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Abstract: Longitudinal data are available in many disciplines, and quite often the mechanism generating the data are changing 
over time. These changes must be accounted for when modelling the data and subsequently drawing conclusions from the data. 
The three statistical models described in this article (GARCH, HMM, ARHMM) are appropriate modelling data with such 
changes. These three models are generalizations of a random walk. In a random walk the random changes over time have a 
constant distribution. The three models illustrated account for changes in the distribution of the random displacements over time. 
Our purpose in the article is to illustrate these three models and their intricacies using Excel. We would also contend and 
encourage the application of these three models to the analysis of other continuous data in fields utilizing social and medical data.  
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1. Introduction 

In 1973, the book ‘A Random Walk Down Wall Street’ [1] 
popularized the idea that the stock market followed a random 
walk. A Random Walk is a stochastic process consisting of 
series of steps generated by chance. In its simplest form the 
steps are coming from a common distribution (usually Normal 
with mean 0 and a fixed standard deviation. Since then, more 
advanced statistical models which allowed for 
heteroskedasticity of stock market jumps incorporated in the 
modeled random walks have become common in financial 
research. Such statistical refinements are necessary when 
trading in financial options. The underlying parameters (mean 
and variance of the random jumps) that generate data from a 
random walk collected over time can change over time. It is 
important for the models of such data to reflect these changes. 
If it is only the mean that is changing, this has been 
traditionally handled by fitting polynomial regression models, 
trigonometric polynomial regression models and exponential 
decay models or combinations thereof. Data collected over 
time is also likely to be serially correlated (present 

observations correlated with past observations). Such data has 
been modelled by the traditional Box-Jenkins models (ARMA, 
ARIMA etc). In Box-Jenkins models (ARMA, ARIMA) the 
white noise component that is driving these models is assumed 
to have a constant variance. Sometimes this is not true leading 
to Conditional Heteroscedastic Models, which do not make 
this assumption [2]. The variance of the random jumps can 
change over time for example with financial data in more 
volatile periods. This leads to the common use of the 
Conditional Heteroskedastic models such as the GARCH and 
HMM models. If in addition the serial auto correlation 
changes during differing periods of time an ARHMM model 
becomes applicable. The purpose of this paper is to illustrate 
various Conditional Heteroskedastic Models by simulating 
data from these models using Excel similar to that in Laverty, 
Miket and Kelly [3]. 

2. Conditional Heteroscedastic Models  

2.1. The GARCH(m, s) Model 

This model is commonly used for financial data [2] but 
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could also be applied to social data [4]. The random walk 
model where steps are assumed to be independent mean zero 
common variance has been previously widely used as models 
for financial data. On the other hand, the assumption of 
constant variance appears often not to hold true. In the 
GARCH models the variance is not assumed to be constant but 
evolving over time and depending on past values of the 
variance and previous observations in the process. Namely if 
{
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t
} represent random jumps in a financial process then a 

GARCH(m, s) model is described by 
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Simulation of a GARCH Model with Normal 

Observations in Excel 

 

Figure 1. GARCH Random Walk. 

Uniform random variates on [0,1] can be generated in 
Excel with the function “RAND()”. The generation of 
random variates with a Normal distribution with mean µ 

and standard deviation σ, can be carried out using the 
inverse-transform method [5]. Namely Y = F

-1(U) where 
F(u) is the desired cumulative distribution of Y and U has a 
uniform distribution on [0,1]. In Excel this is achieved for 
the Normal distribution (mean µ, standard deviation σ) 
with the function “NORMINV(RAND(),µ,σ).” 

To simulate a GARCH(2, 2) model with normal 
observations with mean 0 and parameters φ0, φ1, φ2, θ1 

and θ2. Place the values of these parameters in the cells G1, 
G2, G3, J2 and J3. Place the values of time (t = 1, … , 200) 
in cells A18:A217. The values of zt are calculated by the 
formula, “=NORMSINV(RAND())” , in cells E18:E217.  

The values of ��� are computed by placing the formula  
“=G$1+G$2*(B16^2)+G$3*(B15^2)+J$2*D15+J$3*D

16” in cell D18 and copying it down to Cell D217.  
The values of �� are computed by placing in cell C18 

the formula  
“=SQRT(D18)” and copying it down to Cell C217.  
Finally the values of ��  are computed by placing in cell 

B18 the formula  
“=C18*E18” and copying it down to Cell B217.  

A random walk with changes modeled by {��: 1 ) * )
200, is achieved by placing formula “=100+B18” in cell 
F18 and formula “=F18+B19” in cell F19. Then the 
formula in cell F19 is copied down to cell F217. 

2.2. The Hidden Markov Model (HMM) 

Hidden Markov models (HMMs) are a widely used 
collection of statistical models. These models are applicable 
when studying a process that goes through a sequence of states. 
These states are unseen (hidden) but what is observed is data 
from each state. For example HMMs have been used to model 
heart rate variability [6], to model financial data [7], to model 
residuals in regression [8, 9] and Real-Time Spam Tweets 
Filtering [10] . 

A hidden Markov model will consist of a sequence of 
states X1, X2,…, XT, together with a sequence of observations Y1, 
Y2,…, YT. We assume that the number of states (possible 
values of each Xi) is a finite number, m. The states can be 
represented by the integers 1, 2, ..., m. The states are not 
observed. The observations Y1, Y2,…, YT are observed and 
could be vectors of dimension k. In this paper k = 1. The 
distribution of Yt depends on the state Xt, the state the 
Markov process is in at time t. In this paper we are 
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assuming that there are only two states and that the 
distribution of Yt if Xt = i (i = 1, 2) is the Normal 
distribution with mean µi and standard deviation σi. 

The parameters of the hidden Markov model are the 
initial state probabilities, 

πi= Pr(X1 = i ) i = ,2, …, m         (2) 

and the transition probability matrix Γ = (γij). This is an m x 
m matrix, with element γij being the probability of a 
transition into state j starting from state i.  

i.e. 

γij = Pr(Xt = jl Xt-1 = i ),                (3) 

where t denotes time. These two choices allow us to construct 
a sequence of states (known also as the Markov chain) X1, 
X2, . . ., XT constituting the hidden part of a hidden Markov 
model. 

When the Markov chain is in state i, at time t, it emits an 
observed signal Yt, which is either a discrete or a continuous 
random variable (or random vector) with distribution 
conditional on the current state i.  

In the discrete case 

Pr [Yt = y| Xt = i] = pi(y;θi)            (4) 

where pi is probability mass function with parameters θi. 
In the continuous case the conditional density of Yt = y 

given Xt = i is fi(y;θi) 
In this paper we will assume that fi(y;θi) is the Normal 

distribution with mean µi and standard deviation σi. 
Simulation of a Hidden Markov Model with Normal 

Observations in Excel 

To simulate a Hidden Markov model with m = 2 states 
and normal observations with mean µi and standard 

deviation σi when the Markov process is in state i we to first 
need to determine the sequence of states then generate the 
observations from those states.  

Initially we will store the parameters of the model in 
various cells of the excel spread sheet. For example, the 
transition probabilities γij (i = 1,2; j = 1,2) will be stored in 
the cells B3:C4, the initial probabilities πi (i = 1,2) will 
stored in cells B9:C9, and the parameters of the normal 
distribution (µi, σi) i = 1, 2 will be stored in cells H3:I4. The 
next step is to generate the sequence of states. We generate 
the first state by determining if a uniform random variate U 

is above or below π1. This is achieved by placing the 
formula “IF(RAND()<B9,1,2)” in cell C13. We now 
generate the following sequence of states determining if a 
uniform random variate U is above or below γi1. This is 
achieved by placing the formula “IF(OR(AND(C13=1, 
RAND()<B$3), AND(C13=2, RAND()<B$4)),1,2)” in cell 
C14. This formula can now be copied down to generate as 
many states as desired (In this paper we generate 200 states 
and observations). The final step is to generate normal 
observations with mean µi and standard deviation σi at each 
time point when the process is in state i. This is achieved by 
pasting the formula “IF(C13=1, 
H$3+I$3*NORMSINV(RAND()), 
H$4+I$4*NORMSINV(RAND()))” into cell B13. Again 
this formula can now be copied down to generate the 
complete set of data.  

A random walk with changes modeled by {��: 1 ) * )
200, is achieved by placing formula “=100+B12” in cell 
D12 and formula “=D12+B13” in cell D13. Then the 
formula in cell D13 is copied down to cell D211. 

Below is a copy of the spreadsheet with graphs of the 
data sequence and the state sequence and the random walk 
generated by the data sequence.  

 
Figure 2. Hidden Markov Model Random Walk. 
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2.3. The ARHMM Model 

Many applications of Hidden Markov Models are possible 
whenever we have data collected over time. The traditional 
time series models (AR, MA, ARMA etc.) assume that the 
process generating the data is constant over a single state. 
However, if the data is observed over longer periods of time it 
is likely that there are changes in the states that are generating 
the data. In the Hidden Markov Model the observations could 
be assumed to be independent when the state is constant. 
Alternatively, when the state is constant one could assume that 
that observations are correlated in the same way that an 
autoregressive (AR) time series is correlated. This leads to the 
Autoregressive Hidden Markov (ARHMM) model described 
in [11], [12] and [13]. 

Simulation of an Autoregressive Hidden Markov Model 

with Normal Observations in Excel 

To simulate an Autoregressive Hidden Markov model 
with m = 2 states and normal observations with mean µi, 
standard deviation σI and autoregressive parameter βi when 
the Markov process is in state i we again need to determine 
the sequence of states and then generate the observations 
from those states.  

Initially we will store the parameters of the model in 
various cells of the excel spread sheet. For example, the 
transition probabilities γij (i = 1,2; j = 1,2) will be stored in 
the cells B3:C4, the initial probabilities πi (i = 1,2) will 
stored in cells B9:C9, and the parameters of ARHMM the 
normal distribution (µi, σi, βi) i = 1, 2 will be stored in cells 
H3:J4. 

The next step is to generate the sequence of states. We 
generate the first state by determining if a uniform random 
variate U is above or below π1. This is achieved by placing 
the formula “IF(RAND()<B9,1,2)” in cell C13. We now 
generate the following sequence of states determining if a 

uniform random variate U is above or below γi1. This is 
achieved by placing the formula “IF(OR(AND(C13=1, 
RAND()<B$3), AND(C13=2, RAND()<B$4)),1,2)” in cell 
C14. This formula can now be copied down to generate as 
many states as desired (In this paper we generate 200 states 
and observations). The final step is to generate normal 

observations with mean -� 
 .� /0123
45
65

7 and standard 

deviation σi at each time point, t, when the process is in 
state i at time t and state j at time t – 1. To obtain an 
observation with the above properties we would compute 

8� � -� 
 .� /0123
45
65

7 
 ����where��  is a N(0,1) random 

variate. This is achieved by pasting the formula 
 “=VLOOKUP(C14, G$4:H$5,2) 
+VLOOKUP(C14, G$4:J$5,4)*(B13-VLOOKUP(C13, 

G$4:H$5,2))/VLOOKUP(C13, G$4:I$5,3) 
+VLOOKUP(C14, G$4:I$5,3)*NORMSINV(RAND())”  

into cell B13. 
Note: VLOOKUP(C14, G$4:H$5,2) obtains the value -� 
VLOOKUP(C13, G$4:H$5,2) obtains the value -� 
VLOOKUP(C14, G$4:I$5,3) obtains the value �� 
VLOOKUP(C13, G$4:I$5,3) obtains the value ��, and 
VLOOKUP(C14, G$4:J$5,4) obtains the value .�. 
Again, this formula can now be copied down to generate 

the complete set of data. Below is a copy of the spreadsheet 
with graphs of the data sequence and the state sequence.  

A random walk with changes modeled by {��: 1 ) * )
200, is achieved by placing formula “=100+B12” in cell 
D12 and formula “=D12+B13” in cell D13. Then the 
formula in cell D13 is copied down to cell D211. 

Below is a copy of the spreadsheet with graphs of the 
data sequence and the state sequence and the random walk 
generated by the data sequence.  

 
Figure 3. Autoregressive Hidden Markov Model Random Walk. 
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3. Conclusion 

In this article we have illustrated, using EXCEL, the 
simulation of random walks based GARCH, HMM and 
ARHMM models. This allows the reader to observe and 
compare realizations of these models. We believe that these 
models can apply to longitudinal data in other areas such as 
the Social Sciences, neurological data, and medicine. For 
example, there may be periods (states) of higher and lower 
volatility not incorporated into traditional regression analyses. 
In medicine, states of increasing variability may indicate 
serious changes in patient’s well-being---and these would be 
uncovered by models such as GARCH. 
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