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Abstract: Nonparametric regression has been widely exploited in survey sampling to construct estimators for the finite 
population mean and total. It offers greater flexibility with regard to model specification and is therefore applicable to a wide 
range of problems. A major drawback of estimators constructed under this framework is that they are generally biased due to the 
boundary problem and therefore require modification at the boundary points. In this study, a bias robust estimator for the finite 
population mean based on the multiplicative bias reduction technique is proposed. A simulation study is performed to develop the 
properties of this estimator as well as assess its performance relative to other existing estimators. The asymptotic properties and 
coverage rates of our proposed estimator are better than those exhibited by the Nadaraya Watson estimator and the ratio 
estimator. 
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1. Introduction 

Sample surveys are intended to reduce the time and cost of 
collecting data while at the same time ensuring valid inference 
about population quantities. Extrapolation does not give 
accurate information in surveys since the sample is a subset of 
an entire population and therefore does not contain 
information on units that are not represented in the selected 
sample. The use of auxiliary information that is correlated to 
the characteristic under study has been very effective in 
predicting the information in the unobserved units. 

Under the model based framework, a super-population 
model that describes the relationship between the auxiliary 
variable and the study variable is used to predict the 
non-sampled values. This has an overall effect of increasing 
the precision with which population quantities are estimated. 
Ratio and regression estimators are examples of estimators 
that are constructed under this framework. 

One of the major challenges in using this approach lies in 
the selection of an optimal model. This presents a danger of 
model misspecification which if committed, introduces a huge 
amount of error in the estimates of the population parameters. 
A number of strategies have been proposed to solve the 

problems arising from model misspecification. 
Nonparametric regression has been embraced as one of the 

ways of dealing with the problem of model misspecification. 
In this case, no restrictions are placed on the relationship 
between the auxiliary variable and the study variable of 
interest. This has an overall effect of improving the 
performance of the estimators. 

A major problem that is encountered when using 
nonparametric kernel based regression over a finite interval 
such as in the estimation of finite population quantities is the 
bias at the boundary points. A number of techniques have been 
proposed in this regard and many of them have encountered 
various pitfalls. Our focus is to apply a multiplicative bias 
correction technique to the nonparametric estimation of the 
finite population mean and to study the asymptotic properties, 
coverage properties and the conditional properties of the 
resulting estimate. 

1.1. Outline of the Paper 

The rest of the paper is organized as follows. In subsections 
1.2, 1.3, 1.4, we briefly highlight on model based estimation, 
bias-variance tradeoff and confidence intervals. A 
multiplicative bias corrected estimator for the finite 
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population mean is proposed in section 2. The asymptotic 
properties of the proposed estimator are derived in section 3. 
An empirical study is given in section 4 and the conclusion of 
the paper is given in section 5. 

1.2. Review of the Model-Based Approach to Survey 

Inference 

The model based approach was originally proposed by 
Ronald. A. Fisher and comprehensively reviewed by, among 
others, Royall (1976, 1992), Royall and Cumberland (1981), 
and Chambers (1996). In this framework the survey 
measurements are assumed to be realized values of some 
random variables. It is also assumed that an auxiliary variable 
correlated to the variable under study is available for all units 
in the population. A model that describes the relationship 
between the study variable (survey measurements) and the 
auxiliary variable is then sought. The model and the sampled 
data are then used to predict the non-sampled values and hence 
finite population mean or total. 

One of its main weaknesses, and a major cause of criticism, 
is that it is susceptible to bias arising from model 
misspecification. In fact, when model assumptions are 
seriously violated this approach can yield estimates that are 
even worse off than those constructed under the 
designed-based framework. Consequently, the focus of most 
research in prediction approach has been to develop strategies 
to counter the effects of model misspecification on inference. 

More specifically, our focus is to advance the work of 
Dorfman (1992) who considered a similar problem of 
estimating the finite population total using nonparametric 
regression. In his work, he used the Nadaraya-Watson 
estimator of the mean function to predict the nonsampled 
values of the study variable and consequently to estimate the 
finite population total. In his findings he demonstrated that the 
developed estimator was more efficient compared to rival 
design based estimators. 

1.3. Trade-Off Between Bias and Variance 

In kernel smoothing there exists a fundamental trade-off 
between the bias and the variance of the estimate which is 
governed by the smoothing parameter. Choosing a large 
bandwidth reduces the variance but simultaneously increases 
the bias of the estimate. 

Similarly a choice of a small bandwidth mitigates the bias 
but leads to an increase in the variance of the estimate. A 
natural way to mitigate this trade-off is to choose a bandwidth 
that minimizes the mean squared error of the estimate. 

1.4. Review of Confidence Intervals in Survey Sampling 

Sample based surveys contain a level of uncertainty to the 
results obtained due to the fact that they are based on a portion 
of the population (sample) and not the entire population. 
Confidence intervals are one of the statistical tests that are used 
to measure the likelihood of getting similar findings if the entire 
population is used. In other words, it measures the ‘confidence’ 
in findings from a sample survey. 

Constructing confidence intervals around point estimators 
provide survey statisticians with a properly scaled measure of 
the uncertainty associated with a particular estimator of interest. 
A major drawback of the conventional method is that it relies on 
the central limit theorem which only holds for sufficiently large 
sample sizes. A challenge arises when modest sample sizes are 
encountered in practice. 

As a result previous research has been concerned with the 
provision of alternative approaches that address the limitation 
of the conventional method of constructing confidence 
intervals. One such strategy is the bootstrap method described 
in Efron (1982) that has seen considerable development over 
the past years. (Rao & Wu, 1988) explore the application of 
this technique under the design based framework. Their 
findings are then extended to more complex survey designs by 
Sitter (1992a, 1992b). 

R. Chambers & Dorfman (2003) describe an application of 
the bootstrap approach in the construction of confidence 
intervals under the model based approach to sample survey 
inference. In their work they focus on the ratio estimator as the 
estimator of interest. However, their empirical results obtained 
by using the beef population indicate that their objective of 
constructing sound confidence intervals for the finite 
population total was not attained. 

Ouma & Wafula (2007) suggest the use of a general 
super-population model. Their methodology is simple to 
implement. In their study, they generated the values of the 
survey measurement, Y via simple random sampling with 
replacement. The results of their empirical study showed that 
their coverage rates were more satisfactory than those of R. 
Chambers & Dorfman (2003). Their findings are then 
extended to two stage cluster sampling by Onyango, Otieno, 
& Orwa (2010). 

2. Proposed Estimator 

In this section, we present the proposed procedure for 
estimating the finite population mean. We consider a finite 

population {1,2, 3.... }U N=  in which each of the sampling 

units is associated with a variable of interest Y . Further 
assume that an auxiliary variable X  is available for all 
elements in the finite population. We describe the population 
units using the prediction model ξ ; 

( )
i i i
Y xµ ε= +                 (1) 

Such that, ( ) ( )
i

E Y xµ=  

2( ),
( , )

0 ,
i

i j

x for i j
Cov Y Y

otherwise

σ == 


         (2) 

Where ( )
i
xµ  and 2( )

i
xσ are assumed to be smooth 

functions of the variable X . After obtaining sample 
information on the study variable Y  and a census on the 
auxiliary variable X , the unknown population mean that is to 
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be estimated can be written as: 

(1 ) −= + −s p sY f y f y           (3) 

where 
1

s i
i s

y y
n ε

= ∑ , 
1

p s j
j p s

y y
N n ε

−

−

=
−
∑  and consequently 

f  is the sampling fraction. In this case i  refers to the sample 

units and j  refers to the non-sampled units. Since the sample 

mean is known, the process of estimating the unknown 

population mean Y is equivalent to predicting the unsampled 
part of the population. The population mean can therefore be 
estimated as, 

1ˆ ˆ(1 )s j
j p s

Y f y f y
N n ε −

= + −
−
∑         (4) 

To the problem of estimating the unsampled part of the 

population
ĵ

j p s

y
ε −

∑ , we propose the estimator ( )
j

j p s

x
ε

µ
−

∑

where ( )
j
xµ

 
is a smooth function. Therefore the estimator (4) 

becomes 

1ˆ
(1 ) ( )

−

= + −
− ∑MBC js

j p s

Y f y f x
N n ε

µ      (5) 

The task is to estimate the second part of equation (5). To do 
this, the multiplicative bias correction technique is employed 
in which case the proposed estimator of the population mean is 
now defined as 

1ˆ ˆ(1 ) ( )
−

= + −
− ∑MBC n js

j p s

Y f y f x
N n ε

µ      (6) 

Where ˆ ( )
n j
xµ  is as defined in equation (9). We define a 

pilot smoother of the regression function as 

( ) ( )
n j j
x x yµ ω=ɶ                 (7) 

Then the ratio 
( )

j

j

j

Y
R

Xµ
=
ɶ

 

is a noisy estimate of the 

inverse relative estimation error of the smoother 
n
µɶ  at each 

of the observations given by 
( )

( )

j

n j

X

X

µ

µɶ
. Smoothing 

j
R  yields 

1 1

( )
ˆ ( ) ( ; ) ( ; )

( )

n n
j

n j j j
j j n j

X
x x h R x h

X

µ
α ω ω

µ= =

= =∑ ∑
ɶ

      (8) 

Equation (8) above gives a better estimate for the inverse of 
the relative estimation error at each particular observation and 
can therefore be used as a multiplicative correction of the pilot 
smoother in equation (7). This yields the smoother; 

ˆ ˆ( ) ( ) ( )
n i n n
x x xµ α µ= ɶ                (9) 

Using equation (8) and (9) easily yields 

       (10) 

The ratio  in equation (10) can be expressed as 

    (11) 

For simplicity, we let 

. Equation 

(11) becomes, 

 (12) 

Where ( , )
j j
r x X  is the remainder term that involves the 

terms x  and 
j
X . Using equation (12) and utilizing the 

model ( )
j j j
Y xµ ε= +  in equation (10) we obtain  

             (13) 

Using the assumption nh →∞  and n →∞  the remainder terms converge to zero in probability and equation (13) reduces to 

                (14) 

The proposed estimator for the finite population mean can then be expressed as 
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    (15) 

3. Properties of the Proposed Estimator 

3.1. The Asymptotic Bias of the Proposed Estimator 

Under the model based framework, the bias of the estimator Ȳ 
M BC is defined as; 

MBC MBC
E Y Y E Y E Y
ξ ξ ξ
     − = −                                         (16) 

Next, the expected value of the proposed estimator for the finite population mean is given by 

      (17) 

The calculation of  is obtained by analyzing the individual terms of the stochastic approximation of the estimator in 

equation (9) which are given by equation (14). 
Analyzing the first term of the expression in equation (14) yields 

    (18) 

An analysis of the second term of equation (14) gives 

                  (19) 

 (20) 

Which further reduces to 

                 (21) 

Lastly analyzing the third term of (14) gives the following results 

                       (22) 

         (23) 

 (24) 

Consequently, putting the results obtained in the analysis of the above terms equation (14) reduces to, 
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                      (25) 

And the expected value of the proposed estimator takes the form 

         (26) 

A simplified version of the above expression is obtained by considering a limited version of the Taylor series expansion of the 

ratio  about a point x which gives the following expression. 

                 (27) 

 Substituting the first two terms of the expansion given by equation (26) we obtain 

      (28) 

It is easy to verify that 
1

( ; ) 1
n

j
j

x hω
=

=∑  and 
1

( ) ( ; ) 0
n

j j
j

X x x hω
=

− =∑  

We therefore obtain the results 

               (29) 

Using model (1) it can also be shown that 

                            (30) 

Hence the asymptotic bias of the proposed estimator is given by 

                (31) 

The bias of 
MBC
Y  will be of order 

1
P
O
nh

     
. Thus it converges to zero at a faster rate compared to the existing 

non-parametric estimators which generally converge at the rate ( )2P
O h . 

3.2. The Asymptotic Variance of the Proposed Estimator 

We can express the estimator of the finite population mean as 

     (32) 

Using the assumption nh →∞  the remainder terms ( , )
j j
r x X

 
converge to zero in 

Probability and the above expression reduces to, 
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         (33) 

Truncating the binomial expansion at the first term yields 

             (34) 

The variance of the estimator is then defined by 

                (35) 

          (36) 

Using the Taylor series expansion of the term  the variance expression above can be written as 

2 2 2

2 2 2 2
1

1 1 1
( ) ( ; ) ( )

n

MBC i j i P
i s j p s j

Var Y x x h x O
N N n h

σ ω σ
∈ ∈ − =

       = + +          
∑ ∑ ∑                   (37) 

This implies that is more efficient than the usual non-parametric regression estimator 
Proposed by Dorfman (1992) 

3.3. The Asymptotic Mean Squared Error of the Proposed Estimator 

The Mean squared error of M BCY  is given by 

( ) 2
    = +     MBC MBC MBCMSE Y Var Y Bias Y                                (38) 

Substituting the expressions for the variance and the bias in the above equation yields, 

2

2 2 2

2 2 2 2
1

1 1 1 1
( ) ( ; ) ( )

∈ ∈ − =

      = + + +      
     

∑ ∑∑
n

i j i P P

i s j p s j

x x h x O O
nhN N n h

σ ω σ                    (39) 

2 2 2

2 2 2 2
1

1 1 1
( ) ( ; ) ( )

∈ ∈ − =

   = + +   
  

∑ ∑∑
n

i j i P

i s j p s i

x x h x O
N N n h

σ ω σ  (40) 

2 21 1 1 1
( ) ( ) 0

∈ ∈ −

  
 ≤ + ≤ 

−     
∑ ∑i i

i s j p s

x x
N N N N n

σ σ        (41) 

As → ∞n  and → ∞h  the mean squared error tends to 

zero indicating that the proposed estimator is statistically 
consistent. 

4. Empirical Study 

We perform a simulation experiment in order to investigate 
the statistical properties of the proposed estimator as well as 
compare its performance to that of the Nadaraya-Watson and 

the ratio estimators. We consider a case where only one auxiliary 
variable is available and generate them as independent and 
identically distributed on uniform (0, 1) random variables. We 
examine five simulated populations generated from the 
following regression model, 

( )= +i i iY xµ ε  1 2000≤ ≤i  

With mean functions 

1( ) 1 2( 0.5)= + −x xµ                   (Linear) 

2
2 ( ) 1 2( 0.5)= + −x xµ               (Quadratic) 

[ ] [ ]3 0.65 0.65( ) 1 2( 0.5) 0.65≤ ≥= + − +
x x

x x I Iµ   (Jump) 

4 ( ) 2 2sin(2 )= +x xµ π                    (Sine) 



323 Bonface Miya Malenje et al.:  A Multiplicative Bias Corrected Nonparametric Estimator for a Finite Population Mean  
 

5 ( 8 )= −exp xµ                  (Exponential) 

2
6 1 2( 0.5) exp( 200( 0.5) )= + − + − −x xµµµµ   (Bump) 

The linear function 1( )xµ  is correct specification for the 

ratio estimator and therefore it is expected that the ratio 
estimator will perform better than the other estimators under 
this model because it is rightly specified. 

The errors are independent and identically distributed with 

zero means and standard deviation 1=σ . Five hundred 

samples of size 500 were generated using simple random 
sampling without replacement. The sampling is done with 
indices due to the assumed relationship between the study 
variable and the auxiliary variable that has to be reflected in 
the simulation. We compare the performance of the proposed 

estimator, MBC
Y  with the Nadaraya Watson estimator NW

Y , 

ratio estimator, RATIO
Y . 

The following diagrams represent the plots of the linear, 
quadratic, jump, exponential and the sine populations. 

 
Fig. 1. Plots of the linear, quadratic,sine, exponential, bump and the jump populations. 

Table 1. Summary Results of the unconditional Biases and Mean Squared Error. 

Mean function MBC
Y  NW

Y  RATIO
Y  

 BIAS MSE BIAS MSE BIAS MSE 

Linear 0.000292 1.31010 -0.000845 1.311201 0.000117 0.97453 

Quadratic -0.000169 1.00253 -0.000174 1.00410 0.001431 1.49366 

Sine -0.000243 1.49014 0.001275 1.49177 0.004628 4.18035 

Exponential -0.000770 1.03117 -0.001467 1.03211 0.030857 2.06845 

Jump -0.000733 0.99325 -0.00089 0.99480 0.002222 1.90373 

Bump 0.000639 1.36964 0.001424 1.37083 0.052467 3.03956 

 

The unconditional biases are computed as 
1

( )
500

−∑ MBCY Y , 

1
( )

500
−∑ NWY Y , 

1
( )

500
−∑ RATIOY Y . The unconditional 

Mean Squared Errors are computed for each of the estimators. 
We also computed the 95% confidence interval lengths for 
each of the estimators under the different populations. 

Table 1 gives the results of the unconditional Biases and the 
unconditional Mean Squared Error of the multiplicative bias 

corrected Nadaraya Watson Estimator, MBCY  the 

Nadaraya-Watson estimator NWY , and the ratio estimator, 

RATIOY  applied to finite mean estimation for different mean 

functions. It can be seen that the bias of the multiplicative bias 

corrected estimator is much lower than those of the 
Nadaraya-Watson estimator and the corresponding MSE of 
the multiplicative bias corrected estimator is also lower than 
that of the Nadaraya Watson estimator for each of the mean 
functions. 

Table 2 gives a comparison of the coverage probabilities of 
the three estimators for the different mean functions. The 
coverage probabilities for the Multiplicative bias corrected 
estimator are closer to the nominal value than are the coverage 
probabilities for the Nadaraya-Watson estimator .The 
coverage ability of MBCY  is better than that of NWY .The 
ratio estimator has the best coverage ability under the linear 
mean function and outperforms the other two estimators.  
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Table 2. Summary results of the unconditional coverage probabilities. 

Mean function MBC
Y  NW

Y  RATIO
Y  

Linear 0.907 0.884 0.937 

Quadratic 0.805 0.793 0.034 

Sine 0.918 0.896 0.133 

Exponential 0.933 0.876 0.234 

Jump 0.952 0.915 0.016 

Bump 0.948 0.929 0.643 

Table 3 gives a comparison of the 95% confidence interval 

lengths for the Multiplicative Bias corrected estimator, 
Nadaraya Watson estimator and the ratio estimator for the 
different mean functions. The confidence intervals generated 
by the Multiplicative bias corrected estimator are much tighter 
than those generated by the Nadaraya Watson estimator and 
the ratio estimator. The results indicate that the multiplicative 
bias corrected estimator outperforms the usual non-parametric 
regression estimator proposed by Dorfman (1992) at 95% 
coverage rate. 

Table 3. Summary results of the unconditional Bootstrap confidence interval 

lengths. 

Mean function MBC
Y  NW

Y  RATIO
Y  

Linear 0.1449937 0.198121 0.126388 

Quadratic 0.034785 0.063455 0.155434 

Sine 0.047185 0.170652 0.257946 

Exponential 0.043652 0.077384 0.132733 

Jump 0.093663 0.126653 0.174328 

Bump 0.040595 0.129329 0.148295 

To study the conditional performance of the selected 
estimators, the 500 samples obtained were sorted by the value 

of x into groups of 20 samples so that we had a total of 25 
groups. We then computed the empirical means and bias 
within each group. The plots of the conditional biases versus 

( )−x X  obtained for the three estimators under the different 

functions all indicated similar results. We report the behavior 
of the conditional bias under the linear mean function. 

 

Fig. 2. Plots of the conditional biases of MBCY , NWY  and RATIOY  

versus ( )−x X . 

Figure 2 reports the behavior of the conditional bias plotted 

against the average values of ( )−x X . The Nadaraya Watson 

estimator and the ratio estimator are substantially 
conditionally biased. The Multiplicative bias corrected 
estimator on the other hand is approximately conditionally 
unbiased. 

5. Conclusions and Recommendations 

The aim of this study was to develop a bias robust estimator 
for the finite population mean using the multiplicative bias 
correction approach to nonparametric regression. The study 
reveals that the derived estimator is more efficient than the 
Nadaraya Watson estimator. The proposed estimator has 
smaller bias, lower mean squared error, better coverage ability 
and tighter confidence interval lengths compared with the 
Nadaraya-Watson estimator. It is also approximately 
conditionally unbiased. It has therefore proved to be efficient 
in correcting boundary problems that are associated with the 
existing nonparametric regression smoothers. 
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