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Abstract: This paper aimed at assessing the performance of some estimators in the presence of one-sided exponential 

heteroscedasticity structure in panel model estimation. This study employs Monte Carlo experiments to evaluate the 

performances. It focuses on random effects models with 150 and 300 as cross-sectional units (N) and 10 and 20 as time periods 

(T) with Absolute Bias (ABIAS) and Root Mean Squared Error (RMSE) were criterion for assessing the performances of the 

estimators. The estimators were then ordered according to their performances. Generally, the performance improved as the 

combinations of N and T increased in experiments. The ranking of the eight estimators for the experiment are in the order: 

PGLS (95%), SWAR (69%), NER (64%), WG (45%), AM (43%), WALHUS (37%), BG (36%) and POLS (28%). Panel 

generalised least squares estimator (PGLS) outperformed other estimators in the presence of OEHS, using POLS as a known 

benchmark to gauge the performance and the work will help in the choice of estimators when faced with empirical datasets that 

exhibit exponential heteroscedasticity. 
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1. Introduction 

Panel data and longitudinal models have become 

progressively widespread among applied researchers due to 

their heightened capacity for capturing the complexity of 

human behaviour unlike cross-sectional or time series data 

models [1]. Despite these advantages, panel data are subject 

to their own experimental problems. Prominent among the 

problems constantly addressed in panel data econometrics are 

selectivity and heterogeneity biases. 

Although assuming homoscedastic disturbances when 

heteroscedasticity is present will still result in unbiased and 

consistent estimates of the regression coefficients, these 

estimates will not be efficient [2]. This, however, may be a 

restrictive assumption. When one begins to look at a cross-

section of regions, states, countries, etc., these aggregate 

units may exhibit a cross-sectional correlation that has to be 

dealt with [3]. 

Both theoretical and applied econometricians have 

constantly been tackling these econometric problems in panel 

econometrics. Prominent among these studies include [4], 

[5], [6]. [7], [8], [9] and [10]. 

As largely acknowledged, heteroscedasticity is endemic 

when working with microeconomic cross-section data. 

Basically, heteroscedasticity may be viewed as symptom 

arising from the fact that the degree to which an economic 

relationship may explain actual individual observations is 

likely to depend on their specific characteristics. 

Obviously, there is no reason to expect the 

heteroscedasticity problems associated with microeconomic 

panel data to be markedly different from those encountered in 

work with cross-section data. Nonetheless, the issue of 

heteroscedasticity received somewhat less attention in the 

literature related to panel data error components models than 

in the literature related to cross-section models. 

The present study, therefore, addresses the drawback in 

these studies by introducing one-sided exponential 

heteroscedasticity structure (OEHS) on only individual 

specific effect error term to estimate and rank the 

performances of eight purposely chosen estimators in a one-
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way random error component model. 

This paper is structured as follow: Section 2 presents the 

theoretical framework. Section 3 describes data the data 

generating scheme. Section 4 presents results and discussion 

while the last section concludes the paper. 

2. Review of Some Related Studies 

A primary and well-known source of heteroscedasticity 

stems from differences in the size characteristic of the 

observations. This kind of heteroscedasticity is purely 

mechanical. It is simply a consequence of the assumed 

additive disturbance structure of the classical regression 

model. It is generally tackled by performing a logarithmic 

transformation of the dependent variable. 

[4] seem to be the first to deal with the problem of 

heteroscedasticity in panel data. The study looked at 

heteroscedasticity and stratification in two-way error 

component models. The study involved spectral 

decomposition of the variance-covariance matrix in deriving 

statistically efficient and computationally simple estimation 

procedures. 

The early literature on one-way error components models 

includes [11] and [12] who allowed for lagged dependent 

variables, but [13] who compared eleven estimators, 

including Maximum Likelihood (ML). [14] considered the 

use of a three-way error components linear regression model 

and developed an Aitken estimator of the coefficient vector 

based on an estimated variance-covariance matrix. Their 

paper was extended by [15], [16] and [17]. [18] tried to check 

the sensitivity of two adaptive heteroscedastic estimators 

suggested by [10] and [19] for an error component regression 

model to misspecification of the form of heteroscedasticity. 

In particular, they run Monte Carlo experiments using the 

heteroscedasticity set up by [10] to see how the misspecified 

[19] estimator performs. [18] also patterned the sensitivity of 

these results to the choice of the smoothing parameters, the 

sample size, and the degree of heteroscedasticity. They found 

that the [10] estimator performs better under this type of 

misspecification than the corresponding estimator of [19]. 

They, however, suggested that the former estimator is 

sensitive to the choice of the bandwidth. 

More recent applications include the work of [20] who 

studied the production behaviour of 1147 sawmills in the 

state of Washington, observed biennially over the period 

1972-1984, [21], who estimated the effect of per capita 

income on the calorie intake using the panel data collected by 

the International Crops Research Institute for Semi-Arid 

Tropics Village level studies in rural South India. 

In the presence of both autocorrelation and 

heteroscedasticity, the usual OLS estimators, although linear, 

unbiased, and asymptotically normally distributed, are no 

longer having minimum variance among all linear unbiased 

estimators. [22] and [23]. Thus, the OLS estimator is not 

efficient relative to other linear and unbiased estimators 

under such situations. A number of works on the 

methodologies and applications of panel data modelling have 

appeared in the literature ([10], [22],[23], [24] and [29]). 

Situations, where all the necessary assumptions underlying 

the use of classical linear regression methods are satisfied, 

are rarely found in real life situations. Most of the studies that 

discussed panel data modelling considered the violation of 

each of the classical assumptions separately. Others [25], 

who estimated a production function for ambulatory care 

using panel data on 30 health care centres in New-York state 

over the period 1984-1987, [26], who used the PISD to study 

the sensitivity of male labour supply function estimates to 

how the wage is measured and how the researcher models 

individual heterogeneity, [27], who used panel data from the 

NSLY to show that much of the wage premium normally 

attributed to marriage is associated with individual 

unobservable individual effects that are correlated with 

marital status and wages. 

3. Methodology and Model Specification 

A distinctive static panel data regression can be expressed 

as: 

1

; 1,..., , 1,...,
j

it o k kit it

k

Y X u i N t Tβ β
=

= + + = =∑  (1) 

where itY  is the dependent variable and kitX  are the matrix of 

explanatory variables. The subscripts i  and t  as earlier 

defined refer to cross-sectional and time series dimensions 

respectively. itu  is the composite error term which can be 

decomposed further into specific effects and remainder 

disturbance term. For this paper, we shall limit our empirical 

applications to the one-way error components as stated 

below. 

it i itu vµ= +                                 (2) 

where 

ity  is the dependent variable, 

itx  is (1 )k×  a vector of explanatory variable 

kβ  is ( 1)k ×  a vector of coefficients 

iµ  represents unobserved cross-sectional (individual) 

effects for N cross sections, 

itv  represents remainder disturbance term. 

3.1. Theoretical Framework on Heteroscedasticity 

The index i  refers to the individuals and the index t  to the 

observations of each individual. The total number of 

observations is NT . In this work, we are going to consider 

OEHS is incorporated on the individual effect. The error 

terms i
µ  and itv are assumed mutually independent and 

normally distributed according to:  

( )20, ii N ωµ ∼  and ( )20, vit IIDv σ∼     (3) 
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The result of the pre-multiplication of y  by 2/1−Ωrσ  
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3.2. Data Generating Scheme and Data Sources 

Data sets play a very significant role in a decision-making 

situation as potent ingredients in the choice of appropriate 

decision support system. This study uses simulated data of R- 

software 3.3.0 version and the appropriate steps and 

assumptions were adhere to. The design of our Monte Carlo 

experiments follows closely that of [10] and [19] for panel 

data, which in turn adapted it from [28] for cross-section 

data. We generate the exogenous variable )( itx , using method 

similar to Nerlove (1971) method. The method was also used 

by [24] and several others. 

0 1 1,..., , 1,...,it it i ity x v i N t Tβ β µ= + + + = =   (9) 

where 

, , 1,0.5it i t i tx ω ω −= +                         (10) 

We generate ,i tω  as ~ (0,2)iid N  and parameters 0 1
( , )β β  

are assigned (10, 0. 5) respectively. We purposedly choose 

cross-section units as N= 150, 300 and time periods, T  = 5, 

10, OEHS = µγ  is assigned value 0, 1, 2, 3. For each 

scenario, 5000 replication were made. This study employs 

Monte Carlo experiments to evaluate the performances of 

some panel data estimators in the presence of OEHS of one-

way error component model (ECM). It focuses on random 

effects models (REM) with 150 and 300 as cross-sectional 

units (N) and 5 and 10 as time periods (T). 

4. Discussion of Results 

The count of the number of times each estimator in an 

experiment performed best was taken into consideration. It 

was observed that PGLS consistently outperformed all other 

estimators when considering the ABIAS and, similarly, when 

the RMSE. This result, in its overall best performance, 

amounted to 186 times. NER closely followed, being the 

second best estimator. It is observed also that the 

performance of each estimator considered using ABIAS and 

RMSE are always or nearly similar, such that ranking each 

separately will still yield some results. Consequently, the 

total number of times each estimator performed best follows 

some pattern (rank). 

5. Conclusion 

This work identified gaps and addressed the methodology 

for estimating panel data model in the presence of OEHS. 

Also, panel data model has been shown analytically and 

empirically, to be more efficient than cross-section and time 
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series data. Since heteroscedasticity is a violation which may 

lead to increase in residual variance of the estimate of 

specified model; the estimated parameters are biased leading 

to incorrect and inconsistence conclusion thereby rendering 

the results of the analysis highly unreliable for meaningful 

policy making and planning. 

Appendix 

Table 1. Absolute bias ��
�
= 4 N = 150 R=5000. 

T γν=γµ 
EXPERIMENT  

POLS BG WG AM SWAR WALHUS NER PGLS 

5 

0 1.25 1.07 1.52 0.00 0.09 0.05 0.47 0.42 

1 0.24 0.11 0.07 176.26 4.80 9.34 1.22 0.22 

2 0.76 0.10 0.07 167.41 5.53 10.54 1.10 0.80 

3 1.27 0.21 0.07 257.67 8.21 16.62 2.10 1.21 

10 

0 1.19 2.66 2.67 0.92 0.96 1.00 0.94 0.44 

1 0.63 0.40 0.44 0.49 0.44 0.45 0.47 0.32 

2 0.78 0.53 0.67 0.50 0.56 0.53 0.51 0.71 

3 1.16 1.03 1.02 0.93 0.98 0.91 0.95 1.15 

Source: Author 

Table 2. Absolute bias ��
�
= 4 N = 300 R=5000. 

T γν=γµ

 EXPERIMENT  

POLS BG WG AM SWAR WALHUS NER PGLS 

5 

0 0.52 0.13 0.20 0.15 0.15 0.15 0.15 0.04 

1 1.17 7.17 4.80 2.54 2.06 2.42 2.55 5.36 

2 1.37 9.69 7.25 2.94 3.05 3.02 3.90 8.09 

3 1.65 28.90 19.22 12.56 11.07 10.78 13.94 27.03 

10 

0 0.46 0.48 0.33 0.23 0.21 0.21 0.22 0.05 

1 1.29 1.38 2.12 0.06 0.01 0.08 0.19 0.05 

2 1.40 2.28 3.33 0.61 0.53 0.72 0.53 4.30 

3 2.04 5.40 8.50 2.76 2.95 3.00 2.90 15.24 

Source: Author  

Table 3. Root mean square error ��
�
= 4 N = 150 R=5000. 

T γ 
EXPERIMENT  

POLS BG WG AM SWAR WALHUS NER PGLS 

5 

0 1.25 1.07 1.52 0.04 0.10 0.06 0.50 0.42 

1 0.25 0.12 0.08 11.18 4.30 6.94 1.17 0.22 

2 0.76 0.11 0.07 10.61 4.98 7.82 1.05 0.80 

3 1.27 0.22 0.07 16.33 7.36 12.34 2.00 1.21 

10 

0 1.21 2.66 2.67 0.92 0.96 1.00 0.94 0.44 

1 0.63 0.40 0.44 0.49 0.44 0.45 0.47 0.32 

2 0.77 0.53 0.67 0.50 0.55 0.53 0.51 0.71 

3 1.19 1.03 1.02 0.93 0.98 0.91 0.95 1.15 

Source: Author 

Table 4. Root mean square error ��
�
= 4 N = 300 R=5000. 

T γ 
EXPERIMENT  

POLS BG WG AM SWAR WALHUS NER PGLS 

5 

0 0.52 0.13 0.20 0.15 0.15 0.15 0.15 0.04 

1 1.17 7.17 4.80 2.54 2.07 2.42 2.55 5.37 

2 1.37 9.69 7.25 2.94 3.05 3.02 3.90 8.10 

3 1.65 28.88 19.24 12.56 11.07 10.78 13.97 27.04 

10 

0 0.46 0.48 0.33 0.23 0.21 0.21 0.22 0.05 

1 1.29 1.38 2.12 0.06 0.01 0.08 0.19 0.05 

2 1.40 2.28 3.32 0.61 0.53 0.72 0.53 4.30 

3 2.04 5.40 8.50 2.76 2.95 3.00 2.90 15.25 

Source: Author 
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Table 5. Absolute bias ��
�
= 8 N = 150 R=5000. 

T γ 
EXPERIMENT  

POLS BG WG AM SWAR WALHUS NER PGLS 

5 

0 0.54 0.55 0.44 0.02 0.22 0.22 0.04 0.01 

1 0.95 0.88 1.01 5.62 1.00 1.00 0.33 7.66 

2 0.15 0.89 1.47 34.18 2.32 2.40 12.86 47.50 

3 1.06 8.12 10.28 230.69 18.04 17.79 105.66 283.85 

10 

0 0.54 0.64 0.63 0.01 4.03 3.97 0.05 0.01 

1 0.92 0.90 0.94 0.01 0.01 0.00 0.46 2.80 

2 0.74 0.79 1.20 1.22 0.02 0.03 1.01 15.45 

3 0.46 4.83 5.30 11.96 0.15 0.16 1.29 14.06 

Source: Author 

Table 6. Absolute bias ��
�
= 8 N = 300 R=5000. 

T γ 
EXPERIMENT  

POLS BG WG AM SWAR WALHUS NER PGLS 

5 

0 0.56 0.52 0.49 0.03 0.01 0.04 0.04 0.08 

1 0.98 1.09 1.29 2.23 13.58 1.31 2.28 0.54 

2 0.98 2.44 2.59 8.73 35.98 5.49 6.26 2.19 

3 1.78 8.22 9.00 62.74 272.35 38.27 53.90 13.25 

10 

0 0.54 0.51 0.49 0.01 1.55 1.61 0.01 0.06 

1 0.87 0.43 0.40 11.15 0.09 0.09 17.81 0.01 

2 1.10 2.26 2.41 11.84 0.13 0.09 26.70 3.51 

3 1.60 5.44 5.69 45.70 0.44 0.38 91.04 17.19 

Source: Author 

Table 7. Root mean square error ��
�
= 8 N = 150 R=5000. 

T γ 
EXPERIMENT  

POLS BG WG AM SWAR WALHUS NER PGLS 

5 

0 0.54 0.55 0.44 0.02 0.22 0.22 0.04 0.01 

1 0.94 0.88 1.01 5.62 1.00 1.00 0.33 7.67 

2 0.16 0.89 1.47 34.19 2.32 2.40 12.83 47.51 

3 1.10 8.12 10.31 230.73 18.05 17.80 105.43 283.94 

10 

0 0.54 0.64 0.63 0.01 4.03 3.97 0.05 0.01 

1 0.92 0.90 0.94 0.02 0.01 0.00 0.46 2.72 

2 0.74 0.80 1.20 1.22 0.02 0.03 1.01 15.00 

3 0.47 4.85 5.30 11.96 0.15 0.16 1.29 13.65 

Source: Author 

Table 8. Root mean square error ��
�
= 8 N = 300 R=5000. 

T γ 
EXPERIMENT  

POLS BG WG AM SWAR WALHUS NER PGLS 

5 

0 0.56 0.52 0.49 0.03 0.01 0.04 0.04 0.08 

1 0.98 1.09 1.29 2.21 13.58 1.31 2.28 0.55 

2 0.98 2.44 2.59 8.68 36.00 5.47 6.26 2.19 

3 1.82 8.22 9.00 62.31 272.44 38.19 53.77 13.25 

10 

0 0.54 0.51 0.49 0.01 1.55 1.61 0.01 0.06 

1 0.87 0.43 0.40 11.15 0.09 0.09 17.81 0.01 

2 1.10 2.27 2.41 11.86 0.13 0.09 26.71 3.51 

3 1.60 5.45 5.69 45.71 0.44 0.38 91.05 17.19 

Source: Author 
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