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Abstract: The Generalized Inverted Exponential (GIE) distribution is a mixed lifetime model used in a number of fields such 

as queuing theory, testing of products or components and modelling the speed of winds. The study aims to focus on the 

determination of maximum likelihood estimates of GIE distribution when the test units are progressively (type II) censored. The 

scheme permits the withdrawal of units from the life test at stages during failure. This may be due to cost and time constraints. 

Both Expectation- Maximization (EM) and Newton-Raphson (NR) methods have been used to obtain the maximum likelihood 

estimates of the GIE parameters. Also, the variance-covariance matrix of the obtained estimators has been derived. The 

performance of the obtained MLEs via EM method is compared with those obtained using NR method in terms of bias and root 

mean squared errors and confidence interval widths for different progressive type II censoring schemes at fixed parameter values 

of λ and	θ Simulation results reveal that estimates obtained via EM approach are more robust compared to those obtained via NR 

algorithm. It's also noted that the bias, root mean squared errors and confidence interval widths decrease with an increase in the 

sample size for a fixed number of failures. A similar trend in results is observed with increase in number of failures for a fixed 

sample size. The results of the obtained estimators are finally illustrated on two real data sets. 

Keywords: Generalized Inverted Exponential Distribution, Progressive type II Censoring, EM Algorithm,  

Newton Raphson Algorithm 

 

1. Introduction 

Censoring is a common feature in survival analysis and 

reliability experiments. According to Horst [9], a censored 

sample is one in which either by design or accidentally the event 

time of some items in the experiment are unobserved. There exist 

many different forms of censoring that have been studied by 

many authors in the past. Progressive type II censoring permits 

withdrawal of units at various levels of testing other than end 

point of the experiment. In so doing, this type of censoring 

provides saving in terms of cost associated with testing. 

A number of studies based on progressive type II censoring 

have been carried out in the past using different univariate 

models like Gamma, log-normal, Exponential, Weibull and 

log-logistic distributions. However, due to the limitations 

associated with some of these models such as assumption of a 

constant hazard rate function for the exponential distribution, 

flexible mixed lifetime models have been adopted. For 

example, Inverted Exponential (IE) distribution can model 

data with inverse bath curve failure rate. A modification of 

inverse exponential distribution termed as Generalized 

inverted exponential (GIE) distribution is said to give a better 

fit to lifetime data compared to Inverted exponential (IE) 

distribution. The distribution was introduced by Abouammoh 

and Alshingiti [2] as model for business failure data. 

 This study, assumes that the lifetimes have GIE 

distribution. This distribution has a non-constant hazard rate 

function which is unimodal and positively skewed and 

increases or decreases as per the value of the shape parameter. 

Due to these properties, the distribution is able to model 
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different shapes of failure rates of ageing criteria. 

The two parameter GIE distribution PDF and CDF are 

represented by: 

���, λ, θ� = λθ exp 
− ��� ��� 
1 − exp 
− �������	 (1) 

���, λ, θ� = 1 − 
1 − exp 
− ����� , ��, λ, θ� > 0 (2) 

Where λ and � are scale and shape parameters respectively 

Inferences for the GIE distribution in reference to censored 

data have been undertaken in a number of studies in the past. 

Bakoban [4], did a study on Estimation in step stress partially 

accelerated life tests for GIE distribution using type I censoring. 

The, maximum likelihood estimators for the parameters, 

accelerated factor and asymptotic variance covariance matrix 

were derived. The performance of the estimators was compared 

using the mean squared error, absolute relative bias and relative 

error via Monte Carlo simulations. 

Singh and Kumar [14] carried out a study on parameter 

estimation of GIE by computing the MLES and the Bayes 

estimates using a progressively censored sample with 

binomial removals. Using simulation, they compared their 

performance in terms of their risks. 

Dey and Pradhan [8] considered estimations of GIE 

distribution under hybrid censoring scheme and derived MLEs 

and Fishers information matrix. Using Lindley approximation, 

the Bayes estimators under squared loss functions were derived. 

Krishna and Kumar [10] scrutinized reliability estimation 

of progressive type II censored data with GIE distribution. The 

MLEs together with their reliability and failure rates were 

derived by means of least squares method and assessed using 

both real and simulated data sets. 

In this paper we will focus on the inference for GIED via 

EM and carry out a comparative study of the estimators under 

NR algorithm. 

2. Parameter Estimation 

2.1. Progressive Type II Censoring 

In this scheme of censoring from the total of n units placed 

simultaneously on an experiment only m is observed until the 

end i.e. failure time. Let ��:�:�, . . . ��:�:�	be an order statistic 

exhibiting a progressively type II censoring scheme. 

Given a censoring plan  �,  �, . . .  �	at the time ��:�:�   the 

first failure time  �	of the ! − 1 surviving units are randomly 

removed from the life test experiment. ��:�:�	the second failure 

time,  �	from the surviving units ! − 2 −  � are removed. 

At ��:�:�	the #$% failure all the remaining ! − 2 −  � − �, . . . ,  ���  surviving units are removed. Censoring takes 

place in progressively in m stages. This is referred to as 

progressive Type II right censoring with  =  �,  �, . . . ,  � 

scheme, as per Childs and Balakrishnan [6]. 

2.2. Maximum Likelihood Estimation 

Let ��:�,��:�……��:�  denote a progressive Type II 

censored sample. Then, as per Child and Balakrishnan [6] the 

likelihood function for the sample is represented by 

'��, (; ��:�, … . ��:�� = *∏ ���,; �, (�-1 − ���,; �, (�./0�,1�   

Where k= !�! −  � − 1�… �! −  � −  � −  ��� −# + 1�                        (3) 

Using equations (1) and (2), the log likelihood function on �	and ( subject to progressive Type II censored sample can be 

written as follow: 

34�, (; ��:�, … . ��;�56(���∏ �,��789:0 ;1 − 789:0<��� =;1 − 789:0<�>/0�,1�                   (4) 

Which can then be represented as: 

34�, (; ��:�, … . ��;�56#3!( + #3!� + ∑ 3!7@���@1� + ∑ 3!789:0 + �� − 1�∑ 3! ;1 − 789:0< + ��@1��@�1 ∑  ,3! ;1 − 789:0<�@1�   (5) 

2.3. Expectation Maximization Method 

We suggest the expectation maximization method proposed by Dempster et al [7]. 

Let A = �A�, A�, … , AB� with A@�, A@�, … A@/0 , C = 1,2, … ,#. 
be the censored data, where the censored data is regarded as missing data. The component (X, Z) = W forms the complete data 

set. 

The log-likelihood function under W can be represented as: 

D�E, �, (�6#3!( + #3!� +F3!7@�� +F3!7�GH0 + �� − 1�F3! ;1 − 7�GH0 < +FF3!A@I���
I1�

�
@1�

�
@1�

�
@�1

�
@1�  

+∑ ∑ 3!7 89JKL/KI1��@1� + �� − 1�∑ ∑ 3! ;1 − 7 89JKL</KI1��@1�                          (6) 
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In the E-step, the pseudo-likelihood function is obtained by replacing any function of A@I  say, ℎ4N@I5  by 

O Pℎ 4A@I5 A@IQHKR S in equation (6) giving 

D∗�U; �, (�6#3!( + #3!� + ∑ 3!�@�� + ∑ 3!789:K�@1� + �� − 1�∑ 3! ;1 − 789:K< + ∑ ∑ O VA@I�� A@I > �@R W/KI1��@1��@1��@1�   

+∑ ∑ O
XYY
YYZ3!7

89JKL [KL\
> �@

]̂̂
^̂_/KI1��@1� + �� − 1�∑ ∑ O

XYY
YYZ3!

`
aab1 − 7

89JKL [KL\
> �@

c
dde
]̂̂
^̂_/KI1��@1�               (7) 

Thus, given �@ =	�@ the conditional distribution of A@I is a left truncated GIE distribution at �@.  

That is  

� `
bA@ �@ = �@R c

e = fg
JK���hg4iK5 , A@ > �@                              (8) 

Equation (7) becomes: 

OjA@I�� N@I > �@R k = G�
��l89:K m 789nKA@���HK ;1 − 789nK<��� N@I��oN@                       (9) 

Similarly 

O P7 89nKL nKLR > �@S = G�
P��l89:KSp

m 7�HK 89:K N@�� ;1 − 789nK<��� 7 89nKLoN@ 		                  (10) 

and 

O P1 − 7 89nKL nKLR > �@S = G�
=��l89:K>p m 7�HK 89:K N@�� ;1 − 789nK<��� ;1 − 7 89nKL<oN@              (11) 

The M-step maximizes the pseudo-likelihood function by substituting the conditional expectations in equation (7) with O��q; �, (� and O��q; �, (� gotten in equations (9, 10 and 11) respectively. Assuming that at the *$% stage, the estimates for ��, () are ��I�, and (�I� then differentiating equation (12) below with respect to �and( gives the values of	��Ir��; 	(�Ir�� 
D∗�U, �, (�6	#3!( + #3!� + ∑ 3!�@�� +∑ 3!789:K + �� − 1�∑ 3! ;1 − 789:K<�@1��@1��@1� + ∑  @�@1� O�4�@; ��I�, (�I�5  

+∑  @�@1� O�4�@; ��I�, (�I�5 + �� − 1�∑  @�@1� Os4�@; ��I�, (�I�5                        (12) 

Once �Ir�	is obtained (Ir� is then obtained by solving the equation 

tu∗�v,�,G�tG = �G −∑ �HK�@1� + 4�w − 15∑ l89:K
HKx��l89:K y

�@1� = 0                                 (13) 

2.4. Newton Raphson Method 

In this context, the MLEs of �and (	can be obtained by differentiating equation (5) with respect to �and( then equate the 
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normal equations to 0. 

Then; �w = ��(� = ��
∑ z�P��l89:0 S{0|} r∑ /0z�P��l89:0 S{0|}

                                        (14) 

tz�H;�,G�tG = �G −∑ �H0�,1� + �� − 1�∑ l89:0
H0P��l89:0 S

�,1� + � ∑  ,�,1� l89:0
P��l89:0 S                           (15) 

combining (14) and (15) gives a non-linear normal equation in 

tz4H;�~,G5tG = �G −∑ �H0�,1� + 4�w − 15∑ l89:0
H0P��l89:0 S

�,1� + �w ∑  ,�,1� l89:0
P��l89:0 S	 = 0                       (16) 

The NR algorithm is then executed using the following procedure: 

let 

��(, �� = �G − ∑ �H0�,1� + 4�w − 15∑ l89:0
H0P��l89:0 S

�,1� + �w ∑  ,�,1� l89:0
P��l89:0 S	  

���(, �� = �G� + 4�w − 15∑ l89:0
H0�P��l89:0 S

= l89:0
��l89:0 − 1>�,1�                                  (17) 

Giving the information matrix 

��(, �� = − �G� − 4�w − 15∑ l89:0
H0�P��l89:0 S

= l89:0
��l89:0 − 1>�,1�                                 (18) 

The MLE of (	is obtained by evaluating: 

(�,� = (�,��� �4G��8}�,H5�4G�0�,H5                                                 (19) 

Until convergence. The obtained value is then embedded in equation (14) to obtain the MLE of	� 

θ��r��1	�~1 −m
∑ ;1 − e���� <∑ R���1� Es4θ�; θ���, λ���5��1�

 

2.5. Asymptotic Variance Covariance Matrix of MLEs 

The variance–covariance matrix quantifies the accuracy of the parameter estimators using the log-likelihood function. The 

variance– covariance matrix of parameters θ and λ from the GIE distribution complete data set is first computed. 

3!� = 3!�(� + 3!��� − GiK + 23!N@ + �� − 1� ln ;1 − 789nK< − �3! ;1 − 789:K<                  (20) 

To obtain the observed information matrix, a procedure by 

Louis and Tanner [11] is adopted. The Fisher information 

matrix for complete data set is given as; ����, (� = −O x��z�z���� ��z�z����G��z�z����G ��z�z����
y = ���� ������ ����      (21) 

The variance-covariance matrix of parameters of λ and � 
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is then obtained by 

� q��4�w5 q��4�w, (�5q��4�w, (�5 q��4(�5 � = ���� ������ ������      (22) 

The missing information matrix is obtained using: 

I���� =FR�I��������
�1� �η� 

Therefore, the variance-covariance matrix of parameter � 

can be obtained by 

�� ¡�� = ¢���� ������ ���� − £∑  @�@1� ����@� ∑  @����¤��@1�∑  @����@��@1� ∑  @����@��@1� ¥¦��		 (23) 

From equation (23) an approximate 100�1 − 6�%	confidence intervals for	� and ( are given 

as; �w ± N©�ªq��4�w5	�!o	(� 	±	N©� 	ªq��4(�5 
3. Results and Discussion 

3.1. Illustration with Simulated Data 

Using R statistical software, different progressive type II 

right censored samples from GIE distribution with 

parametric space; (� = 1.4; ( = 1.65) and (�= 0.95;( = 1.2) 

are generated. Balakrishnan and Sandhu [5] and Aggarwala 

and Balakrishnan [3] algorithms were considered in 

generating these samples. The algorithms have the following 

steps; 

(i) Generate m independent U (0, 1) random variables W1; 

W2; ……Wm: 

(ii) For given values of the progressive censoring scheme 

R1; R2; ……. Rm: 

(iii) Set 

«, = E,
��,r/{r/{8}r⋯r/{80­}�, ® = 1, … ,# 

iv) Set U� = 1 − V±, V���, … , V���r�	i = 1, … ,m 

is a progressive Type II censored sample of size m from 

U(0,1). 

(v) Set ³, = �����,�	® = 1,… ,#  as the required 

progressive Type II censored sample of size m from GIE 

distribution. 

These steps were repeated several times for different 

sample sizes and different censoring schemes. The term 

different censoring schemes refers to different sets of ,´. In 

this study, samples of sizes 20 and 45 were used and the 

censoring schemes considered were as follows: scheme	1	1	R� = ⋯ = R��� = 0, R� = n −m scheme	2	2	R� = n −m	and	R� = ⋯ = R� = 0 scheme	3	3	R� = ⋯ = R���	andR� = n − 2m + 1 

Table 1. Average Bias of the MLE estimators of �	�!o	( obtained via NR and EM algorithms. 

n m scheme 
»¼½¾	¿À	� »¼½¾	¿À	Á 

NR EM NR EM 

whe!	� = 1.40, ( = 1.65     

20 8 1 0.390 0.381 0.489 0.435 

20 8 2 0.046 0.037 0.145 0.438 

20 8 3 0.099 0.089 0.198 0.146 

45 20 1 0.123 0.114 0.222 0.171 

45 20 2 0.016 0.007 0.115 0.064 

45 20 3 0.110 0.101 0.209 0.158 

When	� = 0.95	( = 1.2     

20 8 1 0.193 0.237 0.292 0.294 

20 8 2 0.071 0.0231 0.170 0.081 

20 8 3 0.179 0.103 0.278 0.160 

45 20 1 0.059 0.048 0.158 0.104 

45 20 2 0.021 0.018 0.120 0.075 

45 20 3 0.073 0.039 0.172 0.096 

Table 2. Average RMSEs of the MLE estimators of �	�!o	(	obtained via NR and EM algorithms. 

n m scheme 
»¼½¾	¿À	�  »¼½¾	¿À	Á  

NR EM NR EM 

When	� = 	Æ. ÇÈ, Á = Æ. ÉÊ     

20 8 1 0.479 0.0.471 0.577 0.523 

20 8 2 0.308 0.303 0.406 0.356 

20 8 3 0197 0.192 0.295 0.248 
45 20 1 0.310 0.273 0.408 0.329 

45 20 2 0.240 0.231 0.338 0.2875 

45 20 3 0.281 0.302 0.379 0.358 

When	� = 0.95	( = 1.2     
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n m scheme 
»¼½¾	¿À	�  »¼½¾	¿À	Á  

NR EM NR EM 

20 8 1 0.211 0.178 0.309 0.234 

20 8 2 0.069 0.052 0.167 0.103 

20 8 3 0.117 0.086 0.214 0.142 
45 20 1 0.129 0.118 0.227 0.174 

45 20 2 0.081 0.077 0.179 0.1333 

45 20 3 0.120 0.117 0.231 0.173 

Table 3. Approximate 95% confidence interval widths of the MLE estimators of obtained via NR and EM algorithms. 

n m scheme 
»¼½¾	¿À	�  »¼½¾	¿À	Á  

NR EM NR EM 

When � = 1.40, ( = 1.65     

20 8 1 1.8474 1.2416 2.2892 1.4307 

20 8 2 1.8634 1.2423 2.3039 1.4399 

20 8 3 1.9187 1.2792 2.3549 1.4719 

45 20 1 1.8390 1.2260 2.2815 1.4259 

45 20 2 1.8410 1.2273 2.2833 1.4271 

45 20 3 1.8445 1.2297 2.2865 1.4291 

When	� = 0.95	( = 1.2     

20 8 1 1.7037 1.1358 2.1586 1.3491 

20 8 2 1.7729 1.1819 2.2211 1.3882 

20 8 3 1.8076 1.2052 2.2529 1.4080 

45 20 1 1.6759 1.1172 2.1337 1.3335 

45 20 2 1.6999 1.1333 2.1552 1.3470 

45 20 3 1.5406 1.0271 2.0144 1.2589 

 

The results from tables 1, 2 and 3 indicates that: 

An increase in the sample size leads to a decrease in the 

bias estimates irrespective of the censoring schemes. 

The bias estimates, RMSE and the 95% confidence 

interval widths obtained by the EM algorithm are relatively 

small compared to those obtained via NR algorithm. 

A decrease in the true parameter values of	� and	(	leads 

to a decrease in bias estimates. 

In the context of censoring schemes, the bias estimates, 

RMSE associated with censoring scheme 2 are relatively 

smaller compared to those associated with censoring 

schemes 1 and 3. 

The RMSEs estimates decrease with an increase in the 

sample size for a fixed number of failures. 

For a fixed sample size, the RMSEs and 95% confidence 

interval widths decrease as the number of failures increases 

for both EM and NR methods. 

A decrease in the true parameter values of �	and (	causes 

a decrease in RMSEs estimates.  

When the number of failures (m) is fixed, the 95% 

confidence interval widths decreases as the sample sizes (n) 

increases for both EM and NR algorithms. 

3.2. Illustration with Real Data 

3.2.1. Communication Transceiver Maintenance Data 

The maintenance data reported on active repair times 

(hours) for an airborne communication transceiver by Von 

Alven [15] is considered.  

The repair times are as follows: 

0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 

1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 

2.7, 7.0, 7.5, 3.0, 3.0, 3.3, 3.3, 4.0, 4.4, 4.5, 4.7, 5.0, 5.4, 5.4, 

8.8, 9.0, 10.3, 22.0, 24.5. 

The data set is confirmed to provide a good fit to GIE 

distribution (Kolmogorov Smirnoff statistic of 0.152 

(p-value=0.2393)). These results are consistent with 

previous work by Sanku Dey and Tanujit Dey [12] 

Table 4. Progressively type II censored samples from maintenance data. 

n m ∑ ËÌÍÌ1Æ   Censoring scheme Samples generated from original data 

46 12 34 1�6,5,3, 0∗Î, 10,5,5�  0.2,0.6,1.1,1.3,1.5,1.5,1.5,1.5,2.0,4.0, 5.4 

464 46 20  26 2. �3,2,1, 0∗�Ï, 5,5,10�  
0.2,0.5,0.6,0.7,0.7,0.8,0.8,1.0,1.0, 

1.0,1.0,1.1,1.3,1.5,1.5,1.5,1.5,2.0,7.5,4.4 

46 30 16 3. �0∗�Î, 3,3,5,5�  
0.2,0.3,0.5,0.5,0.5,0.5,0.5,0.6,0.6,0.7,0.7,0.8,0.8,1.0,1.0,1.0,0.8,0.8,1.0,
1.0,1.0,1.0,1.1,1.3,1.5,1.5,1.5,1.5,2.0,0.7,2.0,2.2,2.5,3.0,4.0,5.4 

Table 5. Average Bias of ��!o	( and affiliated RMSE (in parenthesis) of the MLE estimators calculated using NR and EM algorithms for maintenance data. 

n m scheme 
»¼½¾	&ËÑÒÓ	¿À�  »¼½¾	&ËÑÒÓ	¿ÀÁ  

NR EM NR EM 

46 12 1 0.0526 (0.0415) .0281 (0.0296) 0.1357 (0.1539) 0.0739 (0.0537) 

46 20 2 0.0245 (0.0617) 0.0112 (0.0343)  0.2110 (0.0797) 0.1292 (0.0.0256) 

46 30 3 0.0064 (0.0312) 0.00371 (0.0119) 0.0689 (0.0212) 0.06459 (0.0199) 
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Table 6. Approximate 95% Confidence Interval widths of the MLE estimators of	��!o( for Communication Transceiver Maintenance data. 

n m scheme 
ÔÊ%ÕÖ×¼ØÙÚ¿À	�  ÔÊ%ÕÖ		¿À	Á  

NR EM NR EM 

46 12 �6,5,3, 0∗Î, 10,5,5�  1.1809 1.0501 1.1392 1.0625 

46 20 �3,2,1, 0∗�Ï, 5,5,10�  1.0191 0.9649 1.0399 0.9798 

46 30 �0∗sÎ, 3,3,5,5�  1.03 0.9877 1.0808 1.0191 

 

The results in tables 5 and 6 indicate that: 

The bias and RMSE of the maximum likelihood estimates 

obtained via EM method are smaller compared to those 

obtained via NR algorithm. 

For a fixed sample size, an increase in the number of 

failures leads to reduced bias across most of the censoring 

schemes. 

The confidence interval widths using EM method are 

smaller compared to those obtained via NR algorithm. 

For a fixed sample size, the higher the number of failures 

the smaller the confidence interval widths within which the 

true parameter values lie. 

Generally, censoring scheme 2 yields smaller confidence 

interval widths compared to other censoring schemes. This 

implies that schemes whose most units are censored at the 

Centre of the failure process tends to give better and more 

accurate confidence interval widths. 

3.2.2. Ball Bearing Failure Data 

The data originated from tests on survival of deep groove 

ball bearings. The data shows the number of million cycles 

before failure for each of the ball bearings in the lifetime as 

shown below: 

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 

51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 

68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 

128.04, and 173.40. 

A Kolmogorov-Smirnoff test shows that the data fits GIE 

distribution (K-S statistic, D=0.090524 (p-value=0.9917)). 

These results are in consistence with previous work by 

Abouammoh and Alshingiti [2] and Krishna and Kumar [7]. 

Table 7. Table of progressively type II censored samples from ball bearing data. 

n m ∑ ËÌÖÍ¼¾¾�Ì�ÍÌ1Æ   Censoring scheme Samples generated from original data 

23 7 16 1 
0,4,0,2,0,3,0,2,0,1, 3,0,1 �  17.88,45.60,51.96,68.64,84.12,98.64,128.04. 

23 12 11 2. 
0∗, 2,6, 0∗, 3,1,0, 10∗,4,3, 0∗, 2 �  17.88,28.92,51.90,54.12,55.56,68.64,68.88,84.12,93.12,98.64,128.04,173.40 

23 15 8 3. 
1, 0∗, 4, 0∗, 4,1, 0∗, 3,3,0∗1, 0∗, 3 �  
28.92,33.00,45.60,48.80,51.84,51.96,55.50,67.80,68.64,93.12,98.64,105.12,127.

92,128,04,173.40 

Table 8. Average Bias ��!o	( and affiliated RMSE (in parenthesis) of the MLE estimators calculated using NR and EM algorithms for the ball bearing data. 

n m scheme 
»¼½¾	&ËÑÒÓ	¿À�  »¼½¾	&ËÑÒÓ	¿ÀÁ  

NR EM NR EM 

23 7 1 0.07337 (0.597) 0.07133 (0.489) 0.3366 (0.536) 0.2611 (0.129) 

23 12 2 0.0456 (0.318) 0.0312 (0.311) 0.09077 (0.109)  0.0821 (0.117) 

23 15 3 0.0541 (0.297) 0.0399 (0.276) 0.1833 (0.332) 0.1041 (0.079) 

Table 9. Approximate 95%confidence interval widths of the MLE estimators of �	�!o	( for ball bearing failure data. 

n m Scheme 95%CIwidth of� 95%CI width ofÁ 

46 12 �0,4,0,2,0,3,0,2,0,1,3,0,1�  2.5972 2.8995  3.7577 3.6291 

46 20 �0∗, 2,6, 0∗, 3,1,0,1, 0∗4,3, 0∗, 2, �  2.4232 2.7097  3.5904 3.4851 

46 30 �1, 0∗, 2,4, 0∗, 4,1, 0∗, 3,3, 0∗, 3,1, 0∗, 3�  2.4595 2.8013 3.6755 3.5543 

 

Results in both tables 8 and 9 indicates that: 

The bias and RMSE of the maximum likelihood estimates 

obtained via EM method are smaller compared to those 

obtained via NR algorithm. Similarly, an increase in the 

number of failures leads to smaller values of bias. 

The confidence interval widths using EM method are 

fairly smaller compared to those obtained via NR algorithm. 

For a fixed sample size, the higher the number of failures 

the smaller the confidence interval widths. 

Generally, censoring scheme 2 yields smaller confidence 

interval widths compared to other censoring schemes. 

4. Conclusion 

The study focused on estimating the parameters of GIE 

distribution based on progressively type II censored samples. 

The MLEs were obtained using the EM as well as NR 

approaches. The results were assessed based on bias, root 

mean squared errors and confidence interval widths using 

both simulated and real data. From the simulated data, the 

results reveal the following: 

The average estimates of bias, and RMSEs obtained by 

EM method are fairly smaller than those obtained by NR 



 American Journal of Theoretical and Applied Statistics 2021; 10(1): 14-21 21 

 

algorithm. This means that the MLEs via EM are more 

consistent. 

The 95% confidence interval widths for MLE via EM are 

shorter than via NR. 

a decrease in the true parameter values of � and (	leads 

to a decrease in the average estimates of bias, RMSEs and 

confidence interval widths. 

These results are consistent with previous studies that 

have used both EM and NR algorithms such as Amal et al [1], 

Wang, and cheng [16]. Salem and Abo-Kasem [13]. 

This means that EM algorithm outperforms the NR 

algorithm especially in analysis of large data. 
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