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Abstract: Bilinear Autoregressive Moving Average Vector (BARMAV) Models are models aggregated with the linear and 

non-linear vector components of autoregressive and moving average processes. The linear part is the sum of the two vector 

processes, while the non-linear part is the product of the processes. From the general BARMAV models, Bilinear 

Autoregressive Vector (BARV) Models and Bilinear Moving Average Vector (BMAV) Models have been isolated. Under 

certain conditions, the models are proved to exist. Empirically, Nigerian consumer price index and inflation rate are used to test 

the fitness of the bilinear models. Data for the analysis are from Central Bank of Nigeria Statistical Bulletin, collected from 

January 2009 to December 2016 with November 2009 as the base year for each of the series. The bilinear autoregressive 

moving average vector models are fitted to the data. Parameters are tested and found to be significant. The adequacy of each 

estimated model is confirmed with ACF, PACF and descriptive statistics adopted in the paper. The plots of the actual and fitted 

CPI and IR have shown that models are adequate as estimates compete favourably with the actual values. The models are 

useful in modelling some economic and financial data that exhibit some characteristics of non-linearity. 

Keywords: AR Process, MA Process, Linear and Bilinear Models 

 

1. Introduction 

When dealing with classical time series models, the two 

popular processes that explain the behaviour of empirical 

data in a stationary time series are autoregressive and moving 

average processes. These processes are described on the basis 

of autocorrelation and partial autocorrelation functions of 

empirical data. The popular Autoregressive Moving Average 

(ARMA) model in time series is a model of linear 

relationship between a time series process Xt and the lag 

variables of both the process and error term. The General 

ARMA (p,q) model is expressed in a linear form as, 

�� �	�� � ∑ ∅	��
	 � ∑ ��
�
� � 
�
�
���

�
	�� 	      (1) 

Where, �� is the time process, ∅	 and �� are parameters of 

autoregressive and moving average processes respectively, 
� 

is the error term. 

The above model is a univariate linear time series model 

for the two processes from which AR or MA model can be 

isolated on condition that � � 0	��	� � 0 respectively, [2, 5,  

8, 9]. 

The interest in this paper is to identify special classes of 

bilinear autoregressive moving average vector models under 

certain conditions. The fact is that in time series modelling, a 

process may be described by either AR, MA or both. In as 

much as AR and MA exist independently each as a univariate 

linear, multivariate linear, univariate bilinear; it follows that 

there exists multivariate bilinear model for each of the AR 

and MA processes under certain conditions. 

1.1. Multivariate ARMA Models 

The multivariate ARMA model is presented in the matrix 

form as 
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Model (2) can be written as 

�	� � ∑ ∑ !(.)*���
( � 
+� � ∑ ∑ ',.)*
+�
,
$#-
),*,+��

�
,��

$#%
),*,���

�
(��                                    (3) 

Where, �	� ( � � 1,2, … , 1)  are time series 

variables, 	
+�(4 � 1,… ,5)  are error variables associated 

with �	�  with each ��*  time process corresponding to each 

4�*  error term ( � � 4) , ���
( 	617	
+�
,  are autoregressive 

and moving average processes respectively, !(.)*(6 �
1,… , 8; : � 1,… �; ℎ � 1,… , <)  are rxc matrices of 

autoregressive parameters, ',.)*(= � 1,… , >; : �
1,… , �; ℎ � 1,… , <)  are rxc matrices of moving average 

parameters. The above model “3” is a multivariate linear 

Autoregressive Moving Average Model. On multivariate time 

series, cited in this paper includes [17],[6],[11]. From “3” 

above, if certain condition(s) are introduced to the 

parameters, each of the processes is isolated; such as = � 0 

changes “3” to Vector Autoregressive (VAR) model in the 

form, 

�	� = ∑ ∑ !(.)*���
( + 
+�$#%),*,���
�
(��              (4) 

Similar to “4” are Dufour [3], Usoro and Omekara [13]. 

Also if 6 = 0,  a pure moving average vector model is 

isolated, and it becomes, 

�	� = ∑ ∑ ',.)*
+�
, + 
+�$#-),*,+��
�
,��                 (5) 

Where, the parameters are as described above. 

1.2. Non-Linear ARMA Models 

The non-linear Autoregressive Moving Average models are 

presented in the form, 
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The expansion of the above matrices gives non-linear 

ARMA models for ��� , ��� , … , �%�. The models are reduced 

to 

�	� = ∑ ∑ ∑ ∑ ∑ ∑ ?(,.)*���
(
+�
, + 
+�-+��%���#*��$)��
A
,��B(��  (6) 

Model (6) can be written as 

�	� = ∑ ∑ ∑ ?(,.)*���
(
+�
, + 
+�$#%-),*,�,+��
A
,��B(��  (7) 

Model “7” is a multivariate non-linear Autoregressive 

Moving Average Model. 

Combining “5” and “7”, we have Multivariate Bilinear 

Autoregressive Moving Average Models also known as 

BARMAV models as 
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Where !(.)*, ',.)*, ?(,.)* ≠ 0 and 1 ≤ 6 ≤ 8, F; 	1 ≤ = ≤
>, G; 1 ≤ � ≤ 1; 1 ≤ 4 ≤ 5; 1 ≤ :, ℎ, ≤ �, <. 

Model “8” is the multivariate form of the univariate 

models presented by Granger and Anderson [4], Maravall 

[10], Subba Rao and Gabr [12], Bibi and Oyet [1], Iwueze 

[7]. 

2. Isolation of Special Models 

In this section, conditions for isolation of special classes of 

bilinear autoregressive moving average vector models are 

considered. Usoro [15] identified special classes of bilinear 

time series models. Under certain conditions BAR and BMA 

were identified from the mixed BARMA model. Here, we 

consider the multivariate case of Usoro [15,16]. 

2.1. Bilinear Autoregressive Vector (BARV) Model 

BARV model is given as 

�	� = ∑ ∑ !(.)*���
($#%),*,���
�
(�� + ∑ ∑ ?(@.)*���
(
+� + 
+�$#%-),*,�,+��B(��                                     (9) 

Proof: 

From “8”, 

HIJ	�	� = K� + L� + M� + 
+� 

Where, 
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Special Condition: if b = 0 => q = 0, '@.)*3: = 1,… , �; ℎ = 1,… , <2 = 0, the moving average component of the model is 

uncorrelated at any lag, => L� = 0, as 
+�~��730, PQ�2, 

then 

K� = C C !(.)*���
(
$#%
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Hence, “9” is BARV model with !(.)*, 1 ≤ 6 ≤ 8, 1 ≤ :, ℎ, � ≤ �, <, 1; ?(@.)* , 1 ≤ 6 ≤ F, 1 ≤ :, ℎ, �, 4 ≤ �, <, 1, 5.	This 

completes the proof. 

2.2. Bilinear Moving Average Vector (BMAV) Model 

BMAV model is given as 

�	� = ∑ ∑ ',.)*
+�
,$#-),*,+��
�
,�� + ∑ ∑ ?@,.)*���
+�
, + 
+�$#%-),*,�,+��

A
,��                               (10) 

Corollary 

From “8” 

HIJ	�	� = T� + U� + V� + 
+� 

Where, 

T� = C C !(.)*���
(, U� = C C ',.)*
+�
,
$#-
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Special Condition: if a = 0 => p = 0, !@.)*3: = 1,… , �; ℎ = 1,… , <2 = 0, the autoregressive component of the model is 

uncorrelated at any lag, => T� = 0, as 
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then 
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Hence, “10” is BMAV model with	',.)*, 1 ≤ = ≤ >, 1 ≤
:, ℎ, � ≤ �, <, 5; ?@,.)*, 1 ≤ = ≤ G, 1 ≤ :, ℎ, �, 4 ≤
�, <, 1, 5.	This completes the proof. 

2.3. Test for Linearity and Bilinearity 

The above test involves the parameters of both the linear 

and non-linear components of bilinear time series models. 

(i) Linear Parameter: A linear parameter is the unknown 

coefficient of either AR, MA or Mixed ARMA process. 

(ii) Non-Linear Parameter: This is the unknown coefficient 

of the non-linear component(s) of the bilinear model. 

Test Statistic: 

The test statistic is given as 

J = !W(.)*
RXYZ.[\

:��	JℎI	]�1I6�	K^	<�_8�1I1J, '̀,.)*
Rabc.[\

:��	JℎI	]�1I6�	dK	<�_8�1I1J, 

617	 ?W(,.)*
ReYZc.[\

	:��	JℎI	1�1 − ]�1I6�	K^dK	<�_8�1I1J. 

Hypotheses: 

H0: !W(.)* = '̀,.)* = ?W(,.)* = 0 

H1: !W(.)* ≠ 0, '̀,.)* ≠ 0, ?W(,.)* ≠ 0 

From the above hypotheses; 

(i) if H0 is rejected for at least one of !W(.)* and '̀,.)*, but 

accepted for ?W(,.)*, there is no effect of bilinearity in 

the series. It is characterised by a pure linear process. 

(ii) if H0 is accepted for both !W(.)* and '̀,.)*, but rejected 

for only ?W(,.)* , the series is characterised by a 

complete non-linear process. 

(iii) if H0 is rejected for at least one of !W(.)* and '̀,.)*, and 

rejected for ?W(,.)*, there is effect of bilinearity in the 

series. A bilinear process is a process that has effects 

of both linear and nonlinear components in the series. 

For a time series exhibits bilinear characteristics only 

if at least a parameter of a linear component is 

significant with the parameter of the nonlinear 

component of the model. 

3. Model Fitting to Empirical Data 

In this section, we consider fitting the bilinear models to 

the empirical data. For illustration, Nigeria Consumer Price 

Index (CPI) and Inflation rates (IR) are fitted with the 

bilinear models. The procedures of fitting bilinear models to 

time series data are not different from the ordinary ARMA 

models. 

3.1. Time Plots of the CPI and IR 

 

Figure 1. Time Series Plot of Consumer Price Index. 
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Figure 2. Time Series Plot of Inflation Rate. 

“Figures 1” and “Figure 2” are the time series plots of 

consumer price index and inflation rates from January 2009 

to December 2016, with November 2009 as the base year. 

The consumer price index exhibits long term increase over 

time, while interest rate shows some level of randomness, 

which explains non-linearity characteristics as indicated from 

January 2009 with a drop 2013, and sharp increase in 2016. 

3.2. Autocorrelation and Partial Autocorrelation Functions 

of CPI and IR 

 

Figure 3. ACF of the CPI. 

 

Figure 4. PACF of the CPI. 

 

Figure 5. ACF of IR. 

 

Figure 6. PACF of IR. 

The above ACF’s and PACF’s for the CPI and IR suggest 

BARMA(1,1,1,1) for each CPI and IR. 

3.3. Estimation of Parameters and Interpretation of Results 

Table 1. Estimation of Model Parameters for CPI(X1t). 

Predictor Coeff. SE. Coeff t-statistics P 

Constant 0.9864 0.7978 1.24 0.220 

X1t-1 0.9972 0.0042 240.12 0.000 

X2t-1 0.01896 0.0328 0.58 0.564 


��
� -0.8520 0.3779 2.25 0.027 


��
� 1.2686 0.6063 2.09 0.039 

X1t-1
��
� 0.0093 0.0024 3.92 0.000 

X2t-1
��
� -0.1412 0.0533 2.65 0.009 

Table 2. Estimation of Model Parameters for IR(X2t). 

Predictor Coeff. SE. Coeff t-statistics P 

Constant 1.1815 0.8569 1.38 0.171 

X1t-1 -0.0058 0.0045 -1.30 0.196 

X2t-1 0.9529 0.0352 27.08 0.000 


��
� -1.0104 0.4058 -2.49 0.015 


��
� 0.1491 0.6512 0.23 0.819 

X1t-1
��
� 0.0082 0.0026 3.20 0.002 

X2t-1
��
� -0.0308 0.0572 -0.54 0.592 

The models with parameter estimates are presented as 

follows 
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h = i 1.00183 0.04905
−0.000286 0.98898p g���
�

���
�
h

+ i−0.5241 1.3913
−0.6176 0.2961p i 
��
�

�
��
�p 

+ i0.007128 −0.15476
0.005565 −0.04692p g���
�
��
�

���
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��
�
h          (11) 

The above results have it that parameters of the bilinear 

model fitted to CPI are all significant, except for X2t-1. For 

IR, evidence has it that some parameters of the linear 

components are significant with one of the non-linear 

components. This is a true indication of model fitness to the 

data. Further evidence is shown in the ACF and PACF of the 

model residual. 

 

Figure 7. ACF of the Model Residual. 

 

Figure 8. PACF of the Model Residual. 

“Figure 7” and “Figure 8” are evident that the residual is a pure white noise process, which is identically and independently 

distributed with zero mean and constant variance as shown in table3. 

Table 3. Descriptive Statistics: Residual. 

Variable N N* Mean SE Mean STD Min Q1 Median Q3 Max 

Residual 95 1 0.000 0.073 0.708 -1.3 -0.3 -0.11 0.23 3.0 
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Figure 9. Plots of Actual and Fitted CPI Series. 

 

Figure 10. Plots of Actual and Fitted IR Series. 

4. Conclusion 

There is no gainsaying the fact that each of the AR and 

MA processes are combined to form mixed ARMA process. 

This is explained by the behaviour of the empirical data as 

always shown in the distribution of the autocorrelation and 

partial autocorrelation functions. A process that is only 

described by either AR or MA remains a singular process, 

except characterised by both. The idea about this paper is that 

if there exist condition(s) for isolation of AR or MA from 

ARMA, isolation of BAR or BMA from BARMA models, 

therefore, BARV and BMAV are conditionally isolated from 

BARMAV model. For a pure bilinear autoregressive vector 

model, the non-linear component of the model is the product 

of lagged �	� and non-lagged 
+� . That is the multiplication 

of �	�
�,�	�
�, … , �	�
B by 
+�. That means each of the non-

zero lags of �	� is multiplied by zero lag of 
+� to form the 

non-linear part of the model. Similarly, for a pure bilinear 

moving average vector model, the non-linear component of 

the model is the product of lagged 
+�and non-lagged �	� . 

That is the multiplication of 
+�
�, … , 
+�
A  by �	� . Here, 

each of the non-zero lags of 
+� is multiplied by zero lag of 

�	�  to form the non-linear part of the BMAV model. 

Empirically, see Usoro and Omekara (2008) and Usoro 

(2018). Empirically, the monthly consumer price index and 

inflation rate used in this paper are characterised by both AR 

and MA process. This called for adoption of “8” in the 

analysis. The plots of the actual and fitted CPI and IR data in 

figures “9” and “10” have shown that estimates compete 

favourably with the actual. Hence, the models are suitable in 

modelling time series data that exhibit some form of non-

linearity characteristics. 
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