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Abstract: Longitudinal data are available in many disciplines, and quite often the mechanism generating the data are changing
over time. These changes must be accounted for when modelling the data and subsequently drawing conclusions from the data.
The three statistical models described in this article (GARCH, HMM, ARHMM) are appropriate modelling data with such
changes. These three models are generalizations of a random walk. In a random walk the random changes over time have a
constant distribution. The three models illustrated account for changes in the distribution of the random displacements over time.
Our purpose in the article is to illustrate these three models and their intricacies using Excel. We would also contend and
encourage the application of these three models to the analysis of other continuous data in fields utilizing social and medical data.
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1. Introduction

In 1973, the book ‘A Random Walk Down Wall Street’ [1]
popularized the idea that the stock market followed a random
walk. A Random Walk is a stochastic process consisting of
series of steps generated by chance. In its simplest form the
steps are coming from a common distribution (usually Normal
with mean 0 and a fixed standard deviation. Since then, more
advanced  statistical ~models which allowed for
heteroskedasticity of stock market jumps incorporated in the
modeled random walks have become common in financial
research. Such statistical refinements are necessary when
trading in financial options. The underlying parameters (mean
and variance of the random jumps) that generate data from a
random walk collected over time can change over time. It is
important for the models of such data to reflect these changes.
If it is only the mean that is changing, this has been
traditionally handled by fitting polynomial regression models,
trigonometric polynomial regression models and exponential
decay models or combinations thereof. Data collected over
time is also likely to be serially correlated (present

observations correlated with past observations). Such data has
been modelled by the traditional Box-Jenkins models (ARMA,
ARIMA etc). In Box-Jenkins models (ARMA, ARIMA) the
white noise component that is driving these models is assumed
to have a constant variance. Sometimes this is not true leading
to Conditional Heteroscedastic Models, which do not make
this assumption [2]. The variance of the random jumps can
change over time for example with financial data in more
volatile periods. This leads to the common use of the
Conditional Heteroskedastic models such as the GARCH and
HMM models. If in addition the serial auto correlation
changes during differing periods of time an ARHMM model
becomes applicable. The purpose of this paper is to illustrate
various Conditional Heteroskedastic Models by simulating
data from these models using Excel similar to that in Laverty,
Miket and Kelly [3].

2. Conditional Heteroscedastic Models
2.1. The GARCH(m, s) Model

This model is commonly used for financial data [2] but
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could also be applied to social data [4]. The random walk
model where steps are assumed to be independent mean zero
common variance has been previously widely used as models
for financial data. On the other hand, the assumption of
constant variance appears often not to hold true. In the
GARCH models the variance is not assumed to be constant but
evolving over time and depending on past values of the
variance and previous observations in the process. Namely if
{ ut} represent random jumps in a financial process then a

GARCH(m, s) model is described by

Uy = 02y, Utz =¢o+ 2L, Qbiu?—i + Z§=1 gjatz—j (D

[} c [} 3 r [} H ' J 3 L ™M

where { zt} are independent identically distributed (iid)
variables with mean zero, variance one. where { ut} are

independent identically distributed (iid) variables with mean

Zero variance oy
max(m,s)

with ¢ > 0,¢; = 0,6, > 0 and Z (@i +6;) <1

i=1
Simulation of a GARCH Model with Normal
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Figure 1. GARCH Random Walk.

Uniform random variates on [0,1] can be generated in
Excel with the function “RAND()”. The generation of
random variates with a Normal distribution with mean y
and standard deviation O, can be carried out using the
inverse-transform method [5]. Namely ¥ = F'(U) where
F(u) is the desired cumulative distribution of Y and U has a
uniform distribution on [0,1]. In Excel this is achieved for
the Normal distribution (mean g, standard deviation O)
with the function “NORMINV(RAND(),u,0).”

To simulate a GARCH(2, 2) model with normal
observations with mean 0 and parameters @, @, @, 6
and 6. Place the values of these parameters in the cells G1,
G2, G3, J2 and J3. Place the values of time (=1, ... , 200)
in cells A18:A217. The values of z, are calculated by the
formula, “=NORMSINV(RAND())”, in cells E18:E217.

The values of o7 are computed by placing the formula

“=G$1+G$2*(B1672)+G$3*(B1572)+J$2*D15+J$3*D
16” in cell D18 and copying it down to Cell D217.

The values of g, are computed by placing in cell C18
the formula

“=SQRT(D18)” and copying it down to Cell C217.

Finally the values of u; are computed by placing in cell
B18 the formula

“=C18*E18” and copying it down to Cell B217.

A random walk with changes modeled by {z;:1 <t <
200} is achieved by placing formula “=100+B18” in cell
F18 and formula “=F18+B19” in cell F19. Then the
formula in cell F19 is copied down to cell F217.

2.2. The Hidden Markov Model (HMM)

Hidden Markov models (HMMs) are a widely used
collection of statistical models. These models are applicable
when studying a process that goes through a sequence of states.
These states are unseen (hidden) but what is observed is data
from each state. For example HMMs have been used to model
heart rate variability [6], to model financial data [7], to model
residuals in regression [8, 9] and Real-Time Spam Tweets
Filtering [10] .

A hidden Markov model will consist of a sequence of
states X, Xp,..., X7, together with a sequence of observations Y7,
Y,,..., Y7. We assume that the number of states (possible
values of each X) is a finite number, m. The states can be
represented by the integers 1,2, ..., m. The states are not
observed. The observations Y;, Y>,..., Yr are observed and
could be vectors of dimension k. In this paper k= 1. The
distribution of Y, depends on the state X, the state the
Markov process is in at time ¢. In this paper we are
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assuming that there are only two states and that the
distribution of Y, if X, = i (i = 1, 2) is the Normal
distribution with mean /4 and standard deviation &;.

The parameters of the hidden Markov model are the
initial state probabilities,

T=Pr(X, =i)i=2, .., )

and the transition probability matrix /= (}4).This is an m x
m matrix, with element )5 being the probability of a
transition into statej starting from state i.

ie.

m

¥y =Pr(X, =j1 X =1), )

where ¢ denotes time. These two choices allow us to construct
a sequence of states (known also as the Markov chain) X,
X, . .., X constituting the hidden part of a hidden Markov
model.

When the Markov chain is in state 7, at time ¢, it emits an
observed signal ¥, which is either a discrete or a continuous
random variable (or random vector) with distribution
conditional on the current state i.

In the discrete case

Pr [Y, =y X, = i] = p(»;6) 4)

where p; is probability mass function with parameters &.
In the continuous case the conditional density of ¥, =y
given X, =i is fi(y; )
In this paper we will assume that fi(y; &) is the Normal
distribution with mean £ and standard deviation o;.
Simulation of a Hidden Markov Model with Normal
Observations in Excel
To simulate a Hidden Markov model with m = 2 states
and normal observations with mean g4 and standard

244

deviation g; when the Markov process is in state i we to first
need to determine the sequence of states then generate the
observations from those states.

Initially we will store the parameters of the model in
various cells of the excel spread sheet. For example, the
transition probabilities )5 (i = 1,2;j = 1,2) will be stored in
the cells B3:C4, the initial probabilities 77 (i = 1,2) will
stored in cells B9:C9, and the parameters of the normal
distribution (4, ;) i = 1, 2 will be stored in cells H3:14. The
next step is to generate the sequence of states. We generate
the first state by determining if a uniform random variate U
is above or below 77. This is achieved by placing the
formula “IF(RAND()<B9,1,2)” in cell C13. We now
generate the following sequence of states determining if a
uniform random variate U is above or below ). This is
achieved by placing the formula “IF(OR(AND(C13=1,
RAND()<B$3), AND(C13=2, RAND()<B$4)),1,2)” in cell
C14. This formula can now be copied down to generate as
many states as desired (In this paper we generate 200 states
and observations). The final step is to generate normal
observations with mean f/; and standard deviation ¢; at each
time point when the process is in state i. This is achieved by
pasting the formula “IF(C13=1,
H$3+I$3*NORMSINV(RANDY()),
H$4+1$4*NORMSINV(RAND()))” into cell B13. Again
this formula can now be copied down to generate the
complete set of data.

A random walk with changes modeled by {z;:1 <t <
200} is achieved by placing formula “=100+B12” in cell
D12 and formula “=DI12+B13” in cell D13. Then the
formula in cell D13 is copied down to cell D211.

Below is a copy of the spreadsheet with graphs of the
data sequence and the state sequence and the random walk
generated by the data sequence.
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Figure 2. Hidden Markov Model Random Walk.
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2.3. The ARHMM Model

Many applications of Hidden Markov Models are possible
whenever we have data collected over time. The traditional
time series models (AR, MA, ARMA etc.) assume that the
process generating the data is constant over a single state.
However, if the data is observed over longer periods of time it
is likely that there are changes in the states that are generating
the data. In the Hidden Markov Model the observations could
be assumed to be independent when the state is constant.
Alternatively, when the state is constant one could assume that
that observations are correlated in the same way that an
autoregressive (AR) time series is correlated. This leads to the
Autoregressive Hidden Markov (ARHMM) model described
in [11], [12] and [13].

Simulation of an Autoregressive Hidden Markov Model
with Normal Observations in Excel

To simulate an Autoregressive Hidden Markov model
with m = 2 states and normal observations with mean L,
standard deviation o7 and autoregressive parameter 3 when
the Markov process is in state i we again need to determine
the sequence of states and then generate the observations
from those states.

Initially we will store the parameters of the model in
various cells of the excel spread sheet. For example, the
transition probabilities )5 (i = 1,2;j = 1,2) will be stored in
the cells B3:C4, the initial probabilities 77 (i = 1,2) will
stored in cells B9:C9, and the parameters of ARHMM the
normal distribution (4, g;, £)i =1, 2 will be stored in cells
H3:J4.

The next step is to generate the sequence of states. We
generate the first state by determining if a uniform random
variate U is above or below 77. This is achieved by placing
the formula “IF(RAND()<B9,1,2)” in cell C13. We now
generate the following sequence of states determining if a

uniform random variate U is above or below ). This is
achieved by placing the formula “IF(OR(AND(C13=1,
RAND()<B$3), AND(C13=2, RAND()<B$4)),1,2)” in cell
C14. This formula can now be copied down to generate as
many states as desired (In this paper we generate 200 states
and observations). The final step is to generate normal

observations with mean y; + S; (u) and standard
9j

deviation g; at each time point, ¢, when the process is in
state i at time ¢ and state j at time ¢ — 1. To obtain an
observation with the above properties we would compute

Ve = W + B (%) + o;u,whereu, is a N(0,1) random
J

variate. This is achieved by pasting the formula
“=VLOOKUP(C14, G$4:H$5,2)

+VLOOKUP(C14, G$4:J85,4)*(B13-VLOOKUP(C13,
G$4:H$5,2))/VLOOKUP(C13, G$4:1$5,3)

+VLOOKUP(C14, G$4:1$5,3)*NORMSINV(RAND())”

into cell B13.

Note: VLOOKUP(C14, G$4:H$5,2) obtains the value y;

VLOOKUP(C13, G$4:HS$5,2) obtains the value y;

VLOOKUP(C14, G$4:1$5,3) obtains the value o;

VLOOKUP(C13, G$4:185,3) obtains the value g, and

VLOOKUP(C14, G$4:J$5,4) obtains the value f;.

Again, this formula can now be copied down to generate
the complete set of data. Below is a copy of the spreadsheet
with graphs of the data sequence and the state sequence.

A random walk with changes modeled by {z;:1 <t <
200} is achieved by placing formula “=100+B12” in cell
D12 and formula “=DI12+B13” in cell D13. Then the
formula in cell D13 is copied down to cell D211.

Below is a copy of the spreadsheet with graphs of the
data sequence and the state sequence and the random walk
generated by the data sequence.
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Figure 3. Autoregressive Hidden Markov Model Random Walk.
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3. Conclusion

In this article we have illustrated, using EXCEL, the
simulation of random walks based GARCH, HMM and
ARHMM models. This allows the reader to observe and
compare realizations of these models. We believe that these
models can apply to longitudinal data in other areas such as
the Social Sciences, neurological data, and medicine. For
example, there may be periods (states) of higher and lower
volatility not incorporated into traditional regression analyses.
In medicine, states of increasing variability may indicate
serious changes in patient’s well-being---and these would be
uncovered by models such as GARCH.
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