. α is supposed to be 

chosen on the basis of the characteristics of the data on the 

scatter plot. When choosing α, the goal should be to select a 

value as large as possible to minimize the variability in the 

smoothed points without distorting the pattern in the data [1]. 

He further explains that selection of the smoothing parameter 
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is a trade – off between bias and variance, that is the α should 

have as little bias as possible and a small variance as 

possible. 

The results in Table 1 below show that the optimal 

smoothing parameter is 0.07 with the lowest standard error of 

1.520978e
-07

 and bias of 7.176888e
-06

. Increasing the 

smoothing parameter leads to over smoothing while decreasing 

the smoothing parameter leads to under smoothing which is 

manifested by the increasing standard errors below and above 

the optimal smoothing parameter. It can be deduced from the 

figures above that, large smoothing parameters reduce the 

variance by smoothing over a large number of points, leading 

to increased bias. In contrast, small smoothing parameters give 

higher variance but have less bias hence lower bias leads to 

closer match between estimated values and actual observed 

values which can be shown by closer matching values of 

estimated megawatts (MWe) values with smoothing parameter 

of 0.07 and the true MWe values. 

Figures 1, 2 and 3 below shows a graphical representation of 

actual megawatts values and estimated megawatts values for 

α=0.05, α=0.07 and α=0.09 respectively. For α= 0.05, a 

deviation from the actual values is seen by the blue line in the 

combined graph of Actual MWe & Estimated MWe. That is 

the estimated MWe values deviated from the 13th element to 

the 23rd element with the estimated values obtained as zero 

hence the high standard error. The same case is seen in Figure 

3 for values ranging from 120 to 138. For a smoothing 

parameter of 0.07, the estimated values were the same as 

actual values thus the similarity in the graphs between the 

actual and estimated values. With the lowest standard 

deviation and bias, the optimal smoothing parameter was 0.07. 

Table 1. Standard errors and variance for various smoothing parameter 

values. 

Smoothing Parameter Standard Error Bias 

0.01 12.20789 -3.385072 

0.02 3.519923 -1.134348 

0.03 0.5870768 -0.2062319 

0.04 0.3433087 -0.122174 

0.05 0.3433087 -0.1221707 

0.06 4.015572e-07 -8.365687e-06 

0.07 1.520978e-07 7.176888e-06 

0.08 1.622617e-06 -1.519279e-06 

0.09 8.001929e-06 0.0001170377 

0.10 1.398312e-05 -0.0001202426 

0.15 4.586705e-05 -1.991862e-05 

0.20 0.0003349328 0.0001960178 

0.30 0.0005596501 0.000482664 

0.35 0.0007297819 0.0003743899 

0.40 0.0008338917 0.0006361917 

0.50 0.001128271 0.001070689 

0.75 0.001604839 0.0004933345 

0.80 0.001694527 0.0003155935 

3.2. Selection of Order of Polynomial (λ) 

The α parameter specifies the degree/order of the 

polynomial that the local polynomial regression procedure fits 

to the data [7]. The choice of the polynomial degree is a bias - 

variance trade off just like in the selection of the smoothing 

parameter. A higher degree will generally produce a less 

biased but more variable estimate than a lower degree one [3]. 

 

Figure 1. Graph showing the fit of actual megawatts, estimated megawatts and a comparison between the two with λ = 2 and α = 0.05. 
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Figure 2. Graph showing the fit of actual megawatts, estimated megawatts and a comparison between the two with λ = 2 and α= 0.07. 

 

Figure 3. Graph showing the fit of actual megawatts, estimated megawatts and a comparison between the two with λ = 2 and α= 0.09. 
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[7] states that the specification of the λ parameter is 

usually fairly easy because it can be decided by visual 

inspection of the scatter plot alone. He further explains that 

if the point cloud conforms to a generally monotonic 

pattern (either increasing or decreasing), then λ should be 

set to 1 for locally linear fitting and if the data exhibit some 

non-monotone pattern, with local minima and/ or maxima, 

then λ should be set to a value of 2 for locally quadratic 

equations. The reasons behind the above recommendations 

as explained by [7] is that if X and Y exhibits a monotonic 

relationship, then the point clouds within the local fitting 

windows should always exhibit the same general 

orientation. When this occurs, varying the intercepts and 

slopes of the locally linear regressions should be sufficient 

to produce a smooth curve that follows the data accurately. 

On the other hand, a non-monotonic relationship implies 

that the general orientation of the bi-variate point cloud 

changes direction somewhere within the data region of the 

scatter plot and as such reversals cannot be handled very 

effectively with linear equations. The quadratic 

specification allows for sharper inflections within the 

locally-fitted curve. This, in turn, produces the flexibility 

that is required to insure that the final local regression curve 

passes through the center of a non-monotone point cloud. 

[1] explains that fitting polynomial with λ = 0 is the 

simplest because it is assumed that the equation if 

constant but it is better to assume local linearity. 

Choosing λ to be 1 appears to strike a good balance 

between computational ease and the need for flexibility 

to reproduce patterns in the data. With λ = 1 linear 

equations are fit within each of the windows. He finally 

denotes that for λ = 2 (where quadratic equations are 

used) computational consideration begin to override the 

need for flexibility. [7] puts forth that although λ = 2 

complicates the fitting process, they are sometimes 

necessary in order to produce a smooth curve that 

follows the data to an acceptable degree. 

Figure 4 below depicts that if we take λ = 0, with the 

other variables remaining the same, then we could not fit 

the data since the estimated values are different from the 

actual values as seen with the blue and red lines in the 

combined graph. 

 

Figure 4. Graph showing the fit of actual megawatts, estimated megawatts and a comparison between the two with α= 0.07 and λ = 0. 
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Figure 5. Graph showing the fit of actual megawatts, estimated megawatts and a comparison between the two with α= 0.07 and λ = 1. 

 

Figure 6. Graph showing the fit of actual megawatts, estimated megawatts and a comparison between the two with α= 0.07 and λ = 1. 

Figure 5 shows that as much as research has it that 

polynomial of degree 1 almost always provide adequate 

smoothed points, it is not the case. λ = 1 was not able to fit 

all data as blue points can be seen in the last chart. With λ= 2 

(Figure 6), it was possible to fit the data and provide the best 

estimates for the well output. This finding show that 

polynomial of degree 2 was the best option in fitting the 

geothermal well discharge data. 

3.3. Regression Errors (����) 

During the first phase of data processing above, the type of 

errors distribution was not specified meaning that if the errors 
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had a Gaussian distribution then the locally weighted 

regression method was used to fit the data but when the 

distribution is symmetric (where the errors have a distribution 

with tails that are stretched out compared with the normal) 

then robust locally weighted regression method was used. 

Figure 7 below shows that assuming the errors have 

Gaussian distribution, α= 0.07 and λ= 2, the model fits the 

data. But from Figure 8, if symmetric errors are assumed the 

model could not fit the data. This means that although the 

well discharge data is characterized by skewness and excess 

kurtosis it can still be modeled by the loess procedure 

without robustifying the process. That is because the loess 

process in itself is a “robust” procedure and this is achieved 

by use of the weights in the regression process which is not 

the case in the OLS process. 

 

Figure 7. Graph showing the fit of actual megawatts, estimated megawatts and a comparison between the two with α= 0.07, λ= 2 and assuming Gaussian errors. 

 

Figure 8. Graph showing the fit of actual megawatts, estimated megawatts and a comparison between the two with α= 0.07, λ = 2 and assuming symmetric 

errors. 
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3.4. Fitting of the Loess Model to Other Wells 

A sample of two other wells was taken where the adopted model was fitted. From the findings in Figure 9 & 10 below, it is 

evident that loess with a smoothing parameter of 0.07 and polynomial of order 2 is able to model a geothermal well data of 

well MW-01. 

 

Figure 9. Graph showing the fit of actual megawatts, estimated megawatts and a comparison between the two with α= 0.07 and λ= 2 for well MW-10A. 

 

Figure 10. Graph showing the fit of actual megawatts, estimated megawatts and a comparison between the two with α= 0.07 and λ= 2 for well MW-19. 
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3.5. Comparison with OLS 

Comparison between the loess estimates and OLS shows 

that the loess estimate with α=0.07 produced a lower 

standard error (1.520978e-
07

) compared to the OLS estimates 

(0.06029956). These results show that the loess estimates 

produce better estimates of predicted values. 

From Figure 11 it is seen that while the actual values of 

MWe fitted perfectly with the estimated values for smoothing 

parameter of 0.07, on the other hand the estimated values for 

the OLS deviated so much from the actual values as shown 

by the green lines. While it's easy to see the difference 

between the actual MWe values and OLS estimates, it is not 

easy to distinguish the actual MWe values with those 

obtained by the smoothing function since the two graphs fit 

exactly to one another. It can be concluded that the loess 

method performs better than the OLS method. 

 

Figure 11. Graph showing the fit of actual megawatts, estimated megawatts with α= 0.07, λ = 2, OLS estimates and a comparison between the two methods. 

4. Conclusions 

Locally weighted regression also known as loess which is 

non-parametric was used to fit the data. Robust parametric 

methods could also be used but this required that the 

functional form of the relationship between predictor and 

response variables should be known in advance; with this we 

could not apply the parametric methods since the functional 

form of the data was not known. 

The order of polynomial that fits the data is 2. The 

assumption that polynomial of order 1 fits almost all the 

cases was disapproved. Polynomial of degree 0 could also 

not fit the data. 

Locally weighted regression (loess) with a bandwidth 

(smoothing parameter) of 0.07 and a polynomial of degree 2 

was able to fit the geothermal well output data. Empirical 

studies on other wells were also performed and the results 

were the same. 

The errors of the fitted values assume a Gaussian 

distribution and therefore locally weighted regression was 

used to fit the data. Further research done to compare locally 

weighted regression method and the ordinary least squares 

method shows that the later does not fit the data. 

Recommendation 

Geothermal well discharge data is characterized by outliers 

which may affect the ultimate determination of amount of a 

well output. It is therefore necessary that before application 

of commonly used Russel James method, further statistical 

data processing to remove the errors should be carried out 

before being used as the input to the Russel James method. 
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