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Abstract: The idea of pool testing originated with Dorfman during the World War II as an economical method of testing 

blood samples of army inductees in order to detect the presence of infection. Dorfman proposed that rather than testing each 

blood sample individually, portions of each of the samples can be pooled and the pooled sample tested first. If the pooled 

sample is free of infection, all inductees in the pooled sample are passed with no further tests otherwise the remaining portions 

of each of the blood samples are tested individually. Apart from classification problem, pool testing can also be used in 

estimating the prevalence rate of a trait in a population which was the focus of our study. In approximating the prevalence rate, 

one-at-a-time testing is time consuming, non-cost effective and is bound to errors hence pool testing procedures have been 

proposed to address these problems. This study has developed statistical model which is used to sequentially switching 

between two experiments when the sensitivity and specificity of the test kits is less than 100%. The experiments are selected 

sequentially, so that at each stage, the information available at that stage is used to determine which experiment to carry out at 

the next stage. The method of maximum likelihood estimator (MLE) was used in obtaining the estimators. The fisher 

information of different experiments is compared and the cut off values where one experiment is better than the other are 

calculated. The variance of the estimators has also been compared. The joint model has been compared to one-at-a-time and 

pool testing models by computing ARE. The joint model is found to be more efficient.  

Keywords: Pool, Pool Testing, Cut off Value, Prevalence Rate, Sensitivity, Specificity 

 

1. Introduction 

Sequential testing of a population in the form of pools 

began by Dorfman [2] as an economical method of testing 

blood samples of army inductees in order to detect the 

presence of infection. Johnson et al. [6] and Nyongesa [14] 

extended Dorfman [2] work to multistage with the aim of 

reducing the number of tests. Computational testing with the 

first objective of classifying subjects has been developed by 

Maheswaran et al. [10]. Recently more research work are 

focused on the second objective for estimating the rate of 

trait. Thomson [18] studied the estimation problem using 

pool testing. This was later considered by Brookmayer [1] by 

introducing errors. 

Sufficiently accurate estimate of the prevalence can be 

obtained from testing pooled samples as demonstrated by 

Hammick and Gastwirth [4]. Their procedure provides 

greater protection of respondent’s anonymity which can lead 

to greater participation in the survey. On the same year, 

Gastwirth and Johnson [3] used pool testing to estimate HIV 

prevalence cost-effectively. Of recent Xie et al. [19] have 

demonstrated how pool testing can reduce costs in early 

stages of drug discovery. Janis et al. [5] considered 

sequentially deciding between two experiments for 

estimating a common success prevalence rate where he 

considered the individual Bernoulli (p) trials or the product 

of k individual independent Bernoulli ( )kp  trials. Nyongesa 

[13] proposed pool testing when members that form the 

population under investigation are pooled together in pools 

and these pools are given a test. Pools that test negative, 

further testing are discontinued but if the reading is positive 
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the pool is divided into blocks of equal sizes. The blocks are 

further tested and those that test positive the constituent 

members are tested individually for the presence or absence 

of the trait under investigation. Pools that test negative are 

given a retest and those that test positive on retest member 

constituents are tested individually. Nyongesa [13] used 

moment method to estimate the prevalence and he observed 

that his proposed testing procedure reduced misclassification, 

particularly the false positives. Computational statistics has 

been used in pool testing to compute the statistical measures 

when perfect and imperfect tests are used (Syaywa and 

Nyongesa [16]; Tamba et al. [17]).  

Pool testing can be applied in many areas as outlined by 

Sobel and Groll [15]. The first application of pool-testing 

was to the problem of pooling blood samples in order to 

classify each one of a large group of people as to whether or 

not they have a particular disease. Mundel [12] showed that 

group testing can be applied in industries for example, in 

making a "leak test" on a large number of gas-filled 

electrical devices, one can test any number of units in a 

single test and the result of test on k units is that either all k 

are good (no leak) or at least 1 of the k is defective. Another 

application is in testing various electrical devices such as 

condensers, resistors, etc. Pool testing has been applied in 

screening the population for the presence of HIV antibody 

(Kline et al. [8] and Manzon et al. [11]). Litvak et al. [9], 

applied pool testing in screening HIV antibody to help curb 

the further spread of the virus. Litvak et al., [9] showed that 

pooling offers a feasible way to lower the error rates 

associated with labelling samples when screening low risk 

HIV population. For instance, given the limited precision of 

the available test kits, it has been shown that screening 

pooled sera can be used to reduce the probability that a 

sample labelled negative in fact has antibodies since each 

test has a certain sensitivity and specificity. Juan and Wenju 

[7] have provided algorithm for the computations of pool 

sizes.  

The essence of this study is to device a method of selecting 

between two experiments namely:  

i) individual testing of items of a population with a view to 

estimating prevalence rate ,p  in this experiment we shall 

assume the tests are imperfect that is to say the test have 

, 100%,η β <  where η and β  are sensitivity and specificity 

respectively, this experiment here in denoted by ,
I

P   

ii) pool testing experiment as proposed by Dorfman [2] but 

with errors in inspection. This experiment here in denoted by 

.
G

P   

The rest of the paper is arranged as follows: in Section 2 

we shall develop the models and formula for calculating their 

Fisher information, in Section 3 we shall plot the graphs of 

Fisher information against the value of p. In Section 4 we 

shall compute the cut off values. In Section 5 we shall 

develop the maximum likelihood estimators of p  and their 

asymptotic variance. Section 6 we shall compare the 

asymptotic variances of the maximum likelihood estimators 

by plotting their graphs. In Section 7 we shall compute the 

ARE values and in section 8 we shall have discussion and 

conclusion of the study. 

2. The Models 

The model have been split into two that is P
I
-experiment 

and P
G
-experiment. P

I
-experiment means estimating the 

prevalence rate of the characteristic of interest with testing 

each individual under study while P
G
-experiment means 

estimating the prevalence rate of the characteristic of interest 

by putting together items or individuals to form a pool and 

testing the pool rather than testing each subject. Throughout 

the study m  and n  have been assumed to be the number of 

observations from the P
I
-experiment and the P

G
-experiment 

respectively with N m n= + , the total number of 

observations from both experiments. 

2.1. The I
P  Experiment 

In our study the P
I
-experiment will involve estimating 

prevalence rate of the characteristic of interest with testing 

each individual under study. Suppose the P
I
-experiment is to 

be used to estimate the prevalence rate p  of interest and if 

1i
X for 1,..., mi =  is a sequence of identically independent 

distributed random variable, then 
1 1

~ B ( )
i

X ernouli τ  where 

1
τ  is the probability of declaring an individual as positive i.e 

1
(1 )(1 p)pτ η β= + − − . 

For a single experiment, the probability density function is  

1 1

1

1

( , | , )

( (1 )(1 p)) ((1 ) p (1 ))
−= + − − − + −i i

i

x x

f x p

p p

η β
η β η β

.   (1) 

The Fisher information on the prevalence rate p  contained 

in a single observation denoted by 
1
(P )

I

xI  is  

1

2

1 1

( 1)
(P )

(1 )

I

xI
η β
τ τ

+ −=
−

.                  (2) 

If m  observations from only the P
I
-experiment are used to 

estimate p , then the likelihood function of Equation (1) is 

1 1

1 11 1

1

1 1 1
1

1 1

L(x ,p | , ) (1 )

(1 )

i i

m m

i ii i

m
x x

i
i

x m x

η β τ τ

τ τ= =

−

=

−

= Π −

∑ ∑= − . 

Therefore the estimator of p from P
I
-experiment is 

111

ˆ
1

m

ii

I

m

x

mp

β

η β

=− +
=

+ −

∑
                   (3) 

and the asymptotic variance of 1ˆ
m

p  is  

1 1 1

2

(1 )
ˆvar( )

( 1)
mp

τ τ
η β

−
=

+ −
.                (4) 
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2.2. The P
G
-experiment 

The P
G
-experiment involve putting together items to form 

a pool and testing the pool rather than testing each individual 

for the evidence of a characteristic of interest. A negative 

reading indicates that the pool contains no defective item and 

a positive reading indicates at least one defective item in the 

pool. Pooling procedures have proved to reduce the cost of 

testing when the prevalence rate is low. In this experiment, 

the probability of declaring a pool of size k  positive will be 

denoted by 
2

τ  and for analysis purposes, we shall assume 

that the constituent members of a pool act independent of 

each other with 
2

(1 (1 p) ) (1 )(1 p)k kτ η β= − − + − − . Let 
2 j

X  

denote a sequence of identically independent distributed 

random variable for 1,...,j n= , then 
2 2

~ ( )
j

X Bernouli τ . 

For a single experiment equivalently the probability density 

function is  

( ) ( )2 21

2 2 2
( , | , , ) 1j jx x

j
f x p kη β τ τ −= −         (5) 

from which the fisher information denoted by 
2
(P )

G

xI  is 

2

2 2 2 2

2 2

(1 p) ( 1)
(P )

(1 )

k
G

x

k
I

η β
τ τ

−− + −=
−

.            (6) 

Suppose there are n  pools from the P
G
-experiment each of 

size k, available for estimating p  and suppose 
2 j

X  pool test 

positive on the test. Then from Equation (5), the maximum 

likelihood estimator of p from the GP -experiment is 

1

21

ˆ 1
1

n k

jj

G

n

x

np

η

η β

=
 
 −
 = −  + −
 
 
 

∑
                      (7) 

and the asymptotic variance of ˆ G

n
p  is  

2 2

2 2 2 2

(1 )
ˆvar( )

k (1 p) ( 1)

G

n k
p

τ τ
η β−

−
=

− + −
.           (8) 

2.3. The Joint Model 

If m  is the number of observations from P
I
-experiment 

and n  is the number of observations from P
G
-experiment, 

assuming independence, then the joint probability density 

function of the random variables 
1i

X  and 
2 j

X  from the P
I
-

experiment and P
G
-experiment respectively is a multinomial 

probability density function given by the product of their 

density functions  

2 21 1
11

1 1 2 2( , | , , ) (1 ) (1 )j ji i
x xx x

f x p k η β τ τ τ τ −−= − × − .  (9) 

The joint likelihood function of Equation (9) is 

[ ] [ ] [ ] [ ]{ }1 1 2 21 1 1 1

1 1 2 2

L( , | k, , )

1 1= = = =
− −∑ ∑ ∑ ∑= − × −

m m n n

i i j ji i j j
x m x x n x

x p η β

τ τ τ τ
 

where the maximum likelihood estimator (MLE) is obtained 

by solving  

2 21 1 11 1 2

1 1 2 2

m
0

(1 ) (1 )

nm

ji ji
x nx d d

dq dq

ττ τ τ
τ τ τ τ

==
−−

+ =
− −

∑∑
.      (10) 

Since ,k andβ η  are known constants, then Equation 

(10) is a continuous function of 1q p= −  and a unique value 

of q, that satisfy the equation exists since its plot cuts the q-

axis at a point as q varies from 0 to 1. The value of q, 

denoted by ˆ
mle

q , that satisfy Equation (10) can be solved 

iteratively as follows: 

Let 

2 21 1 11 1 2

1 1 2 2

m
(q)

(1 ) (1 )

nm

ji ji
x nx d d

f
dq dq

ττ τ τ
τ τ τ τ

==
−−

= +
− −

∑∑
, 

then a unique value of q  exists such that (q) 0f = . Consider 

a tangent line of (q)f that passes through the point 

0 0
(q , f(q ))  and 

1
(q , 0)  where 

0
q  is the initial approximation 

of the root of (q)f , then the gradient of the tangent line at 

the point 
0 0

(q , f(q ))  denoted by 
0

'(q )f  is given by 

0

0

0 1

(q )
'(q )

f
f

q q
=

−  
and solving for 

1
q  leads to 0

1 0

0

(q )

'(q )

f
q q

f
= − . 

Similarly 1

2 1

1

(q )

'(q )

f
q q

f
= − , 2

3 2

2

(q )

'(q )

f
q q

f
= − . In general 

1

(q )

'(q )

i

i i

i

f
q q

f
+ = −  where '( )f ⋅  is the derivative of the 

function (q)f  which is not equal to zero for any value of 
i

q  

for 0, 1, 2,i = ⋯⋯ . The iteration will stop if 
1i iq q ε+ − <  

for some arbitrary value ε , and since the series converges, 

1i
q +  is taken as an approximate value of ˆ

mle
q  which is the 

solution of Equation (10). The ‘while’ matlab loop was used 

for solving Equation (10). 

The asymptotic variance of ˆ
mle

p  of the joint model where 

ˆ ˆ1
mle mle

p q= −  is 

1 2 1 2(1 )(1 )
ˆvar( )mlep

Q

τ τ τ τ− −
=               (11) 

where { }2 2 2 2

2 2 1 1( 1) (1 ) (1 ) (1 )kQ m nk pη β τ τ τ τ−= + − − + − − .  

3. Comparison of ( )xI ⋅ of I
P and G

P

Experiments 

In this section we compare the performance of each of the 

two procedures by plotting the graphs of ( )
x

I ⋅  of IP and P
G
-
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experiment for various values of , ,k η β versus p . 

 
Figure 1. A graph of Fisher Information against the value of p with 

0.99= =η β and 2=k . 

 

Figure 2. A graph of Fisher Information against the value of p with 

0.99= =η β  and 5=k . 

 

Figure 3. A graph of Fisher Information against the value of p with 

0.99= =η β and 10=k . 

 

Figure 4. A graph of Fisher Information against the value of p with 

0.95= =η β and 2=k . 

 

Figure 5. A graph of Fisher Information against the value of p with 

0.95= =η β and 5=k . 

 

Figure 6. A graph of Fisher Information against the value of p with 

0.95= =η β and 10=k . 
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Figure 7. A graph of Fisher Information against the value of p with 

0.90= =η β and 2=k . 

 

Figure 8. A graph of Fisher Information against the value of p with 

0.90= =η β and 5=k . 

 

Figure 9. A graph of Fisher Information against the value of p with 

0.90= =η β and 10=k . 

 

Figure 10. A graph of Fisher Information against the value of p  with 

0.80= =η β and 2=k . 

 

Figure 11. A graph of Fisher Information against the value of p  with 

0.80= =η β and 5=k . 

 

Figure 12. A graph of Fisher Information against the value of p with 

0.80= =η β and 10=k . 

As seen from Figures 1 to 12, the plot of the Fisher 
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information of the P
I
-experiment is symmetric and concave 

upwards i.e the Fisher information is very high for values of 

p close to 0 and for the values of p close to 1. It is minimum 

for the values of p about 0.5. It can also be noted that the 

change of the value of k does not affect the Fisher 

information of the P
I
-experiment since the P

I
-experiment is 

independent of k. As sensitivity and specificity of the tests 

increases the Fisher information for P
I
-experiment also 

increases. The graph of Fisher information of the P
G
-

experiment is found to be strictly decreasing as the value of 

the parameter p increases from 0 to 1. A striking feature also 

to note is that the relationship between the Fisher information 

and the parameter p is sensitive to k as the slope of the curve 

changes with varying k. The curve become steeper as k 

increases but the slope become less steep and almost 

levelises as p approaches 1. It is also noted that as k increases 

the curve of the Fisher information of the P
G
-experiment shift 

to the left of the graph meaning that the region for which P
G
-

experiment is better than the P
I
-experiment shrinks. As 

sensitivity and specificity of the tests increases the region at 

which the Fisher information of P
G
-experiment is higher than 

for the P
I
-experiment increases. It can also be observed that 

pool testing is only visible and better than individual testing 

strategy where the prevalence rate is small which concurs 

with the idea of Dorfman [2] that pool testing is only viable if 

the prevalence rate is low otherwise the use of P
I
-experiment 

is recommended. 

4. Computation of Cut off Values 

The cut off value shall be defined as the value of p at 

which the Fisher information for the IP -experiment and the 
GP -experiment are equal or the value of p  at the point of 

intersection of the graphs of (P ) (P )I G

x x
I and I . 

If we let ' 'a  be the cut off value, then ' 'a  is a unique root 

in (0,1)  of the equation (P ) (P )I G

x x
I I=  i.e

  

2 2 2 2 2

1 1 2 2

( 1) (1 ) ( 1)

(1 ) (1 )

k
k pη β η β

τ τ τ τ

−+ − − + −=
− −

 

2 2 2 2 2

1 1 2 2

( 1) (1 ) ( 1)
0

(1 ) (1 )

k
k pη β η β

τ τ τ τ

−+ − − + −− =
− −

 

2 2 2

1 1 2 2

1 (1 )
0

(1 ) (1 )

k
k p

τ τ τ τ

−−− =
− −

 

2 2 2

2 2 1 1
(1 ) k (1 p) (1 ) 0kτ τ τ τ−− − − − =

 2 2 2

2 2 1 1
(1 )(1 p) k (1 p) (1 ) 0kτ τ τ τ− − − − − =        (12) 

since ,k andβ η  are known constants, then Equation (12) is 

a function of p , of which the value of p  can be solved 

iteratively as follows: 

Let  

2 2 2

2 2 1 1
(p) (1 )(1 p) k (1 p) (1 )kf τ τ τ τ= − − − − − ,       (13) 

then the function (p)f  is continuous in the interval ( )0,1  

and from Figures 1 to 12 of the graphs of Fisher information, 

there exist a value p, such that Equation (13) is equal to zero 

which is the point of intersection of the two curves. Consider 

a tangent line of (p)f  that passes through the point 

0 0
(p , f(p ))  and 

1
(p , 0)  where 

0
p  is the initial approximation 

of the root of (p)f , then the gradient of the tangent line at 

the point 
0 0

(p , f(p ))  denoted by 
0

'(p )f  is given by 

0

0

0 1

(p )
'(p )

f
f

p p
=

−  
and solving for 

1
p  yields 0

1 0

0

(p )

'(p )

f
p p

f
= − . 

Similarly 1

2 1

1

(p )

'(p )

f
p p

f
= − , 2

3 2

2

(p )

'(p )

f
p p

f
= − . In general 

1

(p )

'(p )

i

i i

i

f
p p

f
+ = −  where '( )f ⋅  is the derivative of the 

function (p)f  which is not equal to zero for any value of 
i

p  

for 0, 1, 2,......i = . The iteration will stop if 
1i ip p ε+ − <  for 

some arbitrary value ε  which is the error term which should 

be small. If the series converges,
1i

p +  is taken as an 

approximate value of ' 'a  which is the solution of Equation 

(12). The ‘while’ matlab loop was used for solving Equation 

(13). 

For various values of ,k η  and β  the values of the roots 

of Equation (13) or the cut off values are given in Table 1: 

Table 1. Cut off values for various values of ,k andη β . 

 a  

k  .η β= = 0 99  .0 95η β= =  0.90η β= =  .η β= = 0 80  

2 0.646 0.596 0.563 0.528 

3 0.555 0.507 0.477 0.446 
5 0.439 0.395 0.371 0.348 

10 0.296 0.263 0.248 0.234 

15 0.227 0.201 0.190 0.181 
20 0.185 0.164 0.156 0.150 

50 0.092 0.082 0.080 0.078 

From Table 1 it can be observed that as the pool size (k) 

increases, the cut off point value decreases for various values 

of η  and β  i.e the region in which the P
G
-experiment is 

better shrinks. This concurs with the conclusion that pool 

testing is only feasible when the pool size are reasonably 

small. It can also be observed that as sensitivity and 

specificity of the test kits increases the region in which the 

P
G
-experiment is better also increases.  

For example at 0.90η β= = , k = 5 and if N tests are 

available, the maximum information about p is obtained 

when 

0.371

0.371

0.371

G

I

I G

observe all P if p

N observe all P if p

arbitrary P or P if p

 <


= >
 =

 

In general, if N tests are available, then the allocation that 
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maximizes the information about p is 

.

G

I

I G

observe all P if p a

N observe all P if p a

arbitrary P or P if p a

 <


= >
 =

 

Note that the region where one experiment is better than 

the other depends on the unknown parameter p . Thus the 

obvious adaptive rule is suggested where p  is estimated at 

each stage and the next observation is allocated depending on 

the relationship between the estimated p  and the cut off 

point value.  

5. Estimator of Prevalence Rate, Its 

Variance and Confidence Interval 

In this section we compute the maximum likelihood 

estimator p̂  of the prevalence rate, the variance and 95% 

Wald-type confidence interval of the maximum likelihood 

estimator for various values of sensitivity, specificity and 

pool size. 

Table 2. Maximum likelihood estimator, variance and Confidence interval 

for different values of p for 99%= =η β and 5, 10=k
.
 

 p  p̂  ˆvar(p) 410−×  95% CI  

5k =  

0.01 0.0160 0.3266 -0.0086, 0.0407 

0.05 0.0465 0.8728 0.0052, 0.0878 

0.10 0.1190 2.291 0.0556, 0.1825 
0.20 0.2027 4.226 0.1239, 0.2815 

10k =  

0.01 0.0113 0.1224 -0.0094, 0.0319 

0.05 0.0567 0.6592 0.01138, 0.1021 
0.10 0.1119 1.605 0.0501, 0.1736 

0.20 0.2337 6.136 0.1500, 0.3168 

Table 3. Maximum likelihood estimator, variance and Confidence interval 

for different values of p for 90%= =η β and 5, 10=k . 

 p  p̂  ˆvar(p) 410−×  95% CI  

5=k  

0.01 0.0034 0.6200 -0.0081, 0.0150 

0.05 0.0561 1.9000 0.0110, 0.1013 

0.10 0.0831 2.6000 0.0290, 0.1373 

0.20 0.1634 5.1800 0.0909, 0.2359 

10=k  

0.01 0.0073 0.2310 -0.0094, 0.0238 

0.05 0.0597 1.1100 0.0133, 0.1061 

0.10 0.1106 2.6000 0.0491, 0.1720 

0.20 0.2039 9.6000 0.1249, 0.2828 

Table 4. Maximum likelihood estimator, variance and Confidence interval 

for different values of p for 80%= =η β  and 5, 10=k
.
 

 p  p̂  ˆvar(p) 410−×  CI95%  

5=k  

0.01 0.0148 2.1900 -0.0089, 0.0385 

0.05 0.0542 3.6400 0.0098, 0.0986 

0.10 0.1164 6.5640 0.0535, 0.1793 

0.20 0.1789 10.748 0.1038, 0.2547 

10=k  

0.01 0.0172 0.0780 -0.0083, 0.0428 

0.05 0.0306 0.0940 -0.0032, 0.0644 

0.10 0.1000 4.120 0.0412, 0.1588 

0.20 0.2767 4.128 0.1890, 0.3644 

From Tables 2 to 4 it can be noted that the maximum 

likelihood estimators of the prevalence rate are very close to 

the actual value which was used to simulate the estimators. 

The population estimators resulting from the experiments are 

used to evaluate the (1 )100%α−  confidence limits of the 

confidence interval of the simulated estimators where α  is 

the level of significance and it can be noted from Tables 2 to 

4 that the actual value is within the upper and the lower 

limits. 

6. Comparison of Variances 

In this section we shall plot the graphs of the variance for 

P
I
, P

G
-experiments and joint model for various values of 

,k η  and β  versus p  values. 

 

Figure 13. A graph of ˆ(p)Var  as a function of p with 0.99= =η β and 

2=k . 

 

Figure 14. A graph of ˆ(p)Var  as a function of p with 0.99= =η β and 

5k = . 
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Figure 15. A graph of ˆ(p)Var  as a function of p with 0.99= =η β and 

10=k . 

 

Figure 16. A graph of ˆ(p)Var  as a function of p with 0.95= =η β and 

2=k . 

 

Figure 17. A graph of ˆ(p)Var  as a function of p with 0.95= =η β and 

5=k . 

 

Figure 18. A graph of ˆ(p)Var  as a function of p with 0.95= =η β and 

10=k . 

 

Figure 19. A graph of ˆ(p)Var  as a function of p with 0.90= =η β and 

2=k . 

 

Figure 20. A graph of ˆ(p)Var  as a function of p with 0.90= =η β and 

5=k . 
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Figure 21. A graph of ˆ(p)Var  as a function of p with 0.90= =η β and 

10=k . 

 

Figure 22. A graph of ˆ(p)Var  as a function of p with 0.80= =η β and 

2=k . 

 

Figure 23. A graph of ˆ(p)Var  as a function of p with 0.80= =η β and 

5=k . 

 

Figure 24. A graph of ˆ(p)Var  as a function of p with 0.80= =η β and 

10=k . 

As seen from Figures 13 to 24 the plot of ˆvar(p )I

m
 is 

concave downwards and symmetric, maximum at 

approximate value of p equal 0.5. The ˆvar(p )I

m
 is unaffected 

by the change of the value of k holding specificity and 

sensitivity constant since the model is independent of k. As 

specificity and sensitivity of the tests increases the ˆvar(p )I

m
 

decreases. It can also be noted that the ˆvar(p )G

n
 increases 

exponentially as the value of the parameter p increases from 

0 to 1. As k increases, the ˆvar(p )G

n
 decreases keeping 

sensitivity and specificity constant while holding k constant, 

increasing sensitivity and specificity of the tests decreases the

ˆvar(p )G

n
. The ˆvar(p )

mle
 increases as the value of the 

parameter p increases but thereafter it starts decreasing as p 

gets closer to 1. The ˆvar(p )
mle

 increases as the value of k 

increases keeping sensitivity and specificity constant while 

holding k constant, increasing sensitivity and specificity 

decreases the value of ˆvar(p )
mle

. As the value of k increase 

the plot of the ˆvar(p )G

n
 shifts to the left meaning the region in 

which the ˆvar(p )G

n
 is higher than the ˆvar(p )I

m
 decreases. As 

sensitivity and specificity of the tests increases the area in 

which ˆvar(p )G

n
 is higher than the ˆvar(p )I

m
 increases. For 

small values of the parameter p, the ˆvar(p )
mle

 is smaller than 

the ˆvar(p )I

m
 and ˆvar(p )G

n
 but is equal to the ˆvar(p )I

m
 for the 

values of p close to 1. The region in which the ˆvar(p )
mle

 is 

higher than the ˆvar(p )G

n
 increases exponentially as the value 

of p increases from 0 to 1 however the region in which it is 

better than ˆvar(p )I

m
 increases then it starts decreasing again 

and they are equal for the values of p close to 1. As the value 

of k increases, the region in which the ˆvar(p )
mle

 and ˆvar(p )I

m
 

are equal increases. In general we observed that the ˆvar(p )
mle

 

is smaller or equal to the ˆvar(p )I

m
 or ˆvar(p )G

n
 for 0 1.p≤ ≤  
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7. Asymptotic Relative Efficiency (ARE) 

In this section, ˆvar(p )
mle

, ˆvar(p )I

m
 and ˆvar(p )G

n
 have been 

compared. This is accomplished by computing asymptotic 

relative efficiency (ARE) values for various values of , , kη β  

and .p  Let 1
ˆvar(p )

ˆvar(p )

mle

I

m

ARE =  and 2
ˆvar(p )

ˆvar(p )

mle

G

n

ARE =  then, 

1.0ARE <  implies that the joint model is more efficient than 

the other two models namely P
I
- and P

G
-procedures.  

Table 5. The ARE of the joint model relative to PI- and PG-models with 

0.99= =η β . 

p-value  2k =  3k =  5k =  10k =  

0.01 
1ARE  0.273 0.183 0.109 0.054 

2ARE  0.727 0.817 0.891 0.946 

0.05 
1ARE  0.320 0.238 0.162 0.098 

2ARE  0.680 0.762 0.838 0.902 

0.10 
1ARE  0.336 0.260 0.189 0.136 

2ARE  0.664 0.740 0.810 0.864 

0.15 
1ARE  0.346 0.276 0.215 0.186 

2ARE  0.654 0.724 0.785 0.814 

0.20 
1ARE  0.356 0.293 0.244 0.257 

2ARE  0.644 0.707 0.756 0.743 

0.30 
1ARE  0.376 0.331 0.321 0.513 

2ARE  0.623 0.669 0.679 0.487 

Table 6. The ARE of the joint model relative to PI- and PG-models with 

0.90= =η β . 

p-value  2k =  3k =  5k =  10k =  

0.01 
1ARE  0.213 0.115 0.051 0.018 

2ARE  0.787 0.885 0.94 0.982 

0.05 
1ARE  0.252 0.160 0.092 0.048 

2ARE  0.748 0.840 0.908 0.951 

0.10 
1ARE  0.283 0.199 0.134 0.960 

2ARE  0.717 0.801 0.866 0.904 

0.15 
1ARE  0.306 0.231 0.175 0.172 

2ARE  0.694 0.769 0.825 0.828 

0.20 
1ARE  0.325 0.261 0.223 0.304 

2ARE  0.675 0.739 0.777 0.696 

0.30 
1ARE  0.362 0.326 0.357 0.746 

2ARE  0.638 0.674 0.643 0.254 

Table 7. The ARE of the joint model relative to PI- and PG-models with 

0.80= =η β . 

p-value  2k =  3k =  5k =  10k =  

0.01 
1ARE  0.207 0.108 0.045 0.014 

2ARE  0.493 0.892 0.955 0.986 

0.05 
1ARE  0.231 0.136 0.071 0.034 

2ARE  0.769 0.864 0.929 0.966 

0.10 
1ARE  0.257 0.169 0.107 0.077 

2ARE  0.743 0.831 0.893 0.923 

0.15 
1ARE  0.281 0.202 0.151 0.164 

2ARE  0.719 0.798 0.849 0.836 

0.20 
1ARE  0.304 0.238 0.208 0.332 

2ARE  0.696 0.762 0.792 0.668 

0.30 
1ARE  0.351 0.321 0.383 0.816 

2ARE  0.649 0.679 0.617 0.184 

Tables 5 to 7 of the computed values of ARE of the 

proposed model relative to P
I
- and P

G
-models reveal the 

same trend whereby if η  and β  are held constant, it is 

observed that as the value of k increases from 2 to 10, ARE
1
 

decreases for small values of p but as p increases where

(0, 3]p ∈ , the ARE
1
 decreases and then it starts increasing. 

ARE
2
 increases as the value of k increases from 2 to 10 for 

small values of p but also as p increases where (0, 3]p ∈  it 

starts decreasing. It can also be observed that holding k 

constant and increasing the value of p increases ARE
1
 while 

ARE
2
 decreases. As sensitivity and specificity of the tests 

decreases ARE
1
 decreases while ARE

2
 increases. It can also 

be noted that for the given interval of p { (0, 0.3]pε } ARE
1
 is 

less than 0.5 implying that P
I
-experiment is less than 50% 

efficient as the proposed model while ARE
2
 is more than 0.5 

implying that P
G
-experiment is more than 50% as efficient as 

the proposed model. However it is noted that the computed 

values of ARE  are less than 1 hence the proposed joint 

model is more efficient than the other two existing models 

for the given range of p. 

8. Discussion 

From the study, it is found out that the curve of the Fisher 

information for the P
I
-experiment is concave upwards, 

symmetric and it is not affected by change of the pooled 

sample size. Fisher information for the P
G
-experiment is very 

high for small values of p and decreases exponentially as the 

value of p increases from 0 to 1. Increasing the pool size 

decreases the value of Fisher information and at the same 

time shifts the plot of the P
G
-experiment to the left. If the 

pool size is assumed constant, increasing sensitivity and the 

specificity of the tests increases the value of the Fisher 

information of both P
I
- and P

G
-experiments. 

The plot of the asymptotic variance of maximum 

likelihood estimator of p of the P
I
-experiment ( ˆ I

m
p ) against p 

is concave upwards. The ˆvar(p )I

m
 is not affected by change 

of the pool size assuming sensitivity and specificity remains 

the same but treating pool size constant and increasing 

sensitivity and specificity of the tests decreases the variance. 

Similarly the graph of the asymptotic variance of maximum 

likelihood estimator of p of the P
G
-experiment against p 

increases exponentially as the value of p increases from 0 to 

1. The curve for the P
G
-experiment shifts to the left and 

becomes steeper as the value of k increases from 2 to 10 

holding sensitivity and specificity constant. Treating pool 

size constant and increasing sensitivity and specificity of the 

tests decreases the asymptotic variance of ˆ G

n
p .  

The constructed estimator is affected by change of both 

pool size and also sensitivity and specificity of the test kits. 

Increase in pool size increases the variance of the estimator 

holding specificity and sensitivity constant while increasing 

sensitivity and specificity, pool size remaining constant 

decreases the variance. The variance of the constructed 

estimator is smaller compared to the variances of one-at-a-

time experiment and pooled experiment for values of 
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[0,1]pε  hence the constructed estimator is more efficient 

than the previous estimators especially for small values of .p   

9. Conclusion 

This study focused on construction of the new model for 

approximating the prevalence rate of a trait in a population 

with imperfect tests by selecting between two experiments 

namely P
I
- and P

G
-experiments. Ideally the model should 

select the better experiment and once the better experiment is 

being used, the estimator should approximate the individual 

maximum likelihood estimator for that experiment. From this 

study it can be concluded that the P
G
-experiment is better 

than the P
I
-experiment for values of p close to zero but for 

values of p close to 1.0 the P
I
-experiment is recommended. 

Hence from the results of the Fisher information, asymptotic 

variance and ARE, the proposed joint model for sequentially 

selecting between two experiments for estimating the 

prevalence rate of a trait in a population with imperfect tests 

is more efficient than P
I
- and P

G
-models across the entire 

range of parameter values regardless of the total pool size, 

sensitivity and specificity of the tests. 

The developed model have potential in the application of 

HIV testing because it gives a superior estimator of the 

disease prevalence without necessarily identifying the 

subject. The models may also be applied for use by 

pharmaceutical companies in discovering drugs in early 

stages. 

Based on the constructed model, one can extend the 

present work to include a model with more than two 

experiments with misclassification. The present work can 

also be extended not only to approximate p but also the value 

of k (pool size) that will optimize group testing scenario 

based on the new model. A model based on cost analysis 

when sampling from different experiments can also be 

looked at when using imperfect kits.  
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