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Abstract: Principally to reduce the cost by reducing the sample size required to conduct survey research, this article presents 

and illustrates the use of a method to determine the sample sizes required to obtain Bayesian estimates of population 

proportions with specified margins of error. The development proceeds within a regression framework derived from mental test 

theory. Specifically, building on prior work, the development presented here enables a researcher to conduct a survey to obtain 

pure Bayes estimates of the proportion of all members of a defined population choosing each one of a number of mutually 

exclusive and exhaustive options or falling into each one of a number of mutually exclusive and exhaustive categories, 

including two. The regression framework not only provides useful insight into Bayesian and classical statistics but also enables 

the development to proceed without explicit reference to the differing parent distributions of the sample and population 

proportions, both being asymptotically normal. In addition to the sample-size advantage, which is substantial, this article 

identifies other practical advantages that Bayesian has over classical estimation of population proportions and, in a somewhat 

in-depth comparison of the two, discusses other reasons a Bayesian method may be a powerful substitute for the classical 

method of estimating population proportions via independent random sampling. 

Keywords: Population Proportion, Survey Research, Pure Bayes Estimate, Regression Model, Standard Error of Estimate, 

Sample Size 

 

1. Introduction 

Survey research requires large samples. This requirement 

is both an advantage and a disadvantage, at least in the 

estimation of population proportions. The advantage is that 

the frequency distribution of a sample proportion or, in the 

case of Bayesian estimation, a population proportion tends 

for all practical purposes to be normal. The disadvantage is 

that the high cost of large samples limits the use of survey 

research. This article has three purposes. The first is to 

present a method that substantially reduces the sample size 

and cost required to conduct survey research. The second is 

to show that the Bayesian estimation method described here 

satisfies the first purpose. The third purpose is to demonstrate 

that use of a regression framework makes development of the 

method possible without explicit or necessary involvement of 

the parent distribution of a sample or a population proportion, 

each being asymptotically normal. 
Although Bayesian estimation generally tends to require a 

smaller sample size (�) to achieve a specified margin of error 

( � ) than classical estimation, the determination of that 
sample size can be a problem. In the estimation of population 
proportions, only classical estimation with independent 

random sampling has a simple formula for determining	� : � = 0.96 �	⁄  for an error probability equal to .05. In the 
absence of such a formula, this article will describe a 
patented process involving simulation for determining values 

of � needed to achieve specified values of �	in a Bayesian 
estimation of population proportions. (Commercial use of 
this process or its results requires a license.) This article will 
also provide results and illustrate the applicability of the 

process for cases involving two or more options ( � ). 
Following a brief review of the literature and some 
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preliminary development, the presentation will begin with the 

case � = 2	and then address the general case �	 ≥ 2.  For 
some readers, now may be a good time to read Section 6. 

2. Background 

2.1. Prior Work 

In addition to the classical method involving independent 

random sampling, a number of Bayesian-like methods exist 

for estimating population from sample means or proportions. 

About 60 years ago, James and Stein [7] derived estimators 

of population means that are more efficient than 

corresponding classical estimators by using a linear 

combination of the mean of each individual sample and the 

overall mean of the sample aggregated with two or more 

other samples from possibly different populations. Being 

within the 0-1 interval, the weight applied to each individual 

sample mean has been called a shrinkage coefficient. 
Commenting on the empirical Bayes treatment of James-

Stein estimators by Efron and Morris [3] and Morris [9], 
Stigler [12, 13] showed that the shrinkage coefficient was an 
estimator of the squared correlation coefficient in the 
regression of population on sample means. Fienberg and 
Holland [4] extended the empirical Bayes treatment of 
James-Stein estimators to the estimation of population 
proportions, with the expected increase in efficiency. Then, 
Weitzman [14] showed that the shrinkage coefficient in a 
Bayesian estimation of population proportions is the squared 

correlation between sample ( � ) and population ( � ) 
proportions and, with no assumptions other than independent 
random sampling, developed the following classical 
estimator for it: 

����	 = 1 −	 ����	∑ �������  
!"��#��∑ ���������                      (1) 

Noteworthy in this formula is that it can yield a value 

between 0 and 1 even when � = 2  because �  and �  have 

equal means (1 �⁄ ). 
In the regression of the observed proportion P toward the 

mean, 1/K, the squared correlation ����	
 resembles but is not 

identical to the shrinkage coefficient w in Fienberg and 
Holland [4] and 1 - B in Efron and Morris [3] and Morris [9]. 
Different from the development using w or 1 – B, which is 
empirical Bayes, the development described here, which 
builds on Weitzman [14], is pure Bayes and, as the 
comparison in Section 3 shows, is the more efficient of the 
two for the estimation of population proportions. 

Other than Fienberg and Holland [4] and Weitzman [14], 

the literature shows almost no connection between “Bayes or 

Bayesian estimation” and “estimation of proportions.” 

Articles on the second of those two subjects have focused on 

the possible need to adjust samples, for example by 

weighting sampled responses as in Pfeffermann [11], to 

assure a demographic match between samples and 

populations or other such sampling problems, e.g., Healy [6] 

and Alvarez et al. [1]. A literature search has identified only 

Novick et al. [10] as making the connection, but there the 

focus was on a single option in multiple groups rather than 

multiple options in a single group, as here. 

2.2. Regression Framework 

The regression framework underlying the development 
here derives from mental test theory. In Gulliksen's classical 

Theory of Mental Tests [5], the formula X T E= +  describes 
the relationship between true (T) and observed (X) scores.  
That being the case, the regression equation 

( )X
XT

T

S
X r T T X E

S

 
= − + + 
 

                    (2) 

implies that /XT T Xr S S=  and X T= . The relationship 

/XT T Xr S S=  is central in mental test theory. The standard 

error of measurement in this theory ( 21X XTS r− ) is the 

standard deviation of the error component ($) of X . 

Prior to the publication of Gulliksen's Theory of Mental 

Tests, Kelley [8] presented a regression formula for 

estimating an examinee's true test score from the examinee's 

observed test score, the two means again being equal: 

( )2 2ˆ 1XT XTT r X r X= + −  .                      (3) 

The standard error of estimate in Kelley’s test theory 

( 21T XTS r− ) is the standard deviation of the error 

component of T . 

Although regression underlies both the Kelley and 

Gulliksen models, the difference between them stems from 

the direction of the regression. Although so many researchers 

appear to be unaware of the difference or to discount it as 

irrelevant, a problem motivating articles like Charter [2] to 

clarify the issue, the difference is in fact profound. As 

Weitzman [15] has shown, in contrast to Gulliksen’s classical 

estimator, Kelley's is a Bayesian estimator. This article builds 

on that difference. 

3. Comparison of Sample Sizes in 

Different Estimation Methods 

3.1. Pure Bayes vs. Empirical Bayes Estimation 

In reference to the formula for the error variance of � 

having a Dirichlet distribution with ��%  designating a fixed 

sample estimate for option & when � ≥ 2, 

'���(	 =	 �(�!��	�(�#
)*"*�                                (4) 

Weitzman [14] compared the formula for + developed by 

Fienberg and Holland [4] in empirical Bayes estimation, 

+ = 	����	∑ �������  
� ∑ ��������� 	                            (5) 

with the formula developed by Weitzman after first showing 
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that as a function of ���	  in pure Bayes estimation + =�!1 − ���	 # ���	⁄  and then substituting for ���	  from Equation 
(1), 

+ = 	 ����	∑ �������  
� ∑ ������	�,�

-����
                         (6) 

Since for any value of � > 0 the + of Equation 6 will be 

larger than the + of Equation 5, the error variance of Equation 
4 will correspondingly be smaller for the Weitzman than for 
the Fienberg-Holland method. That is an expected difference 
because Weitzman’s is a pure Bayes method in which only 
populations can vary whereas in the empirical Bayes method 
of Fienberg and Holland both samples and populations can 
vary. 

3.2. Pure Bayes vs. Classical Estimation 

The regression framework used here, with ���	  from 
Equation 1, permits a similar comparison confirming the 
efficiency advantage of pure Bayes over classical estimation. 

In this framework (with /  representing error), the classical 

model !� = � + 	/# has the standard error of measurement 

'��� =	1�21 −	���	 	                           (7) 

and the pure Bayes model (� = 	�� + 	/ ) has the standard 
error of estimate 

'���( =	'�21 −	���	                             (8) 

In the classical model, �  is regressed on �  with ��� =	'�/1� whereas, in the pure Bayes model, � is regressed on 
P, with 

�� = 	���	 � + !1 −	���	 #4                        (9) 

where 4 = 1 �⁄  for both �  and � . Since '� = ���1� , 
Equations 7 and 8 show that the error variance of a pure Bayes 
estimate will be smaller than the error variance of a classical 

estimate for equal values of ��� (0 < 	��� < 1). The practical 
implication of this difference in estimation efficiency is that a 
pure Bayes estimate will require a smaller sample than a 
classical estimate to achieve error variances of equal size. 

3.3. Extra Sample Size Reduction for Pure Bayes Due to 

Concentration of the Error Probability in a Single Tail 

This lower-� advantage over classical estimation, shared 
by pure Bayes and empirical Bayes, is even greater for pure 
Bayes because of a difference between it and both of the 
other two methods of estimation. In both those methods, the 
value of a sample statistic can be on either side of the 
population parameter value of concern (classical) or its 
multiple-sample surrogate (empirical Bayes) with the error 
probability (.05) being divided equally between the two tails 
(025 in each tail) of the sample statistic’s probability 
distribution. Contrariwise, the value of a pure Bayes sample 

statistic (here, �� ), being fixed, can have the population 

parameter value of concern (here, 1 �⁄ ) on only one side of 
it, with the error probability (.05) being entirely on that side 
of the parameter’s likelihood distribution centered at the 

value of the sample statistic. Because a distribution that cuts 
off a .05 tail on one side must be wider than a distribution 
that cuts off a .025 tail at the same point on that side and 
because a wider distribution requires a smaller sample size, a 
pure Bayes sample statistic will require, for equal margins of 
error, an even smaller sample than it would otherwise in 
comparison with either a classical or an empirical Bayes 
estimate. 

From here on, as previously in this article, the term 
“Bayesian” without the qualifier “pure” will refer specifically 
to the pure Bayes method of estimation. 

4. The Case of 6 = 7 

The Bayesian estimation of a population proportion 

described here requires the following steps (in the language 

of its patent): 

Step 1. Specify a desired margin of error for a poll 

comprising a plurality of options; 

Step 2. Determine a sample size needed to achieve the 

desired margin of error by simulating samples of different 

sizes, each yielding a margin of error as a function of not 

only the sample size but also the desired margin of error and 

the number of the plurality of options, the determined sample 

size being the one yielding the desired margin of error; 

Step 3. Poll an independent random sample of the 

determined sample size; 

Step 4. Convert a proportion of individuals choosing a 

particular one of the plurality of options in the poll into a 

Bayesian point estimate of the population proportion 

choosing the particular one of the plurality of options by a 

simple regression of the Bayesian point estimate on the 

polled proportion; and 

Step 5. Present the results of the poll, wherein the sample size 

is smaller than a sample size required to achieve the desired 

margin of error without the simulation and the conversion. 
Focusing on Step 2, the development of a process to 

determine the sample size required to achieve a specified 
margin of error will begin with the following version of the 

formula for ����.	 : 

����	 =	 8 -
-,�9:;��	8�,�#

-,� 98��9�
:;�                     (10) 

presented by Weitzman [14] who used this formula to show 

that in classical, estimation ����	  is an unbiased estimate of ���	 , the numerator 1�	 being variable and the denominator 1�	 
being fixed. Conversely, in pure Bayes estimation the 

numerator 1�	 and the denominator 1�	 are both fixed. In pure 

Bayes estimation, the roles of � and ��  are reversed with ��  

effectively (but not literally) giving its hat to � so that what 
was variable is now fixed and what was fixed is now 
variable. The implication here is that, as a pure Bayes 

estimator, the ����	  of Equations 1 and 10 loses its hat so that 
as a pure Bayes estimator Equation 10, particularly, becomes 

���	 =	 8 -
-,�9:;��	8�,�#

-,� 98��9�
:;�                      (11) 
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with 1�	 =	'�(	 ���<⁄  since, from Equation 9, '�(	 =	���< 1�	. 
For � = 2 and �� > .5, the value of � needed to achieve a 

margin of error equal to � is the one for which �� = .5 +� is 

the center of the likelihood distribution of � . This plus 
Equations 12 below is all the information needed to make a 

substitution for 1�	  in Equation 11 and solve for ���	  as a 

function of � and � with � = 2. 
Since, with � = 2, 

'�(	 =	 �(��*	�(?�
	 −	�< =	 !.@*A#�*	!.@�A#�

	 −	�< =	�	   (12) 

substitution of �	 ���<⁄  for 1�	 in Equation 11 and solving for ���	  yields 

ρ��	 = 2CD�!� − 1#�	 	 + ��	 − !� − 1#�	E   (13) 

The relationship between '�(	  and '�	  is notable: 

Substitution of 1�	 =	'�	 ���	⁄  for 1�	  in '�(	 =	���< 1�	  and 

solving for '�	 shows that '�	 =	'�(	 �F�	G  or, with �	 for '�(	, 

'�	 =	�	 �F�	G . 

Completion of Step 2 requires the computation of 1.645'���(  using either Equation 4 with ��� = .5 + �  and + = �!1 − ���	 # ���	⁄  or Equation 8 with '� =	 |� ���|⁄ , 

together with ���	  determined from Equation 13, for 

successive values of � until reaching the value of � for which 1.645'���(  is equal to �, which is the value of � needed to 

achieve a margin of error equal to � in Bayesian estimation 

of a population proportion with � = 2. 

Table 1 shows values of � needed for achieving different 

values of � in one-sided and two-sided Bayesian estimation 

and in classical, two-sided estimation. The values of �  for � = .03  are of especial interest in their indication of the 
great extent to which one-sided Bayesian estimation can be 
more efficient than two-sided Bayesian and classical 
estimation: 525, 825, and 1,067, in that order. 

Table 1. Bayesian and Classical Sample Sizes for Different Margins of Error 

When � = 2. 

Error Margin 
Bayesian 

(one-sided) 

Bayesian 

(two-sided) 

Classical 

(two-sided) 

.03 525 825 1,067 

.035 400 600 784 

.04 300 475 600 

.045 250 375 474 

.05 200 300 384 

NOTE: Bayesian sample sizes were determined in simulations with 

increments of 25. 

In addition to its requirement of about half the sample size 
required by classical estimation to achieve a specified margin 

of error, Bayesian estimation with � = 2 can demonstrate its 
superior power in other ways, as illustrated by the following 
fictitious examples. 

4.1. Example 1. Comparison of Classical and Bayesian 

Estimation 

A water activist group which is planning to conduct a 

referendum to compel a city council to purchase and operate 
its local water utility has a budget of $18,000 to conduct a 
poll to determine voter support for the purchase. A pollster 
who agrees to conduct the poll at that price tells the group it 
can be done with a sample of 600, which would have a 
classical margin of error equal to .04. Conducting the poll, 
the pollster finds that the proportion in favor of the 

referendum, ��, is equal to .53 (318 in favor) and reports to 
the group that result would be outside a .03 margin of error 
but not, unfortunately, outside the .04 one of their poll. 
Sharing the group’s unhappiness with the report, the pollster 
recalls hearing about a possible Bayesian analysis of the data 
that might produce a more favorable outcome. Conducting 

that analysis, the pollster computes ��� from Equation 9 with 4 = .5  (the value of 1 �⁄ ) after determining ���		  from 
Equation 1 and the actual Bayesian margin of error as 1.645'���(  from Equation 4 using + = �!1 − ���	 # ���	⁄ , with 

the following results: ���	 = .54  and ��� = .52 , which this 
time is a favorable outcome having an actual Bayesian 
margin of error equal to .02, all to two decimal places. The 
group can now have increased confidence that its plan might 
succeed. 

4.2. Example 2. Use of Performance Assessment in 

Choosing a Textbook for a Course 

In considering the possible choice of a new textbook for a 
high school science course, a state education department 
decides to compare the performance on a state final 
examination by two groups of students, the first group using 
the new and the second the current textbook, a huge supply 
of which is stored in a state warehouse. Seeking a wide 
performance margin between the groups to justify a change 
of textbooks, which would be costly, the department chooses 
a margin of error equal to .05. According to Table 1, that 
choice requires a sample size of 200. So, the department 
assigns 200 students to each group in a random selection of 
high school classes throughout the state. At the end of the 
study, which takes a year, the department lines up all 400 
student scores on the final examination in order from highest 
to lowest, with 112 members of the first group and 88 
members of the second group performing above the median 

score: �� = .56 and �	 =. .44. Using Equation 1 with � = 2 

and � = 	200, the department determines that ���	 = .66 and 

then, using Equation 9 that ��� = .54  and ��	 = .46 . 

Because .50 is within the .05 margin of error for either ��  
value, the study fails to show that the new textbook is 
sufficiently more effective than the current one to warrant a 
change of textbooks. 

Although the study required 400 students to have a value 

of � equal to 200, a classical t-test of the difference between 

the means of the two groups would also require double the 

number of members in each group. Despite that equivalency, 

the department chose to compare percentages rather than 

means because, of the two, only the comparison of 

percentages involves explicit use of the relationship between �  and �  needed to meet the study’s objectives. Use of a 

Bayesian rather than a classical method also reduced the 

value of � and the cost of the study by about half. 
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5. The Case of 6 ≥ 7 

For � ≥ 2 and �� > 1 �⁄ , the value of � needed to achieve 

a margin of error equal to � is the one for which �� = .5 +!� +	1 � − .5#⁄  is the center of the likelihood distribution 

of �� . If � = 4 and � = .03, for example, � would have to 

have the value for which �� = .28  is the center of the 

distribution of � . If L = � +	1 � − .5⁄ , then, for �	 ≥ 2, �� = .5 + L  would place 1 �⁄  outside the margin of error. 

With the substitution of L  for � , the equations used to 

determine �  when � = 2  can now be used to determine � 

when �	 > 2 for specified values of �. Table 2 shows the 

results of using this procedure for several values of � and �. 
Table 2. Bayesian Sample Size for Margin of Error (m) and Number of 

Options (K). 

 
K Classical 

Sample Size 2 3 4 5 

.03 525 675 600 525 1,067 

.035 400 500 450 400 784 

.04 300 375 350 300 600 

.045 250 300 275 250 474 

.05 200 250 225 200 384 

Because �  decreases as �  increases when � > 2 , the 

relative values of � for � ≤ 3 may come as a surprise. Why 

for any value of � is � larger for � = 3 than it is for � = 2? 

The answer involves values of ���	 . Values of L	  and, 

correspondingly, values of ���	  are considerably larger when � = 3  than when � = 2 , and increasingly large values of ���	  bring Bayesian closer to classical estimation and its � 
requirements. 

The following example, though fictitious, illustrates not 
only the sample-size advantage over classical estimation but 
also the unique usefulness of solid Bayesian estimates of 

population proportions when �	 > 2 , so solid that the 
estimated and actual population proportions are all but 
indistinguishable. 

5.1. Example Selecting Groups for Targeted Messages 

A federal government agency trying to encourage adults 
who are not vaccinated against Covid-19 to get vaccinated 
believes it could strengthen its message with increased 
precision if it knew the likelihood of hospitalization for Covid-
19 within select co-morbidity groups, particularly obese adults 
who do not smoke (Group 1), smokers who are not obese 
(Group 2), and smokers who are obese (Group 3), as well as 
adults who are not obese and who do not smoke (Group 4), 
constituting the following proportions of the United States 

adult population: N�	O. 42, N	 = .14, NP = .05, and N< = .39. 
Along with these numbers, to get the results they are looking 
for with a margin of error of .03 in Bayesian estimation, the 
agency’s researchers take a national random sample of 600 
(out of a total of over 6,000) hospitals requesting each to 
identify the first Covid-19 adult patient admitted to the hospital 
after receiving the request by the patient’s membership in one 

of the four groups, with the following results: �� = .32 , �	 = .20, �P = .41, and	�< = .07. To determine the Bayesian 

counterparts of these results, the researchers compute ���	  from 

Equation 1 and then, from Equation 9, ���  =.32, ��	  =.20, 

��P = .41, and ��< = .07, with ���	 	> .99, all to two decimal 
places. With that extremely high correlation, these are indeed 
solid estimates. If this were an actual study, it would show, 
among other things that obese people who smoke account for 
41 percent of adults hospitalized for Covid-19 though they 
comprise only 5 percent of the adult population, some of 
whom have been vaccinated or have previously contracted the 
virus. Using this method of estimation, the agency could 
sharpen the targeting of its message instead of scattershooting 
it to the entire adult population. 

5.2. Two Possible Sample Sizes for Each Combination of 6 

and R Values When 6 > 7 

When� > 2, a desired margin of error may actually be 
achieved with either of two sample sizes, depending on the 
intent of the study. The sample size will be larger if the intent 
is to identify options having proportions above average by at 
least the margin of error, and correspondingly lower 

otherwise. The reason is that �� = .5 + L is two-times-∣ � ∣ 
closer to zero for the below-average option, when � < 0 in 

the formula for L , than for the above-average option. For 
that reason, the sample sizes in Table 2 are conservative. If � = 4 and � = 03, for example, the larger � would be equal 

to 580, but the smaller one, with � = −.03 , would be 

considerably smaller: 499. The larger � differs from—and is 
more accurate than—the value in Table 2 because it was 
determined in simulation with increments of 1 rather than 25, 

as was the smaller� . Researchers who use this simulation 
method should do likewise. 

6. Discussion 

Rather than being only an adjunct to the determination of 

sample sizes, as is the case in some Bayesian literature, the 

Bayesian method described here is a powerful substitute for 

the classical method of estimating population proportions via 

independent random sampling. Both classical and Bayesian 

estimation of population proportions involving independent 

random sampling require taking a single sample from a 

single population. The essential difference between the two 

estimation methods is that in classical estimation the sample 

is considered to be one of many that the population can 

produce whereas in Bayesian estimation the population is 

considered to be one of many that can produce the sample. In 

classical estimation, the population is fixed and the sample 

can vary; in Bayesian estimation, the sample is fixed and the 

population can vary. Although that difference alone may or 

may not justify the choice of one over the other, their 

difference in sampling power favors the Bayesian method, at 

least in the realm of independent random sampling. 

Why might the difference between population and sample 

variation affect the choice between the two methods? In the 

classical case of sample variation, the logic is deductive: If A 

(the null hypothesis is true), then B (the sample estimate will be 

within the specified margin of error). The conclusion is that A is 

not true (the null hypothesis is false) if B is not true, with no 

conclusion otherwise. In the Bayesian case of population 

variation, the logic is inductive: The sample estimate (A) is 



18 R. A. Weitzman:  The Determination of Sample Size in a Bayesian Estimation of Population Proportions:   
How and Why to Do It in a Regression Framework 

empirically the most likely value of its population counterpart, 

and any value on either side of A is increasingly less likely the 

farther it is away from A. If the population counterpart of 

interest (B) is so far away that it is outside the margin of error, 

then the conclusion is that B is too unlikely to be true, with no 

conclusion otherwise. Both methods are logical. 

Some may prefer the deductive method because they 

“know” that the population is fixed since they take samples 

from lists of addresses or telephone numbers that define it. 

What they know is that the lists are fixed, but specific 

numerical descriptions of the listed individuals vary in their 

likelihood, and that is the variation that is meant by the term 

population variation. The choice between the two methods 

conceptually really boils down to a preference of one version 

of logic over another. Because of its greater power, the 

choice empirically favors the Bayesian method. 

Aside from those conceptual and practical considerations, 

together with the particular Bayesian method described here, 

this article demonstrates how a regression framework can 

provide an insightful and useful characterization of classical 

and Bayesian statistics. 

7. Conclusion 

Margins of error are important in all estimations, 

particularly so in the estimation of population proportions. 

Because sample sizes affect margins of error, knowing how 

to determine sample sizes from margins of error is important. 

That knowledge is especially important in Bayesian 

estimation because, at least in the case of independent 

random sampling, Bayesian estimates tend to require smaller 

samples than classical estimates having equal margins of 

error. For that reason, finding out how to determine sample 

sizes from margins of error in a Bayesian estimation of 

population proportions was the principal motivation for the 

research reported in this article. 
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