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Abstract: Mixture experiments are special type of response surface designs where the factors under study are proportions of
the ingredients of a mixture. In response surface designs the main interest of the experimenter may not always be in the
response at individual locations, but the differences between the responses at various locations is of great interest. Most of the
studies on estimation of slope (rate of change) have concentrated in Central Composite Designs (CCD) yet mixture
experiments are intended to show the response for all possible formulations of the mixture and to identify optimal proportions
for each of the ingredients at different locations. Slope optimal mixture designs for third degree Kronecker model were studied
in order to obtained optimal formulations for all possible ingredients in simplex centroid. Weighted Simplex Centroid Designs
(WSCD) and Uniformly Weighted Simplex Centroid Designs (UWSCD) mixture experiments were obtained in order to
identify optimal proportions for each of the ingredients formulation. Derivatives of the Kronecker model mixture experiment
were used to obtain Slope Information Matrices (SIM) for four ingredients. Maximal parameters of interest for third degree
Kronecker model were considered. D-, E-, A-, and T- optimal criteria and their efficiencies for both WSCD and UWSCD third
degree Kronecker model were obtained. UWSCD was found to be more efficient than WSCD for almost all the points in the
simplex designs, therefore recommended for more optimal results in mixture experiments.

Keywords: Kronecker Model, Optimal Designs, Slope Information Matrices (SIM), Weighted Simplex Centroid Designs,
A-, D-, E- and T-Optimality

1. Introduction

T, ={t=(t1 v £,,)'0[0,17" Zt -1} (1)

Response surface methodology (RSM) is a collection of
mathematical and statistical tools or techniques that are

useful for modeling and analysis of problems in which a Under experimental condition L7, , the response Y, is

t

response of interest is influence by several ingredients and
the objective is to optimize this response, Montgomery
(2001). Response Surface Methodology is an important
subject in the statistical design and analysis of experiments.
Mixture experiments are special type of RSM associated with
the investigation of the m factors, assumed to influence the
response only through proportions in which they are blended
together. The mixture ingredients t;, t,..., t, are such that

t>0 and further restricted by Zt,. =1. Thus the experimental
domain is the probability simplex

taken to be a real-valued random variable. In a polynomial
regression model the expected value E(Y)) is a polynomial

function of t. The work done by Draper and Pukelsheim
(1998) is being extended to polynomial regression model for
third degree mixture model. Korir et al (2008) extended the
work to third degree Kronecker model by use of equivalent
theorem in calculation of weights, also Kerich et al (2014)
studied the D-optimal designs for third degree Kronecker
model mixture experiments with application in artificial
sweetener experiment. In many applications of response
surface methodology, good estimation of the derivatives of
the response function is as important as estimation of the
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mean response. From the work of Hader and Park (1978),
Huda and Al-Siha (1999) and Huda (2006), it is clear that
most of the work has been done on central composite designs
hence there was a need to extend the concept of slope to
mixture experiments third degree Kronecker, this method
was therefore used for proper identification of the ingredients
ratio that leads to an optimal response.
The S-polynomial is given as,

E(Y)=f(t)0= 25t+z 11 +ZZZ Outitite (2

i,j=1 i<j<k
i<j

and the homogeneous third-degree K-polynomial is

B)= (0= 0i006=35 5 uurs,
T =@ 0t01), (m'+1)

vectors, consists of pure cubic and three-way interactions of
components of t in lexicographic order of the subscripts and

in which the Kronecker powers ¢

with  evident that third-degree  restrictions  are
6,=6,=06,=06,=6,=6, forall i, j and k

All observations taken in an experiment are assumed to be
of equal unknown variance and uncorrelated. The moment

matrix M () = Z’:wj )f() = Lf(t)f(t)‘d/] for the third

degree Kronecker model has all entries homogeneous in

K, = Z

m

i,j=1
i<j

The Kronecker model of the full parameter vector 800"
is not estimable. When fitting this model, the parameter
subsystem considered in this study can be written as

(9111 )l<iSm

3(m 1) {Z ( iij + H/u )}

i,j=1

m(m— l)(m 2) Z ( xjk

0o forall eo0™ (8)

where g g™ *m)
The parameter subsystem K'€ of interest is a maximal

parameter system in the full parameter model. The
information matrix for the parameter subsystem is given by

Ci (M (7)) = LM () LU NND(s) ©)

where L is the left inverse of coefficient matrix K and is

K2 = 3(/11—1) [Z (ellj + e + ejll )e ]

degree six and reflects the statistical properties of a design/;.

The moment matrix can be partition into sub moments
according to the number of ingredients in a simplex centroid
design as follows

M@ =aMmn)+a,M(n,) +.+ta,M(n,) 4

For Uniformly Weighted Simplex Centroid Designs

(UWSCD), the weights are assumed to be distributed

uniformly in the sub moments matrices. Hence

a, =a, =...=a,=-1 and their moment matrix is given as,
M) = M(@,)+ M(ny) +..+5-M(n,) )

2. Information Matrix

Consider the Euclidean unit vectors in 0" denoted by

€,e,,...,e, and the set for

=e e Ue

€iij i i 7o Sk

=¢, Oe, e, fori<j<k, ijk={1,2,...m} (6)

Let K be a & x s coefficient matrix such that

K =(K;:K,: K,)0g" (7
where
and K3 m(m l)(m 2) Z (euk)
ﬁilpt;cl
defined by
L'=(K'K)'K (10)
Thus the information matrices for K'@ are linear

transformation of moment matrices.

3. Application in Four Factors Mixture
Experiments
Using simplex restrictions, we obtained the optimal
weights for WSCD, a.a .a and a, as 4/15, 6/15, 4/15 and

1/15 respectively. From equation (4), we have the moment
matrix for four factors mixture experiments as,

M@ =M@ +EM )+ M(n)+M(n,)  (11)
where,
M) =5le (€)' F ey, (€)' F e (e55) T ey, (ey,)'] (12)

M) =~[(d, 0d, 0d,)d, 0d,0d,)+(d, 0d,0d,)d,0d,0d,)'

384

+(d, Od, Od,)(d, Od, 0d,)+(d, 0d, 0d,)d,0d,0d,)'

(13)

+(d, 0d, 0d,)d, 0d,0d,)+(d, 0d, 0d,)d,0d, 0d,)
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M@) = [(AUADDARBADDHALULDLLTLDL)!

(14)

+(AOADMOGEDADD*LOLATODLTLD]

M(’74) :W‘]@a

also,

dl :(14 Bz _63)7 dz :(14

(15)

—e,-¢), d;=(l,~¢~e), d, =(1, —¢ ~e),

dy=(,-¢-¢),d =(,-¢-¢),d=(,-¢-¢)

Si=U—e) f,=0,-¢), f; =1, ~¢), f,=(1,~¢),

The Uniformly Weighted Simplex Centriod Designs
(UWSCD) for four ingredients were assumed to assign
uniform weights to the four elementary centroid designs,
n,, n,, n, and n,, such that all weights are equal. That is,

a=a,=a,=a,=0.25 (16)

The moment matrix for uniformly weighted simplex
centriod designs in (5) for four ingredients is given by

M(r7) =0.25M(17,) +0.25M (n,) + 0.25M (n,) + 0.25M (ny) (17)

4

and ¢, =

(= = ]
_ o o O

where,
M@,), M(n,), M(n,) and M(n,) are given in (12),
(13), (14) and (15) respectively.
The coefficient matrix K for the four ingredients parameter
subsystems of interest in (7) and (8) is given as
K =(K,.K,.K,) (18)

where

= ! = ' ] " ]
K, = Ze e =e¢ teye teye +tte,e

i i
i=1

3
=1 '
Kz ~ 9 Z (eiij + e[/'i + ejz'i )ei
ij=1
i#j

— 1 [ ] [ )
= 3{ (e, tepy t€,)e (e, te,, +e,)e, (e, tey; +5;)e '+ (e, Te,, e, e, }

and

4
— 1
K3_ﬁ Zeijk

ijk=1
i#jzk

-1
=5ley tey, tey te tey, e, te, tey, e, te, e, tey,

+ 6241 + 6243 + 6314 + 6324 + e341 + e342 + e412 + e413 + e421 + 6423 + e431 + e432)

The left inverse L in (10) for four ingredients is given as,

L'=(K,,6K,, 24K, ) (19)

4. Slope Designs

In response surface designs the main interest of the
experimenter may not always be in the response at individual
locations but, the differences between the responses at
various locations may be of greater interest, Herzberg (1967),

Box and Draper (1980), Huda and Mukerjee (1984) and
Huda (2006).

We know that to maximize the response, the movement of
the design center must be in the direction of the directional

. . . 0Y
derivatives of the response function, that is, a—’ .LetHbe a
t

matrix arising from the differentiation of f'(¢)'@ with respect to
each of the m independent factors, Sung. et al (2009). That is;
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' , N Therefore,
RO ACC A0 20)
or, 0t oz,
2 2 12 1{2 1{2 1
w000 F{an s ) ?(fz) 3(%) ?(t4) A CORTORTOY
2 1{,2 2 12 1,2 1
- 0 3 0 0 ?Ol) Fory #1213 #1314 3(6) i(%) R CORTORIAN @1
N 2 1({.,2 12 2 12 1
0 0 33 0 ?@) ‘4&) Fors #1203 +1314) ‘Au) o g +10y)
2 1{2 12 1{2 2 1
0003y §(f1 ) ?(fz) 3(%) £ CORDOREEN B { CORTLRTYS)
Using (11) and (19), we obtained the information matrix for Weighted Simplex Centroid Designs (WSCD) as
G G G
C=le, o oy (22)

where,
ey =x L, +y,J, s x, =6884x107, y, =12.40842x107
Cp =X, + ¥, J, 5 X, =67.98697x107,  y, =43.68878%107"
Cp = X1, + 1, J, 5 X, =220.42181%107, y,, =172.77722%107"

¢y = x5, 3 X, =20.36716x10™
Cys = X1, ; X,3 =133.92168%10™
Cy =Xy, 3 Xy =225.43724%107

The derivative matrix (21) together with information matrix (22) were used to obtain Slope Information Matrices (SIM) at
different points of the simplex. At (1, 0, 0, 0), the slope information matrix is given as,

(23)

41

_( 6307.40393x107"  111.67574x107*(1,")
111.67574x107*(1;)  43.6887x107J,

At the binary blend point (0.5, 0.5, 0, 0) the slope information matrix is of the form

399.23626x107*(1,) +48.7828 1077,  25.5644x107J,
(24)

SIM,, =
“ { 25.5644x10™ J, 13.14636 %107 J,

At the point (0.333, 0.333, 0.333, 0) the slope information matrix is

84.2478x107(1,) +22.98775x10™*J, 12.51869 x10‘4(13)j o5)

SIM,, =
® ( 12.51869x107(1',) 7.0857%10™

At the point (Y4, Y4, Y4, %), the slope information matrix is given as

549/125029 61156/30546869 4185/2854654 4185/2854654
61156/30546869 3764/639087 5241/2207668  61156/30546869
4185/2854654 5241/2207668  549/125029 4185/2854654
4185/2854654 61156/30546869 4185/2854654  549/125029

SIM , = (26)

Using (17) and (19), we obtained the information matrix for uniform weighted simplex centroid designs as,

C, =

u

G Cp Oy 27
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Where C“; Clz’ 013: sz, 023 and 033 are given as

¢, =x,1, +y,J,; x, =638.8782x107, y,, =8.8354x10™*
e, =cy =x,1, +y,J, 5 x, =44.2062%107, y,, =35.3124x10™*
Cy =01, +y,J, ;x,, =148.05%107, y,, =169.7616x10™*

s =¢'y =x,1, 5 x,; =30.0810x107
Cyy =C'y =X,51, 5 X,y =224.4348%107
Cyy =X, 5 X, =475.0416%107

174

The derivative matrix (21) together with information matrix (27) were used to obtain Slope Information Matrices (SIM) at

different points of the UWSCD. At point (1, 0, 0, 0), the slope information matrix is given by,

P [ 5829.4224x107  79.5186x107(1';)
1795186107 (1) 35.3124x107,

For binary blends at points (!4, !4, 0, 0), we have information matrix as,

365.92289x10™ 1, +38.46044x107J, 22.25155x10™ sz

SIM ,,, =
2 [ 22.25155%107J", 13.30321x10™ J,

We obtained slope information matrix at the ternary point (0.333, 0.333, 0.333, 0) as,

76.08877x107 (1,) +21.21016x10™ J, 14.0479><10'4(13)J

SIM,, =
e ( 14.0479%107*(1',) 10.16018x10™

At the central point (4, Y, Y4, ¥4) of the simplex centroid design, we have the slope information matrix given as,

0.004131819 0.002094689 0.001552438 0.001552438
_10.002094689 0.005561169 0.002341674 0.002094689
“10.001552438 0.002341674 0004131819 0.001552438
0.001552438 0.002094689 0.001552438 0.004131819

SIM

S. Optimal Values for Slope Information A_(C) if p=-o
Matrices (SIM) ¢p (€)= det(C)% if p=0
Optimal designs are experimental designs that are [i traceC? Jp if p#0,tc0

generated based on a particular optimality criterion and are
generally optimal only for a specific statistical model. The
optimality properties of designs are determined by their
moment matrices, Pukelsheim (1993). The amount of
information inherent to C,(M(7#7)) is provided by ¢p -criteria

_ experiments.
with C(M(#7))0 PD(m), defined by:

Table 1. Optimal Values for Four Ingredients.

(28)

(29)

(30)

€2

(32)

We obtained the optimal values for both Weighted Simplx
Centroid (WSC) designs and Uniform Weighted Simplex
Centroid Designs (UWSCD) for four ingredients mixture

WEIGHTED SIMPLEX CENTROID (WSC) UNIFORM WEIGHTED SIMPLEX CENTROID (UWSC)
BLENDS D- E- T- D- E- A- T-
1,0,0,0 0.0000 0.0000 0.0000 0.1609 0.0000 0.0000 0.0000 0.1484
Y2, 2, 0,0 0.0000 0.0000 0.0000 0.0229 0.0000 0.0000 0.0000 0.0208
1/3,1/3,1/3,0 0.0046 0.0004 0.0014 0.0082 0.0047 0.0005 0.0019 0.0075
Ya, Ya, Y, Ya 0.0039 0.0027 0.0035 0.0048 0.0036 0.0024 0.0031 0.0045

Uniformly Weighted Simplex Centroids Design (UWSCD)  Simplex Centroid Designs (WSCD) at all points of the

was observed to yield more optimal values than Weighted  simplex centroids mixture experiments.
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6. Efficiencies for Four Ingredients

The efficiency of WSCD over UWSCD at different point
of the simplex centroid designs were summarized as

Table 2. Efficiencies for Four Ingredients.

Efficiencies (%)

BLENDS D- E- A- T-

1,0,0,0 100 100 100 108.42
2,2, 0,0 100 100 100 110.09
1/3,1/3,1/3,0 97.87 80 73.68 109.33
Ya, Va, Ya, Va 108.33 112.5 112.90 106.66

From Table 2, at (1, 0, 0, 0) and (%2, %, 0, 0), there was no
difference between the two designs in their D-, E- and A-
efficiency. However, UWSCD was 8.42% and 10.09% more
T- efficient than WSCD at respective blends. For ternary
mixture (0.333, 0.333, 0.333, 0), WSCD was 2.13%, 20%
and 26.32% more D-, E- and A- efficient than UWSCD
respectively. It was also observed that WSCD was 9.33% less
T-efficient than UWSCD. At point (%, Y4, Y4, Y4), UWSCD
was 8.33%, 12.5%, 12.9% and 6.66% more D-, E-, A- and T-
efficient respectively than WSCD. Generally, the D-, E-, A-
and T-optimal values for Uniformly Weighted Simplex
Centroid (UWSC) designs were better than those of
Weighted Simplex Centroid (WSC) designs for four
ingredients.

7. Conclusion

It was noted that Uniformly Weighted Simplex Centroid
(UWSC) designs were more efficient than Weighted Simplex
Centroid (WSC) designs. For more optimal results, the
experimenter is advised to allocate weights in the mixture
components uniformly. In UWSC design, the centroid point
(Ya, Y4, Va, Ya) produced the most efficient results than any
other point while WSC design yield the optimal results at
point (0.333, 0.333, 0.333, 0) only.
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