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Abstract: Studies have been carried out on domain mean estimation using non-linear cost function. However little has been 

done on domain stratum estimation using non-linear cost function using ratio estimation in the presence of non-response. This 

study develops a method of optimal stratum sample size allocation in domain mean estimation using double sampling with 

non-linear cost function in the presence of non- response. To obtain an optimum sample size, Lagrangian multiplier technique 

is employed by minimizing precision at a specified cost. In the estimation of the domain mean, auxiliary variable information 

in which the study and auxiliary variables both suffers from non-response in the second phase sampling is used. The 

expressions of the biases and mean square errors of proposed estimator has also been obtained. 
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1. Introduction 

1.1. Domains 

In sampling, estimates are made in each of the class into 

which the population is subdivided. Such subgroups or 

classes are known as the domain of study. Units of domains 

may sometimes be identified prior to sampling. Such 

domains are called planned domains. For unplanned domain 

the units cannot be identified prior to sampling and hence the 

estimates of certain domains is often evident only after the 

sampling design has been identified or after the 

Sampling and field work have been completed. Hence the 

size of unplanned domain cannot be controlled. The sample 

sizes for sub-populations are random variables since 

formation of these sub-populations is unrelated to sampling. 

According to Eurostat [4] the precision threshold and or 

minimum effective sample sizes are set up for effective 

planned domains. The minimum sample sizes required to 

achieve a relative margin error of 100.k% for the total dY  

(Domain total) of a study variable dy  over domain dU  of 

size dN  given by 
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Where 
2

dyS  is the variance of y  over the domain and 

1
2

Z α−  is the percentile value at ( )100 1 %
2

α−  of normal 

distribution with mean 0  and variance 1, K  is the relative 

margin of error expressed as a proportion while 100.k% is 

the relative margin error expressed as a percentage. The 

population value dY  and 
2

dyS is unknowns and have to be 

estimated using data from auxiliary sources. 

1.2. Optimal Allocation with Non-Linear Cost Function 

Optimal sample allocation involves determining the 
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sample size 1 2, ,..., Hn n n  that minimizes the various cost 

characters under a given sampling budget C (where C is the 

upper limit of the total cost of the survey). Linear cost 

function is appropriate when the cost involved is associated 

with non-travel activities of survey e.g drawing sample, 

preparing survey methods, locating, identifying, interviewing 

respondents and coding data. Such a linear cost function can 

be of the form, 
/ /

1

H

h h

h

C c n c n

=

= +∑   

where 
/c  = cost of classification per unit 

/n  =size of the first sample 

hc  = Cost of measuring a unit in stratum h   

hn  = number of units in stratum h . 

Generally the above linear cost function is mostly 

applicable when the major cost item is that of taking the 

measurements on each unit without considering the cost of 

the distance between the sample units. 

Chernyak [1] proposed optimum allocation in double 

sampling for stratification with a non-linear cost function. 

The proposed non-linear cost function is of the form, 

( )/ /

1

L

k k

k

C c n c n
α

=

= +∑ , 0α >  where, /c is the cost of 

classification per unit and kc  is the cost of measuring a unit 

in stratum k . Another non-linear cost function proposed was 

logarithmic in nature of the form, 

/ / /

1

log

L

k k k

k

C c n n c v W

=

= + ∑  

Okafor and Lee [9] employed the double sampling method 

to estimate the mean of the auxiliary variable and proceeded 

to estimate the mean of the study variable in a similar way as 

Cochran [3]. In this method double sampling ratio and 

regression estimation was considered. The distribution of the 

auxiliary information was not known and hence the first 

phase sample was used to estimate the population distribution 

of the auxiliary variable while the second phase was used to 

obtain the required information on the variable of the interest. 

The optimum sampling fraction was derived for the 

estimators at a fixed cost. Performance of the proposed 

estimators was compared with those of Hansen and Hurwitz 

[5] estimators without considering the cost. It was noted that 

for the results for which cost component was not considered, 

regression estimator functions were consistent than the 

Hansen and Hurwitz [5] estimator. Tschuprow [11] and 

Neyman [8] proposed the allocation procedure that 

minimizes variance of sample mean under a linear cost 

function of sample size 
1

H

h

h

n n

=

=∑ , where hn  is the size of the 

stratum. 

Neyman [8] used Lagrange multiplier optimization 

technique to get optimum sample sizes for a single variable 

under study. Holmberg [6] addressed the problem of 

compromised allocation in multivariate Stratified sampling 

by taking into consideration minimization of some of the 

variances or coefficient of variation of the population 

parameters and of some of the efficiency losses which may 

be as a result of increase in the variance due to the use of 

compromise allocation. Saini [10] developed a method of 

optimum allocation for multivariate stratified two stage 

sampling design by using double sampling. In this method 

the problem of determining optimum allocations was 

formulated as non-linear programming problem (NLPP) in 

which each NLPP has a convex objective function under a 

single linear constraints. The Lagrange multiplier technique 

was used to solve the formulated NLPPs. Khan et al. [7] 

proposed a quadratic cost function for allocating sample size 

in multivariate stratified random sampling in the presence of 

non-response in which a separate linear regression estimator 

is used. In this multi-objective 

Non-linear integer programming problem, an extended 

lexicographic goal programming was used for solution 

purpose and comparison made with individual optimum 

techniques. It is observed that in the allocation techniques, 

the extended lexicographic goal programming gives 

minimum values of coefficient of variation than the 

individual optimum and goal programming technique. 

Choudhry [2] considered sample allocation issues in the 

context of estimating Sub-populations (stratum and domain) 

means as well as the aggregate population means under 

stratified simple random sampling. In this method non-linear 

programming was used to obtain the optimal sample 

allocation to the strata that minimizes the total sample sizes 

subject to a specified tolerance on the coefficient of variation 

of the estimators of strata and population means. 

From the previous studies, a number of researchers have 

considered a linear cost function when estimating domains. 

In dealing with non-response most of them have considered 

subsampling while holding to the idea that the response 

mechanism is deterministic. This paper therefore focuses on 

the estimation of domain mean using double sampling for 

ratio estimation with non-linear cost function with a random 

response mechanism. In this study we therefore establish an 

efficient and cost effective method of estimating domains 

when the travel component is inclusive and it is not linear. 

2. Estimation of Domain Mean and 

Variance in the Presence of Non-

Response 

2.1. Introduction 

The problem of non-response is inherent in many surveys. It 

always persists even after call-backs. The estimates obtained 

from incomplete data will be biased especially when the 

respondents are different from the non-respondents. The non-

response error is not so important if the characteristics of the 

non-responding units are similar to those of the responding 

units. However, such similarity of characteristics between two 

types of units (responding and non-responding) is not always 

attainable in practice. In double sampling when the problem of 
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non-response is present, the strata are virtually divided into 

two disjoint and exhaustive groups of respondents and non-

respondents. A sub-sample from non-responding group is then 

selected and a second more extensive attempt is made to the 

group so as to obtain the required information. Hansen and 

Hurwitz [5] proposed a technique of adjusting the non-

response to address the problem of bias. The technique 

consists of selecting a sub-sample of the non-respondents 

through specialized efforts so as to obtain an estimate of non-

responding units in the population. This sub-sampling 

procedure albeit costly, it’s free from any assumption hence, 

one does not have to go for a hundred percent response which 

can be substantially more expensive. 

In developing the concept of domain theory with non-

response the following assumptions are made; 

i. Both the domain study and auxiliary variables suffers 

from non-response. 

ii. The responding and non-responding units are the same 

for the study and auxiliary characters. 

iii. The information on the domain auxiliary variable dX is 

not known and hence dX  is not available. 

iv. The domain auxiliary variables do not suffer from non-

response in the first phase sampling but suffers from 

non-response in the second phase of sampling. 

2.2. Proposed Domain Estimators 

Let U  be a finite population with N  known first stage 

units. The finite population is divided into D  domains; 

1 2, , ..., DU U U  of sizes 1 2, ,..., , ...,d DN N N N  respectively. Further, 

let dU  be the domain constituents of any population size dN  

which is assumed to be large and known. LetU  and N  be 

defined as, 
1

∪
D

d
d

U U
=

=  and 
1

D

d

d

N N

=

=∑  respectively. 

Let dY  and dX  be the domain study and auxiliary variables 

respectively. Further, let dY  and dX be their respective domain 

population means and auxiliary means with 

( )1,2,3,...,
id dy i N=  and ( )1, 2,...,

id dx i N=  observations on 

the thi  unit. In estimating the domain auxiliary population mean 

dX  double sampling design is used. 

A large first phase sample of size /n  is selected from N  

units of the population by simple random sampling without 

replacement (SRSWOR) design from which /
dn  out /n  first 

sample units falling in the thd  domain. The assumption here 

is that all the /n units supply information of the auxiliary 

variable dX at first phase. A smaller second phase sample of 

size n  is selected from /n by SRSWOR from which dn  out 

of n  second phase sample units fall in the thd  domain. 

For estimating the domain population mean dX  of the 

auxiliary variables dX  from a large first phase sample of 

size /
dn , values of the observations 

/

idx ( )/1, 2,3,..., di n=  are 

obtained and a sample auxiliary domain mean /
dx  is 

computed. From the second sample of size dn , let 
idy  and 

idx  be the domain study and auxiliary observations with

( )1, 2,3,..., di n= . Let 
idn  units supply the information on 

idy  and 
idx  respondents while 

2dn  be the non-respondents 

for both the study and the auxiliary domain variables 

respectively such that,  

1 2d d dn n n= + . 

For the 
2dn  non-respondent group at the second phase 

sampling, an SRSWOR of 
2dr  units is selected with an 

inverse sampling rate of 
2dv  such that, 

2

2

2

d

d
d

n
r

v
= , With 

2
1dv >  

All the 
2dr  units respond after making extra efforts of 

subsampling 
2dn  non-responding units. In developing the 

framework of double sampling there are two strata that are 

non-overlapping and disjoint. Stratum one consist of those 

units that will respond in the first attempt of the second phase 

population made up of 
1dN  units and stratum two consist of 

those units that would not respond in the first attempt of 

phase two with domain population units 
2 1d d dN N N= − . 

Both 1dN  and 2dN  units are not known in advance. The 

stratum weights of the responding and non- responding 

groups are defined by 1

1

d

d

d

N
W

N
=  and 2

2

d

d
d

N
W

N
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with their estimators defined by 1

1 1

ˆ d

d d

d

n
W w

n
= =  and 

2

2 2

ˆ d

d d
d

n
W w

n
= =  respectively. 

Following the Hansen and Hurwitz [5] techniques, the 

unbiased estimator for estimating the domain population 

mean using ( )
1 2d dn r+  observations on 

idy  domain study 

character is given by; 

1 2

1 2d

d d

d d r
d d

n n
y y y

n n
= +  

= 1 1 2 2dd d d rw y w y+                            (2) 

Similarly the estimate for domain auxiliary variable is 

given by; 

1 2

1 2d

d d

d d r
d d

n n
x x x

n n
= +  

= 1 1 2 2dd d d rw x w x+                            (3) 

Where dy  and dx  are the sample domain means for the 
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observation 
idy  and 

idx respectively. 

In estimating the overall domain population mean in the 

presence of non-response, double sampling ratio estimation 

of the domain mean is used. Define; 

1

/ /ˆ
.

R

d
d d d d

d

y
Y x r x

x
= =  and 2 /

ˆ
.d

d d d d

d

y
Y x r x

x
= =  

With the assumption that, 

/
d d dE x E x X  = =    , ( )d dE y Y=                    (4) 

3. Mean Square Error of the Ratio 

Estimator 

The expression for the Mean square error (MSE) of 
1RdY

and 
2RdY  are derived by the use of the Taylor's series 

approximation. 

Let 

( )
0 0

1d d
d d d d

d

y Y
y Y

Y
ε ε−

= ⇒ = +  

( )
11 1d d

d d d d

d

x X
x X

X
ε ε−

= ⇒ = +  

( )
2 0

/

1d d
d d d d

d

x X
x X

X
ε ε−

= ⇒ = +                 (5) 

With the assumption that ( ) ( ) ( )
0 1 2d d dE E Eε ε ε= = 0=   

Further define; 
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2 d d
d

d
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Y
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S S W S
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                             (6) 
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2 2
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Where, 
2

dyS =  Variance of the whole domain population mean of 

the study variable dY  

2

2

dyS  = Variance of the domain population mean for the 

stratum of non-respondents for Stratum of non-respondents 

for the study variable dY  

Consider also 

2
22

1 2

1d d
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    +      

= 2 2

2

22

2 2

11 1 dd
xx d

d
d d dd d

SS v
W

n N nX X

−  
− +     

   
       (7) 

Where, 
2

dxS
 = Variance of the whole domain population mean of 

the auxiliary variable dX  

2dv  = The inverse sampling rate 

2

2

dxS  = Variance of the domain population mean for the 

stratum of non-respondents for Stratum of non-respondents 

for the auxiliary variable dX  
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Next consider 

( )
2
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/ 2
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2

1d d
d d d

d d

x X
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X X
ε
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Consider, 
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3.1. Mean Square Error (MSE) of the Ratio Estimator ˆ
RRRR
1111

dddd
YYYY

 

and ˆ
RRRR
2222

dddd

YYYY  with the Sample Size Allocation  

The ratio estimator of 
1

ˆ
RdY  and 

2

ˆ
RdY  can be defined as; 
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1
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y
Y x r x

x
= =  and 2 /

ˆ
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d d d d

d

y
Y x r x

x
= =  respectively  

Proposition 1  

The mean square error (MSE) of the estimator defined by 

1

/ /ˆ
.

R

d
d d d d

d

y
Y x r x

x
= =  is given by; 

2
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Where, 
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2 2 2 2 2
R d d d d d dd y x d x y d x yS S S R R S Sρ= + −  

2 2 2 2 2 2 2

2 2 2 2 2
R d d d d d dd y d x x y d x yS S R S R S Sρ= + −  

With the notations defined as: 
2

dyS =  Variance of the whole domain population mean of 

the study variable dY  

2

2

dyS =Variance of the domain population mean for the 

stratum of non-respondents for Stratum of non-respondents 

for the study variable dY  

2

dxS = Variance of the whole domain population mean of 

the auxiliary variable dX  

2dv  = The inverse sampling rate 

2

2

dxS = Variance of the domain population mean for the 

stratum of non-respondents for Stratum of non-respondents 

for the auxiliary variable dX  

dR  =Population ratio of dY  to dX  

Proof 

By definition,  
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Substituting the values of equations (5) we obtain 
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 −     
 − + − +              

 

+

2

2

1 1
dx

d d d

S

n N X

 
− 

 
+ 

2

/ 2

1 1
dx

dd d

S

Nn X

 
−  

 
 + 2 2

2

2

2

1
dxd

d
d d

Sv
W

n X

− 
  
 

 

+2 
/

1 1
d d

d d

x y

x y
d d dd

S S

N X Yn
ρ

 
− −  

 
2

1 1
d d

d d

x y

x y
d d d d

S S

n N X Y
ρ

 
− 

 
 

2 2 2

22 2

1
2

d d

d d

x yd

x y d
d d d

S Sv
W

n X Y
ρ

− 
−   
 

2

/ 2

1 1
2 dx

dd d

S

Nn X

 
− −  
 

]  

2 2 2 2

/ / /

1 1 1 1 1 1
d d dy y x d

d d dd d d

S S S R
N n Nn n n

     
= − + − + −          
     
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−  
2 2

/

1 1
dx d

dd

S R
Nn

 
−  

 
+ 

2

2 2 2 2 2

2 2 2
1

2
d d d d d d

d

d y d x x y d x y
d

v
W S R S R S S

n
ρ

− 
 + −    

 
 

+2 
/

1 1
d d d dx y d x y

dd

R S S
Nn

ρ
 

− −  
 

2
1 1

d d d dx y d x y
dd

R S S
Nn

ρ
 

−  
 

 

{ }2 2 2 2

/ /

1 1 1 1
2

d d d d d d dy y x d x y d x y
d dd d

S S S R R S S
N nn n

ρ
   

= − + − + −      
   

 

+ 
2

2 2 2 2 2

2 2 2
1

2
d d d d d d

d

d y d x x y d x y
d

v
W S R S R S S

n
ρ

− 
 + −    

 
 

1

2 2

/ /

1 1 1 1
d Ry d

d dd d

S S
N nn n

   
= − + − +      
   

 
2

2 2

2
1

R

d

d d
d

v
W S

n

− 
  
 

 □  

Proposition 2  

The mean square error (MSE) of the ratio estimator 
2 /

ˆ
.

Rd d

d

y
Y x

x
=  is given by; 

1

2 /2

/ /

1 1 1 1
d Ry d

d dd d

S S
N nn n

   
− + − +      

   

2

2 2

/2
1

R

d

d d
d

v
W S

n

− 
  
 

 

Where, 

1

/2 2 2 2 2
R d d d d d dd y x d x y d x yS S S R R S Sρ= + +  

/

2 2 2 2 2 2 2

2 2 2 2 2
R d d d d d dd y d x x y d x yS S R S R S Sρ= + +  

With the notations as defined in proposition 1 above 

Proof 

MSE of 
2

ˆ
RdY  ( )

2 2

2
ˆ ˆ

R Rd d dMSE Y E Y Y = = −
  

 

=

2

/.d
d d

d

y
E x Y

x

 
− 

 
 

=
( )( )

( )
1

2

2

0
1 1

1
1

d d

d

d

E Y
ε ε

ε

  + +
  −
  +   

 

= ( )( )
1 0 1 0 2 2 2

2
2 2

1 ...d d d d d d d dY E ε ε ε ε ε ε ε + + − − + +
 

 

= ( )
0 1 2

2
2

d d d dY E ε ε ε+ −  

= ( ) ( ) ( ) ( ) ( ) ( )
0 1 2 0 1 0 2 1 2

2 2 2 2 2 2 2d d d d d d d d d dY E E E E Eε ε ε ε ε ε ε ε ε + + + − −
 

 

2 2

2

22 2

2

/ 2 / 2 2

11 1 1 1 dd d
yy y d

d d

d d dd d d d d

SS S v
Y W

N n nn Y n Y Y

 −     
= − + − +              
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+ 2 2

2

22 2

2 / 2 2

11 1 1 1 dd d
xx x d

d
d d d dd d d d

SS S v
W

n N N nX n X X

−    
− + − +       

    
 

+2
2 2 2

2 2 2

11 1 d dd d

d d d d

x yx y d

x y d x y
d d dd d d d

S SS S v
W

n N nX Y X Y
ρ ρ

 −   − +     
    

 

2−  

2

/ 2

1 1 1 1
d d d

d d

x y x

x y
d d dd d d d

S S S

n N NX Y n X
ρ

    − + −    
    

 

2

2 2

2 2 2

/ /

11 1 1 1
d d d

d

y y d y
d d dd d

v
S S W S

N n nn n

−     
= − + − +         

    
 

+ 
2

2 2

2 2 2 2 2 2

/

11 1 1 1
d d d

d

d x d x d d x
d d d dd

v
R S R S W R S

n N N nn

−    
− + − +       

    
 

+
2

2 2 2 2 2

11 1
2 2

d d d d d d d d

d

x y d x y d x y d x y
d d d

v
R S S W R S S

n N n
ρ ρ

−  
− +     

   
 

2 2

/ /

1 1 1 1
2 2

d d d d dx y d x y d x
d dd d

R S S R S
N Nn n

ρ
   

− − − −      
   

 

( )2 2 2 2

/ /

1 1 1 1
2

d d d d d d dy y x d x y d x y
d dd d

S S S R R S S
N nn n

ρ
   

= − + − + +      
   

 

+ ( )2

2 2 2 2 2 2

2 2 2
1

2
d d d d d d

d

d y d x x y d x y
d

v
W S R S R S S

n
ρ

− 
+ +  

 
 

= 
1

2 /2

/ /

1 1 1 1
d Ry d

d dd d

S S
N nn n

   
− + − +      

   

2

2 2

/2
1

R

d

d d
d

v
W S

n

− 
  
 

  

3.2. Optimal Allocation in Double Sampling for Domain 

Estimation 

An optimum size of a sample is required so as to balance 

the precision and cost involved in the survey. The optimum 

allocation of a sample size is attained either by minimizing 

the precision against a given cost or minimizing cost against 

a given precision. In this study, a non-linear cost function has 

been considered. 

Denote the cost function for the ratio estimation by 

( )
0 1 1 2 2

/ /
d d d d d d d d dC c n c n c n c r

θ
= + + +               (12) 

Where, 
/
dc  = The cost of measuring a unit in the first sample of 

size 
/
dn   

0dc  =The cost of measuring a unit of the first attempt on 

dy  with second phase sample size dn . 

1dc  = The unit cost for processing the responded data of

dy at the first attempt of size 
1dn . 

2dc  = The unit cost associated with the sub-sample of size 

2dr from non-respondents of size 
2dn   

However the first sample of size 
1dn  and sub-samples of 

size 
2dr  are not known until the first attempt is carried out. 

The cost will therefore be used in the planning for the survey. 

Hence the expected cost values of sizes 
1dn  and 

2dr  will be 

given by; 1 1d d dn W n=  and 2 2

2

. d
d d

d

n
r W

v
= . Hence the expected 

cost function is; 

*
d dE C C= =    ( )

0 1 1 2 2

2

/ / d
d d d d d d d d

d

n
c n c n c n c W

v

θ
+ + +  
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*
dC =  ( ) 2

0 1 1 2

2

/ /
.

d

d d d d d d d
d

W
c n n c c W c

v

θ  
+ + + 

 
 (13) 

3.3. Results of Double Sampling for Domain Estimation in 

the Presence of Non-Response 

Proposition 3  

The variance for the estimated domain mean for the 

estimated domain mean 
1

/ˆ
.

R

d
d d

d

y
Y x

x
=  is minimum for a 

specified cost *
dC  when, 

1
2 1

/

/

d

d

d

S
n

c

θ
ω

θ

+ 
 = ∅
 
 

 

( )
( )

21 2

0 1 1

2 2

R Rd d d

d

d d d

S W S
n

c c W

−
= ∅

+
 

( )
( )

21 22

2

0 1 12

2 2

2
.

R R

R

d d dd

d

d d d d

S W Sc
v

S c c W

−
=

+
 

Where, 

1

2 2 2 0
d d Ry dS S Sω = − >  

1

λ
∅ =  

1

2 2 2 2 2
R d d d d d dd y x d x y d x yS S S R R S Sρ= + ±  

2 2 2 2 2 2 2

2 2 2 2 2
R d d d d d dd y d x x y d x yS S R S R S Sρ= + ±  

Proof  

To determine the optimum values of 
2dv , dn and /

dn  that 

minimizes variance at a fixed cost, define 

( )dG W 2

21 2

2 2 2

/ /

11 1 1 1
d R R

d

y d d d
d d dd d

v
S S W S

N n nn n

−     
= − + − +         

    
 

( ) 2

0 1 1 2

2

/ / *
.

d

d d d d d d d d
d

W
c n n c c W c C

v

θ
λ    

+ + + + −  
   

 (14) 

To obtain the normal equations, the expression of Equation 

(14) is differentiated partially with respect to 
2dv , dn and /

dn , 

and the partial derivatives are equated to zero 

( ) ( )1

22
1

/ /

/ /2 /2
0

Rd
dyd

d d

d d d

SSG W
c n

n n n

θ
λ θ

−−∂
= + + =

∂
 

( )
1

1
2 2 / /

0
d Ry d d dS S c n

θ
λ

+
= − + + =  

( )
1

1
/ / 2 2

d Rd d y dc n S S
θ

λ
+

= −  

( ) 1

2 2
1

/

/

d Ry d

d

d

S S
n

c

θ

λ θ
+ −

=  

Let
1

2 2 2 0
d d Ry dS S Sω = − > , thus, 

( )
2

1
/

/

d

d

d

S
n

c

θ ω

λ θ
+

=  

1
1

2 2 1
1

/

/ /

d d

d

d d

S S
n

c c

θθω ω

λ θ θ

++   
 = = ∅      

  

Next the partial derivative with respect to 
2dv  obtained as; 

( ) 2 2 2 2

2 2

2

2
0

Rd d d d dd

d d d

W S c W nG W

v n v

λ∂
= − =

∂
 

2 2 2 2

2

2

2

Rd d d d d

d d

W S c W n

n v

λ
=  

2 2 2 2 2

2 2 2

Rd d d d d dc W n v W Sλ =  

2

2

2R

d d

d
d

n c
v

S

λ
=                                       (15) 

Consider the equation 

( )dG W  
2

21 2

2 2 2

/ /

1 1 1 1 1
d R R

d

y d d d
d d d dd d

v
S S W S

N n n nn n

     
= − + − + −         

    
 

( ) 2

0 1 1 2

2

/ / *
.

d

d d d d d d d d
d

W
c n n c c W c C

v

θ
λ    

+ + + + −  
   

 (16) 

But from (15), 

22

2R

dd

d d

cv

n S

λ
=  

and 

2

2 2

Rdd

d d

Sn

v cλ
=                               (17) 

Substituting this in Equations (17) we obtain into (16) we 

obtain 
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( )dG W
2

21 2

2

2 2 2

/ /

1 1 1 1 1
d R R

R

d

y d d d
d d d dd d

c
S S W S

N n S nn n

λ    
 = − + − + −             

 

( ) 2

0 1 1 2 2

2

/ / *Rd

d d d d d d d d d

d

S
c n n c c W c W C

c

θ
λ

λ
    

+ + + + −   
    

                                (18) 

The partial derivative of the equation (18) with respect to 

dn  is obtained as 

( ) ( )21 2

0 1 1

2 2

2 2
0

R Rd d dd
d d d

d d d

S W SG W
c c W

n n n
λ

∂
= − + + + =
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( )
2 0 1 11 2

2 2 2 0
R Rd d d d d d dS W S n c c Wλ= − + + + =  
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0 1 1 21 2

2 2 2

R Rd d d d d d dn c c W S W Sλ + = −  
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d
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S W S
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−
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S W S
n
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Where 
1

λ
∅ =  But 

2

2

2

.

R

d

d d
d

c
v n

S

λ
=  from equation (17)  

Thus,  

( )
( )

21 22

2

0 1 12

2 2

2
.

R R

R

d d dd

d

d d d d

S W Sc
v

S c c W

−
=

+
  

To obtain λ  the values of 
2dv , dn

 
and /

dn  are substituted 

in the cost function equation (13) and then solve for the value 

of λ . Suppose the cost function is given by 

*
dC =  ( ) 2

0 1 1 2

2

/ /
.

d

d d d d d d d
d

W
c n n c c W c

v

θ  
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Then, 

*
dC = 2 21 2 2 2 1 2

0 1 1
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1
2 2 2 22 1

/

/
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d d d d d dd d

d d d d
d d d d d dd d
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Let, 
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θ
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+
+
 
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 
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*
dC C=  

The equation (19) becomes; 

1

1 2 0A B C

θ
θλ λ

− −
+ + − =                                                                              (20) 

If θ  = 1 and substituting this value in the equation (20) we obtain a linear equation of the form 
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1 1

2 2 0A B Cλ λ
− −

+ − =
 

With the values of A  and B  defined as; 

( )
1

21 2
/ 2 d

d

S
A c

ω

θ

 
 =
 
 

, ( ) 21 2
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 and 
*
dC C=

 

Solving the linear equation solution obtained is, 

A B

C
λ +=  

When 
1

3
θ =  and substituting this value in the equation 

(20) we obtain a linear equation of the form, 

1 1

4 2 0A B Cλ λ
− −

+ − =                           (21) 

With the values of A  defined as; 
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 
 =
 
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While B  and C  remains as earlier defined 

Solving the equation (21) solution obtained is, 
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Proposition 4  

If the expected cost function is of the form *
dC =  

2

0 1 1 2
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/ /log .
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d d d d d d d
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v

 
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 then the variance of the 

estimated domain mean dy  is minimum for a specified cost 

*
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c
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−
=

+
 

Where, 

1

λ
∅ =  

Proof 

The proof for dn  and 
2dv is the same as the one in 

proposition 3 above. For /
dn  the Lagrangian multiplier 

technique is used. 

Let, 

( )dG W 2

21 2

2 2 2

/ /

11 1 1 1
d R R

d

y d d d

d d d d d

v
S S W S

n N n n n

−    
= − + − +     
     

 

2
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d

W
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v
λ    

+ + + + −  
   

                                               (22) 

To obtain the normal equations for the expression (22) the equation is differentiated partially with respect to 
/
dn  and the 

partial derivatives are equated to zero 

( )
1

22 /

/ /2 /2 /
0

Rd
dyd d

d d d d

SSG W c

n n n n

λ−∂
= + + =

∂
 

1

2 2 / / 0
d Ry d d dS S c nλ= − + + =  

1

/ / 2 2

d Rd d y dc n S Sλ = −  
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1

2 2

/

/

d Ry d

d

d

S S
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But, 
1

2 2 2 0
d d Ry dS S Sω = − > , thus, 
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ω ω
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 
 = = ∅
 
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1

λ
∅ =   

To solve for λ , let the variance be given as 0V  then substitute the values of
2dv , dn and /

dn  into the equation, 
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2
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d dd
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             (23)

 

 Substitute the values of 
2dv , dn and /

dn  into the equation (23) and simplify to obtain, 

( )( )
2 0 1 1 2 21 2 2

/ 2 2 2 *
0

R R Rd d d d d d d d d d dc S W S c c W W S c Vλ λ  + − + + − = 
 

                                  (24) 

Let, 

*
dV  

2

0
dy

d

S
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N

 
 = +
 
 

, /
dA c=  and ( )( )

2 0 1 1 2 21 2 2

2 2 2

R R Rd d d d d d d d dB S W S c c W W S c= − + +  

Thus equation (24) becomes, 

1

*2 0dA B Vλ λ+ − =                              (25) 

Solving for λ  in equation (21) the solution becomes, 

( )
1

22 4

2

B AC B

A
λ

 + − 
=  
 
 

  

4. Conclusion 

It is noted that value of inverse sampling rate ( )
2dv

 
do 

not depend on the value of the Lagrangian multiplier ( λ ). 

Further the value of sampling rate, 
2dv  < 1, if 

2dc  (the unit 

cost associated with the sub-sample of size 
2dr

 
from non-

respondents of size 
2dn  ) is less than both 

1dc  (the unit 

cost for processing the responded data of dy
 
at the first 

attempt of size 
1dn  ) and 

0dc (the cost of measuring a unit 

of the first attempt on dy  with second phase sample size 

dn  ) and also when the value of 
1

2

RdS  is not too large 

relative to 
2

2

RdS . The second phase sample size ( dn ) will 

be minimum if the value of ( )21 2

2 2
0

R Rd d dS W S− >  but less 

than 1. If the value of 
1

2 2 2 1
d d Ry dS S Sω = − <

 
and 

1

2 2

d Ry dS S>  

with the values of /
dc  (the cost of measuring a unit in the 

first sample of size /
dn ) not being too large to the relative 

2

d
Sω then the value of /

dn  (size of the first sample) will be 

minimum. These minimum values therefore make the 

theoretic cost survey of the proposed estimator as minimal 

as possible.  
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