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Abstract: Bilinear Autoregressive Moving Average Vector (BARMAV) Models are models aggregated with the linear and
non-linear vector components of autoregressive and moving average processes. The linear part is the sum of the two vector
processes, while the non-linear part is the product of the processes. From the general BARMAV models, Bilinear
Autoregressive Vector (BARV) Models and Bilinear Moving Average Vector (BMAV) Models have been isolated. Under
certain conditions, the models are proved to exist. Empirically, Nigerian consumer price index and inflation rate are used to test
the fitness of the bilinear models. Data for the analysis are from Central Bank of Nigeria Statistical Bulletin, collected from
January 2009 to December 2016 with November 2009 as the base year for each of the series. The bilinear autoregressive
moving average vector models are fitted to the data. Parameters are tested and found to be significant. The adequacy of each
estimated model is confirmed with ACF, PACF and descriptive statistics adopted in the paper. The plots of the actual and fitted
CPI and IR have shown that models are adequate as estimates compete favourably with the actual values. The models are
useful in modelling some economic and financial data that exhibit some characteristics of non-linearity.
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is the error term.

The above model is a univariate linear time series model
for the two processes from which AR or MA model can be
isolated on condition that j = 0 or i = 0 respectively, [2, 5,
8,9].

The interest in this paper is to identify special classes of
bilinear autoregressive moving average vector models under
certain conditions. The fact is that in time series modelling, a
process may be described by either AR, MA or both. In as
much as AR and MA exist independently each as a univariate
linear, multivariate linear, univariate bilinear; it follows that
there exists multivariate bilinear model for each of the AR
and MA processes under certain conditions.

1. Introduction

When dealing with classical time series models, the two
popular processes that explain the behaviour of empirical
data in a stationary time series are autoregressive and moving
average processes. These processes are described on the basis
of autocorrelation and partial autocorrelation functions of
empirical data. The popular Autoregressive Moving Average
(ARMA) model in time series is a model of linear
relationship between a time series process X; and the lag
variables of both the process and error term. The General
ARMA (p,q) model is expressed in a linear form as,

Xe= pe+ B 0K+ Bin Geyt e (D 4 Mutdivariate ARMA Models

Where, X, is the time process, @; and 6; are parameters of
autoregressive and moving average processes respectively, €;

The multivariate ARMA model is presented in the matrix
form as
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Model (2) can be written as
— q rew
Xit = Yoy X1 hjm1 YafnXjt—a + €t + Yoot X f =1 Bb.fn€re—b (3)
Where, X; ( i=12,..,n) are time series 0
. . . 0.1 -
variables, €,;(k =1,..,w) are error variables associated [Proa1  Ppoaz POLCT P Xt p€iy
with X;, with each i*" time process corresponding to each I‘ppﬂll Ppo.22 Proc I Xot—p€at
k" error term (i = k), Xjt—q and €}, are autoregressive : :
and moving average processes respectively, agrp(a = ) : J
1,..,psf=1.1rh=1,..,c) are rxc matrices of Ppor1  Pporz ®p1re |1 Xnt—p€wt
autoregressive parameters, Bosnb=1,..,q;f = 0
. . 01.1c7
1 h=1,..,c¢) are rxc matrices of moving average Por1r Poraz @ “IrXie€1e-1
parameters. The above model “3” is a multivariate linear Por.21 <Po.1.zz 0L2¢ | Xpp€ae—1
Autoregressive Moving Average Model. On multivariate time +

series, cited in this paper includes [17],[6],[11]. From “3”
above, if certain condition(s) are introduced to the
parameters, each of the processes is isolated; such as b = 0
changes “3” to Vector Autoregressive (VAR) model in the
form,

Xie = Yoo XFjm1 XasnXje-a + ke 4)

Similar to “4” are Dufour [3], Usoro and Omekara [13].
Also if a =0, a pure moving average vector model is
isolated, and it becomes,

Xie = Z=1 er‘,cf‘:,)kﬂ Bb.fh€ke—b + €kt Q)
Where, the parameters are as described above.
1.2. Non-Linear ARMA Models

The non-linear Autoregressive Moving Average models are
presented in the form,

P10.12
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The expansion of the above matrices gives non-linear
ARMA models for Xy, X3¢, ..., Xpe. The models are reduced
to

Lt=25=12 1Zf 1 20h= 12 ) 1 Pab.frXjt—a€re—b + €t (6)

Model (6) can be written as

it = D=1 Zgzl Y nik=1PabrnXje-a€rt—p + €ke (7)

Model “7” is a multivariate non-linear Autoregressive
Moving Average Model.

Combining “5” and “7”, we have Multivariate Bilinear
Autoregressive Moving Average Models also known as
BARMAYV models as
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2. Isolation of Special Models

ren rcw
Xie = z Z A nXjt-a + z Z Bb.frn€ke—b In this section, conditions for isolation of special classes of
a=1fhj=1 =1 f hk=1 bilinear autoregressive moving average vector models are

b 0 renw considered. Usoro [15] identified special classes of bilinear
+Xa=12p=1 Ly k=1 Pab.rhXje-a€ke-b T €xe  (8)  time series models. Under certain conditions BAR and BMA
were identified from the mixed BARMA model. Here, we

<a< 1 1<b<
Where aq ¢n, By fhs Pappn # 0and1 <a <p,P; 1<b < consider the multivariate case of Usoro [15,16].

,0;1<j<m1<k<w;1<f,h<rc

Model “8” is the multivariate form of the univariate 2,1, Bilinear Autoregressive Vector (BARV) Model
models presented by Granger and Anderson [4], Maravall
[10], Subba Rao and Gabr [12], Bibi and Oyet [1], Iwueze BARYV model is given as

[7].
Xie = Z:l Z;,C}?,jzl Ao nXjt—a + ZZ:l Z;‘C)?‘]/Vk 19PaofrXjt—a€re + €t )
Proof:
From “8”,
Let X;y = Ay + B + C, + €1
Where,
ren rew
A = z Z Qg nXjt-a B = Z Z PBo. fh€kt—b
a=1fhj=1 =1 f,hk=1
and
renw

Ce = ZZ Z Pab.nXjt—a€ie—b

a=1b=1 f,h,j k=1

Special Condition: if b=0=>q =0, o, (f =1,..,75h = 1,...,c) = 0, the moving average component of the model is
uncorrelated at any lag, => B, = 0, as €;,~iid (0, 62),

then
ren renw
A = Z Z Ao n¥Xjt-q and C = Z Z ©a0.frXjt-a€ke » SUch that
a=1 f,h,j=1 a=1 f,h,j k=1
ren renw
Xie = A+ G + € = Z Z Aq rnXje- a+z z Pao.rnXjt-a€rt T €xe
a=1fhj=1 a=1fnjk=1

Hence, “9” is BARV model with agf,,1<a<p,1< fihj<rcn Yool <a<P 1< fihj,k <r,c,nw. This
completes the proof.

2.2. Bilinear Moving Average Vector (BMAV) Model

BMAV model is given as
Xit = Xper ZFie=1 Bo.n€re-p + e, X nik=1Pob.rn¥Xjt€ke-b t €kt (10)
Corollary
From “8”
Let X; =Dy + E; + Fe + €1¢
Where,

ren rew

p
Zz Z Qg rXjt-ar Er = z Z ﬁbfhekt b

fihj=1 =1f,hk=1
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and

P Q
F, = z Z Pab.nXjt-a€kt—b

Special Condition: if a = 0 =>p =0, a9, (f =1,..,7;h =1,...,c) = 0, the autoregressive component of the model is
uncorrelated at any lag, => D, = 0, as €, ~iid (0, 62),

then
a rcw Q renw
E, = z z Bb.fn€ke—p and F = z Z Pob.rnXjt€xe—p » SUCh that
b=1f,hj=1 b=1f,h,j k=1
q rcw Q renw
Xi=E+Feteg = Z Z Bb.fh€ki-p + Z Z Pob.frXjt€re—p T Exe
b=1 f,h,j=1 b=1 f,h,j k=1
Hence, “10” is BMAV model with 8, ;5,1 <b <¢q,1< (i) Linear Parameter: A linear parameter is the unknown
fihjs<rew,@pml<b<Q1=<fhjk<=< coefficient of either AR, MA or Mixed ARMA process.
r,¢,n, w. This completes the proof. (i1) Non-Linear Parameter: This is the unknown coefficient
of the non-linear component(s) of the bilinear model.
2.3. Test for Linearity and Bilinearity Test Statistic:

The above test involves the parameters of both the linear The test statistic is given as

and non-linear components of bilinear time series models.

~

a
¢t =2t for the linear AR component, Po.pn for the linear MA component,
Sag s s/?b.fh
and Pavsn for the non — linear ARMA component.
SPab.fn

Hypotheses: the empirical data. For illustration, Nigeria Consumer Price
Ho: @q pn = ﬁAb.fh = Qapgn =0 Index (CPI) and Inflation rates (IR) are fitted with the
Hi: Qg # 0, ﬁb.fh #0,Papn # 0 b.ilinear models. The proce.dures of fitting biline.ar models to
From the above hypotheses; time series data are not different from the ordinary ARMA

(i) if Ho is rejected for at least one of @, sy and S 5, but models.
accepte':d for @ab_fh, theFe is no effect (?f bilinearity in 3.1. Time Plots of the CPI and IR
the series. It is characterised by a pure linear process.

(i) if Hy is accepted for both &, 5 and By, £n» but rejected
for only @gprn . the series is characterised by a
complete non-linear process.

(iii)if Hy is rejected for at least one of &g ¢4 and By, h> and 2001
rejected for @y rp, there is effect of bilinearity in the 180
series. A bilinear process is a process that has effects

Time Series Plot of CPI

220

160

of both linear and nonlinear components in the series. 5
For a time series exhibits bilinear characteristics only 1401
if at least a parameter of a linear component is 1204

significant with the parameter of the nonlinear

component of the model. 1007

3. Model Fitting to Empirical Data e

Figure 1. Time Series Plot of Consumer Price Index.

In this section, we consider fitting the bilinear models to
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Figure 2. Time Series Plot of Inflation Rate.
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to December 2016, with November 2009 as the base year. 0.8
The consumer price index exhibits long term increase over g 06
time, while interest rate shows some level of randomness, 5 04
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which explains non-linearity characteristics as indicated from g oo . L . . e
January 2009 with a drop 2013, and sharp increase in 2016. ER f,Jﬁ ,,,,,,,,,,,,,,,,,,,,,,,,, _
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3.2. Autocorrelation and Partial Autocorrelation Functions & .06
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104
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(with 5% significance limits for the autocorrelations)
1.04 Figure 6. PACF of IR.
0.8 L ST T
0.6 - The above ACF’s and PACF’s for the CPI and IR suggest
5 047 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ | | BARMA(1,1,1,1) for each CPI and IR.
1o L1111
[
§ 00 3.3. Estimation of Parameters and Interpretation of Results
o -0.2
2 AN
= N
T 04 S — Table 1. Estimation of Model Parameters for CPI(X},).
-0.6- ———
-0.84 T —— — Predictor Coeff. SE. Coeff t-statistics P
=ty i i i i i i i i i i i i Constant 0.9864 0.7978 1.24 0.220
2 % 6 8 10 lfag 4 16 18 20 2 24 X1 0.9972 0.0042 240.12 0.000
X 0.01896 0.0328 0.58 0.564
Figure 3. ACF of the CPI €101 -0.8520 03779 225 0.027
€301 1.2686 0.6063 2.09 0.039
partial Aut ation Function for CPI it 0.0093 0.0024 3.92 0.000
artial Autocorrelation Function for
(with 5% significance limits for the partial autocorrelations) XZ(-lezpl -0.1412 0.0533 2.65 0.009
1.04
0.8 Table 2. Estimation of Model Parameters for IR(X>).
é g'j Predictor Coeff. SE. Coeff t-statistics P
s e Constant 1.1815 0.8569 1.38 0.171
g oo i -0.0058 0.0045 -1.30 0.196
‘_3. 02— —"— — - ———— Xoe1 0.9529 0.0352 27.08 0.000
£ 04 €101 -1.0104 0.4058 -2.49 0.015
£ 061 €201 0.1491 0.6512 023 0.819
081 Xie1€rpo1 0.0082 0.0026 3.20 0.002
e I Xou1€pr_1 -0.0308 0.0572 -0.54 0.592
2 4 6 8 10 12 14 16 18 20 22 24
Lag . .
The models with parameter estimates are presented as

Figure 4. PACF of the CPI. follows
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1.00183

Xlt] _ [ 0.04905] [Xlt_l]
Xot —0.000286 0.98898

The above results have it that parameters of the bilinear
model fitted to CPI are all significant, except for X,.; For

Xpio . . :
2t-1 IR, evidence has it that some parameters of the linear

—0.5241 1.39137] €1t-1 o - .
+ [_0 6176 0.2961 [ Xeég_ 1] components are significant with one of the non-linear
components. This is a true indication of model fitness to the
. [0.007128 —0.15476] [X1r—161t—1] an iﬁgz.e}:;lg;lilg;aeividence is shown in the ACF and PACF of the
0.005565 —0.046921 | X1 1€2¢-1 '
Autocorrelation Function for Residual
(with 5% significance limits for the autocorrelations)
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Figure 7. ACF of the Model Residual.
Partial Autocorrelation Function for Residual
(with 5% significance limits for the partial autocorrelations)
1.0+
0.8+
e 0.64
2
B 0.4
[
E 02 ————— —————————
g L1 1 l I L1
‘g 0.0 T I T | T | T | T T
< 021 —————+-—7"7-—-— - — — - — - — =
£ -04-
& -0.6-
-0.8
-1.04
T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20 22 24
Lag

Figure 8. PACF of the Model Residual.

“Figure 7” and “Figure 8” are evident that the residual is a pure white noise process, which is identically and independently
distributed with zero mean and constant variance as shown in table3.

Table 3. Descriptive Statistics: Residual.

Variable

N*

Mean

SE Mean STD Min Q1 Median Q3 Max

Residual

95

0.000

0.073 0.708 -1.3 -0.3 -0.11 0.23 3.0
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Time Series Plot of CPI, FITS1
2204 Variable
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Figure 9. Plots of Actual and Fitted CPI Series.
Time Series Plot of IR, FITS2
20 Variable
—e— IR
—B— FITS2
S
a8
1 10 20 30 40 5 60 70 80 90
Index

Figure 10. Plots of Actual and Fitted IR Series.

4. Conclusion

There is no gainsaying the fact that each of the AR and
MA processes are combined to form mixed ARMA process.
This is explained by the behaviour of the empirical data as
always shown in the distribution of the autocorrelation and
partial autocorrelation functions. A process that is only
described by either AR or MA remains a singular process,
except characterised by both. The idea about this paper is that
if there exist condition(s) for isolation of AR or MA from
ARMA, isolation of BAR or BMA from BARMA models,
therefore, BARV and BMAV are conditionally isolated from
BARMAYV model. For a pure bilinear autoregressive vector
model, the non-linear component of the model is the product
of lagged X;; and non-lagged €,;. That is the multiplication
of Xjt_q Xit—2, .., Xitr—p by €x. That means each of the non-

zero lags of X;, is multiplied by zero lag of €, to form the
non-linear part of the model. Similarly, for a pure bilinear
moving average vector model, the non-linear component of
the model is the product of lagged €;and non-lagged X;;.
That is the multiplication of €x;_q, ..., €xc—q by X;r. Here,
each of the non-zero lags of €, is multiplied by zero lag of
X;; to form the non-linear part of the BMAV model.
Empirically, see Usoro and Omekara (2008) and Usoro
(2018). Empirically, the monthly consumer price index and
inflation rate used in this paper are characterised by both AR
and MA process. This called for adoption of “8” in the
analysis. The plots of the actual and fitted CPI and IR data in
figures “9” and “10” have shown that estimates compete
favourably with the actual. Hence, the models are suitable in
modelling time series data that exhibit some form of non-
linearity characteristics.
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