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Abstract: Computer simulation has become an important tool in teaching statistics. Teaching using computer simulation 

would enhance the understanding of the concept using visual illustrations. This paper describes how to use simulation in R-

programming language to perform a chi-square test. We try to show the distribution of most commonly used chi-square 

statistics we often found in statistical methods in both derivation and simulation. In statistical methods in such cases as test of 

independency, test of goodness of fit, test of significance, log likelihood ratio test, significance test and model selection we use 

chi-square statistic. The approach of the paper will enhance the students’ and researchers’ ability to understand simulation and 

sampling distribution. The paper contains an expository discussion of chi-square statistic, its derivation and distribution and its 

derivatives such as t-distribution and F-distribution. We consider two chi-squares, the empirical chi-square statistic and the 

theoretical chi-square distribution. The empirical distribution of chi-square statistic agrees closely with the theoretical chi-

square distribution for large simulations, only the empirical distribution near to zero has lower density compared to the 

theoretical one for one degree of freedom. This is because the theoretical chi-square distribution at 1 degree of freedom has 

infinite density near to zero, but for any number of simulation the empirical distribution has finite density near to zero. Chi-

square itself turns to normal distribution as the degree of freedom is large. 

Keywords: Chi-Square Distribution, Chi-Square Statistic, Likelihood Ratio, T-test, F-test, Simulation 

 

1. Introduction 

In inferential statistics chi-square distribution or chi-square 

tests are among the most useful and most widely used tests. 

Chi-square test has been applied in all research areas. The 

application of statistical test in scientific research has 

increased dramatically in recent years almost in every science 

[5]. Chi-square distribution is used in many occasions such as 

goodness of fit test, test of independence, test of 

homogeneity, hypothesis testing, confidence intervals, 

likelihood ratio test, log rank test, and Cochran-mantel 

Haenszel test. The main characteristics of these tests are 

present along with various problems related to their 

application. 

Chi-square distribution is one of the most widely used 

distribution and most frequently encounter in statistical 

methods. Other most widely used distributions such as 

student’s t-distribution and Fisher F-distribution are derived 

from chi-square distribution. Chi-square test is introduced by 

Karl Pearson was the subject of debate for much researches 

[3]. It is well known that Pearson chi-square is a family of 

tests with the following assumption (1) the data are randomly 

drawn from a population (2) the sample size is sufficiently 

large. There is no accepted cut-off for the sample size the 

minimum size varies from 20 to 50. [3]. (3) the values on the 

cell are adequate when no more than 1/5 of the expected 

values are smaller than five and there is no cell with zero 

counts [3]. 

The main aim of this paper is to create visual figure in 

students and in researchers regards to sampling distribution 

and Monte Carlo simulation of chi-square statistic. Teaching 

students using simulation is widely recommended but rarely 

evaluated. Students find the concept of sampling distribution 

difficult to understand. Specifically, this article tries to 

explore the concept of Monte Carlo simulation of chi-square 

statistic we often found in statistical methods. Which helps 

students and researchers the concept of simulation sampling 

distribution along with its derivation. It has immense role in 
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research methodology. It tries to show the basic derivation of 

chi-square statistics and its derivatives such as t-distribution 

and F-distribution. 

The objective of this paper is to show the proof of the 

distribution chi-square statistic and other distributions 

derived from chi-square distributions such as, t-distribution 

and F-distribution in addition to simulation. Simulation in 

this paper is such that drawing samples in an experiment over 

and over again it tends to reveal certain pattern. This paper 

drive the distribution of chi-square statistic we often found in 

statistical methods and the sampling distribution of the 

statistic using Monte Carlo simulation. It provides a tool for 

sampling distribution and simulation in R programing. It 

gives a good understanding for students in simulation and R 

syntax code. Copy the code and paste into R will run the 

program. It gives brief description to students and researchers 

how to make inference using chi-square distribution and how 

to handle computer simulations. As computer become more 

readily available to educators there is wide speculation that 

teaching inference via dynamic, visual simulations may make 

statistical inference more accessible to introductory students 

[13]. 

Simulation has wide application in statistical works. In this 

paper the distributional characteristics of chi-square statistics 

is analyzed using simulation. We consider two types of chi-

squares. Chi-square statistics and chi-square distribution 

(theoretical distribution). The theoretical chi-square 

distribution is continuous distribution but chi-square statistic 

is obtained in discrete manner based on discrete difference 

between observed and expected values [3]. Chi-square 

statistics turns to theoretical chi-square distribution as the 

number of observations (in this case number of simulation) 

increases. 

Chi-square statistic is frequently used in statistical analysis 

of experimental data. Using chi-square distribution (chi-

square test) is widely used but rarely evaluated and proved. 

This paper has a tool for sampling distribution, simulation, 

and derivation for chi-square statistics. It presents solution to 

common problem when applying the chi square test of 

goodness of fit, test of independency, test of homogeneity, 

test of significance and model selection. It is used to handle 

how these inferences are drawn using chi-square distribution 

and chi-square test. The paper is prepared intended to aid 

students the concept of simulation, sampling distribution and 

derivation of chi-square statistics. 

2. Material and Methods 

Let Z is standard normal distribution then 2X Z= is chi-

square distribution with 1 degrees of freedom as its density 

described below. The proof is very simple, using probability 

transform we can compute the distribution of X as given in 

equation (1) below. 

( )
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f x x e x
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Let 1 2, ,... kZ Z Z are independent standard normal random 

variable, then 2 2 2
1 2 ... kX Z Z Z= + + is chi-square distributed 

with k degrees of freedom, denoted as 2
( )kχ . The chi-square 

distribution with k degrees of freedom for positive integer k 

is given by equation (2) 
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Chi-square distribution with k degrees of freedom is 

special case of gamma distribution with parameter k/2 and 2. 

When k=2, chi-square distribution is exponential distribution 

with parameter 1/2. The minimum value of chi-square is 0 

and there is no maximum value. The maximum of chi-square 

density occurs at 2,    2n n− ≥ . The density of chi-square 

distribution with k degrees of freedom for different k is given 

in Figure 1. The figure shows the density of chi-square 

distribution with different degrees of freedom for k-values of 

1, 2, 3, 5, 12, 21, and 30. 

 

Figure 1. Chi-square distribution for some values of k and normal 

approximation. 

Along horizontal axis is chi-square value and at the 

ordinate is its density of chi-square values. Chi-square 

distribution is highly skewed to right. But as the degrees of 

freedom increase it tends to normal distribution. We can see 

from the Figure 1. as degrees of freedom increases it looks 

like normal distribution. If the degrees of freedom k of chi 

square increases, it turns to normal distribution of of 

parameter mean k and variance 2k. If k >30 the maximum 

approximation error of chi-square by normal distribution is 

less than 0.7%. If we have degrees of freedom k >50 the 

maximum approximation error is less than 0.04%. For large 

number of degrees of freedom k, the chi-square distribution 

may be approximated by normal distribution [1]. 
Chi-square can have a degree of freedom any value greater 

than zero. A random variable 2
( )kχ distribution especially, 

k<1 can be represented by a random variable with 

Generalized Gaussian distribution [7]. 
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Chi-square distribution has many important properties. 

These properties are derived from its density. Table 1 shows 

some of the characteristics of theoretical chi-square 

distribution. 

Table 1. Characteristics of chi-square random variable with k degrees of freedom. 

Property Formula 2
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The mean of chi-square distribution is its degrees of 

freedom. The variance is twice its degrees of freedom. The 

median and the mode are less than its mean. Skewness and 

kurtosis tells us as the degree freedom of chi-square increase 

it behaves as normal distributions. Moment generating 

function and characteristic function implies if 1X and 2X are 

independent chi square distributions with 1k and 2k  degrees 

of freedom, then the distribution of 1 2X X+  is chi-square 

distribution with 1 2k k+  degrees of freedom. 

Let 1 2, ,... kX X X are k independent chi square distributions 

then 1 2 .... kY X X X= + +  is chi square distribution with 

degrees of freedom individual sum of degrees of freedom. 
This situation arises in the sampling distribution of the 

sample variance 2S . For example 

2
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 is chi square distribution 

with n-1 degrees of freedom. If the population mean µ  is 

known then 

2

21
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( )

~

n

i
n

xi µ
χ

σ
=

−∑
 is chi-square distribution 

with n degrees of freedom. We lost a degree of freedom when 
we use the sample mean rather than the true mean. The 
simulation for this is given in “sampling distribution and 

simulation in R” [6]. 

2.1. Goodness of Fit Test 

The first type of chi-square test is the goodness of fit test. 

This is a test which makes statement or claim concerning the 

nature of the distribution for the whole population. This 

claim is called null hypothesis. The null hypothesis is a 

particular claim concerning how the data is distributed. This 

test is used to examine in order to see whether this 

distribution is consistent with hypothesized distribution of 

the population or not. The chi-square goodness of fit test 

begins by hypothesizing that the distribution of the variable 

behaves in a particular manner. 

Suppose that a variable has a frequency distribution with k 

categories in to which the data has been grouped. For each 

category there is observed number of cases 

(   for 1,2,...iO i k= ) and expected number of cases (  iE

  for 1, 2,...i k= ). Observed number of cases are frequency of 

the sample in each category. The expected number of cases 

are the number of observations calculated to be found in the 

sample if the hypothesized statement is true. The null 

hypothesis is that the observed number of cases is exactly 

equal to the expected number of cases in each category in the 

population. 

The n observation in a random sample from population are 

classified in to k mutually exclusive classes. Let the 

population has k categories, for each category there is a 
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probability pi attached to it and the expectation of cases 

i iE np   for 1,2,...i k= =  

We are about to test a hypothesis 

0 1:   For all i  Vs      :       atleast one i i i iH O E H O E for i= ≠  

To test this claim we sample the population and observe 

the number of cases in each category. If the null hypothesis is 

true, the number of cases in each category close to the 

expected number of cases. Then the statistics 2χ  calculated 

below in equation (3) is follow theoretical 2
( 1)kχ −

distribution. We are considering two chi-squares. Chi-square 

statistics which can be calculated from equation (3) and the 

theoretical chi-square distribution. 

( )2

2 1

k
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i

i

O E

E
χ =

−
=
∑

                              (3) 

Where iO  is called observed number of frequency for thi  

category and iE  is expected number of frequency for thi  

category calculated from theoretical distribution (frequency 

based on the assumption of the null hypothesis). If the null 

hypothesis is true, the observed number of cases and the 

expected number of cases should be the same for all 

categories. The only assumption required for conducting this 

test is that each of the expected number of cases reasonably 

large.  5,   for 1,2,...iE i k≥ =  

To prove 2χ statistic calculated in equation (3) follow 

2
( 1)kχ − first we consider central limit theorem. From central 

limit theorem for sufficiently large sample size n 

~ (0,1)
( )
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Z N
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Let pi is the probability of thi  category and ˆ
ip  is the 

estimate of pi then plugin in to equation (4) 

ˆ
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If we assume 
2

0ip
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≈ and multiplying both numerator and 

denominator of equation (5) by n 
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ˆ     and   i i i inp O E np= =  hence this completes the proof 

Or alternatively from Poisson approximation to binomial 

let ~ ( , )i iX binom n p  where iX  the number of cases in thi  

category then the distribution of iX  is approximated by 

Poisson ( inp ). ( )i iE X np= and ( )i iVar X np= . Then putting 

this in to equation (4) the same result will be obtained 
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∑  The degrees of freedom is 

such that the number of independent terms in the summation 

equation. Since we have 

1 1

k k

i i

i i

O E n

= =

= =∑ ∑  the number of 

terms in simplified equation is 1k − . The degree freedom of 

the chi-square statistic is (k-1). When the observed data does 
not conform to what expected on the basis of null hypothesis 
the difference between the observed and the expected value is 
large. 

Theoretical distribution is a continuous distribution. But 

chi-square statistics is obtained in discrete manner on the 

basis of discrete difference between the observed and 

expected values. We calculate probabilities using both 

experimental and theoretical methods. Then at the end of the 

time when it is important to determine how well the 

experimental value matches the theoretical values. 

To simulate the process in order to verify the probabilistic 

behavior of the resulting statistic, suppose we have a die of k 

faces that we are curious if it is fair or not. If it is fair, then 

the probability of each value should be the same with 

probability 1/k. Hence the number of each face expected is 

n/k. where k is the number of faces of a die and n is the 

number of tosses. The R-syntax code for the simulation for 

k=6 and k=10 is given below. 

f=function(N,K,n){#goodness of fit 

c=matrix(0,N);o=matrix(0,N,n) 

e=o;d=e 

for(i in 1:N){ 

O=sample(1:n,K,rep=TRUE) 

for(j in 1:n){ 

o[i,j]=sum(O==j) 

e[i,j]=K/n 

d[i,j]=((o[i,j]-e[i,j]))^2/e[i,j]} 

c[i]=sum(d[i,])} 

return(c)} 

c=f(10000,100,6) 

plot(density(c,bw=0.5),xlim=c(0.1,15),ylim=c(0,0.2),xlab=

expression(chi^2),col="green",lty=2,lwd=2,main=expression

(chi^2~"simulation for k=6 and k=10")) 

lines(sort(c),dchisq(sort(c),5),lty=2,lwd=2,col="red") 

c=f(10000,100,10) 

lines(density(c,bw=0.5),col="black",lty=1,lwd=1) 

lines(sort(c),dchisq(sort(c),9),lty=2,lwd=2,col="blue") 

legend(10,0.22,c("simulation",expression(chi[(5)]^2),"sim

ulation",expression(chi[(9)]^2)),col=c("green","red","black",

"blue"),lty=c(2,2,1,2),lwd=c(2,2,1,2)) 

Figure 2 is the simulation of k face die for k=6 and k=10 

with equal probability in each case for k categories. The R-

code for the simulation is given below. The sampling 

distribution of the statistic approaches to the theoretical chi-

square distribution with k-1 degrees of freedom. 
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Figure 2. Chi-square simulation for test of goodness of fit. 

The statistic 2χ approaches to 2
( 1)kχ − as the number of 

simulation is large. We have two chi-squares. The chi-square 

distribution 2
( 1)kχ − is theoretically derived mathematical 

distribution. In contrast the chi-square statistic 2χ  is a 

discrete statistic based on finite number of possible values. If 

the number of simulations increase 2χ statistics approaches 

to the theoretical chi-square distribution. 

2.2. Test of Independency 

Chi-square test of independency is used to determine the 

significant relationship between two or more qualitative 

variables. Qualitative data is where we collect data on 

individuals that are categories or names. Then we would 

count the number of individuals having particular quality. 

The chi-square test of independency allows the researcher to 

determine whether variables are independent of each other. 

The variables which are being examined can be measured at 

any level, nominal, ordinal, interval or ratio. 

The data obtained from the sample is called observed 

number of cases. There is frequency of occurrences for each 

category in to which the data have been grouped. In the chi-

square test the null hypothesis is makes a statement 

concerning how many cases are to be expected in each 

category if the hypothesis is correct. 

Chi-square test of independency is a non-parametric 

statistical test used two or more variables are independent or 

associated. The distribution of chi-square statistic approaches 

to the theoretical 2χ  distribution. Chi-square test of 

homogeneity is used to determine whether frequency counts 

are identically distributed across different populations or 

across different groups of same population. This is the link 

between test of homogeneity and test of independence. 

Suppose we have two populations, and certain event 

happen in the two populations. We want to know whether 

these populations are independent. In other word we want to 

test the equality of the events in the two population. We want 

to test a hypothesis 0 :H the two populations are independent 

(the events are homogeneous in the two populations) Vs 1 :H

the two populations are dependent (the event is not 

homogeneous). If the null hypothesis is true, then the number 

of observations in each cell is equal to the expected number 

of cases. If we have c populations each have categories of r, 

then the statistic calculated in equation (8) is chi square 

distribution. 

2

2 2
( 1)( 1)

1 1

( )
~

r c
ij ij

r c
iji j

O E

E
χ χ − −

= =

−
=∑∑               (8) 

Where r=number of rows, c=number of columns. The 
degrees of freedom are the number of terms in simplified 

terms in equation (8). Since 

1 1

r r

ij ij j

i i

O E n

= =

= =∑ ∑ ,

1 1

c c

ij ij i

j j

O E m

= =

= =∑ ∑ and 

1 1

c r

j i

j j

n m n

= =

= =∑ ∑ , where jn  is the 

number of j
th population and im  is the total number of 

observations having i
th quality, n is the total number of all 

observations. 

Therefore the number of degrees of freedom is 

( 1)( 1)r c− −  

To prove the 2χ statistic calculated in equation (8) follows 

2
( 1)( 1)r cχ − −  we consider the central limit theorem. Let 

1 1 1~ ( , )X binom n p  and 2 2 2~ ( , )X binom n p  assume 1S  is 

the number of events (success) and 1F  the number of failures 

in population 1 and 2S  is the number of events and 2F  is the 

number of failures in population 2. If the two populations are 
independent, then the number of success in each population 

are equal. i.e. 1 2p p= . Hence we expect equal number of 

success and failure in each population (homogeneously 
distributed). By substituting in to equation (4) 

1 2ˆ ˆ( )
~ (0,1)

1 1
( (1 ))

1 2

p p
Z N

p p
n n

−
=

 + −  

              (9) 

For large n1 and n2 then, substituting 1 1 1
ˆ /p S n=

, 

2 2 2
ˆ /p S n=

 and 1 2S S S= +
, 1 2F F F= +

, 

1 2n n n F S= + = +
 then, after some approximations and 

some algebraic computation 

2 2 2 2

1 2 1 2
1 2 1 2

1 2 1 2 1 2 1 22

1 2 1 2

1 2 1 2 1 2 1 2

n n n n
S S S S F F F F

n n n n n n n n
Z

n n n n
S S F F

n n n n n n n n

       
− − − −       + + + +       = + + +

+ + + +

                                 (10) 
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There are four dependent terms in the equation. The 

number of terms in simplified equation is one. Therefore, the 

degree of freedom is one. For c population each having r 

categories equation (10) can be written as follows. 

2

2 2
( 1)( 1)

1 1

( )
~

r c
ij ij

r c
iji j

O E

E
χ χ − −

= =

−
=∑∑         (11) 

Now we are to simulate 2χ statistic for test of 

independency (homogeneity). Assume we have four dies of 

six faces each. We want to test whether the four dies are 

independent. In other words, the occurrence of each faces 

homogeneously distributed across four dies. If the dies are 

independently tossed the expected frequency will be row 

total times column total divided by grand total. If the four 

dies are tossed the number of values having characteristics is 

the same in all dies. The R code given as below. 

f=function(N,n,c,r){ # test of independency 

C=matrix(0,N) 

for(i in 1:N){ 

p=matrix(0,n,c);o=matrix(0,r,c);e=o 

for(j in 1:c){ 

p[,j]=sample(1:r,n,rep=TRUE) 

for(k in 1:r){ 

o[k,j]=sum(p[,j]==k)}} 

for(j in 1:c){ 

for(k in 1:r){ 

e[k,j]=sum(o[k,])*sum(o[,j])/sum(o)}} 

C[i]=sum((o-e)^2/e)} 

return(C)} 

c=f(10000,40,6,4) 

plot(density(c,bw=2),xlim=c(min(c),50),ylim=c(0,0.12),xl

ab=expression(chi^2),ylab=expression(chi^2~density),main=

expression(chi^2~"simulation for c=6 and r=4")) 

lines(sort(c),dchisq(sort(c),15),lty=2,lwd=2,col="red") 

legend(30,0.1,c("simulation",expression(chi[(15)]^2)),lty=

c(1,2),lwd=c(1,2),col=c("black","red")) 
The following simulation is based five independent 

populations with four categories each. The simulation gives 
chi-square distribution with 12 degrees of freedom. Figure 3. 
shows the simulation of this phenomena of 10000 
simulations compared with the theoretical chi-square 
distribution. The degrees of freedom is (4-1) (6-1) =15. The 

algorithm can work for any integer 1c >  and 1r > . 

 

Figure 3. Chi-square simulation for test of independency (homogeneity). 

For large simulation of c population with r categories each 

the 2χ statistic calculated in equation (11) turns to theoretical 

2
( 1)( 1)r cχ − −  

2.3. Hypothesis Testing 

The other case is chi-square distribution arises in 

hypothesis testing. Let 1 2, ,...., nX X X  be independent 

normal random variables distributed according to 
2~ ( , )N µ σ . To test a hypothesis 2 2

0 0:H σ σ=  vs 

2 2
1 0:H σ σ≠  we use chi-square test. We reject the null 

hypothesis if 
2

2

2

( 1)n Sχ
σ
−= is large compared to 2

( 1)nχ − . If 

he population mean is known then the distribution of the 

statistic 

2

2 1

2

( )

n

i

i

x µ
χ

σ
=

−
=
∑

follows chi-square distribution 

with n degrees of freedom. The simulation turns to chi-square 

distribution shown in “sampling distribution and simulation 

in R” [6] at α  level of significance, we would reject the null 

hypothesis if the chi-square statistic is large compared to the 

theoretical one. Sometimes the distribution of the statistic 

difficult to extract. To test the hypothesis, in such cases, we 

use some approximations such as likelihood ratio test. 

2.4. Likelihood Ratio Test 

Now we consider the general case of hypothesis testing. 

Hypothesis can be tested using the logarithm of the ratio of 

likelihoods. This is one of the most useful method for 

complicated models. If the data are presented in group form, 

and if the alternative hypothesis is completely general, it is 

known that in large sample the chi-square statistic and the 

likelihood ratio test becomes equivalent [4]. 

Let 1 2, ,...., nX X X be iid ( / )f x θ  and let 

1

( / ) ( / )

n

i

L X f xθ θ
=

= ∏  be the likelihood function 

Let 
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( )
ˆ( )

L
X

L

θλ
θ

 
=  
  

 then 2log ( )Xλ− is chi square 

distribution with the number of free parameters in the null 

hypothesis 

Proof: 

( ) ˆ2log ( ) 2log 2(log ( ) log ( ))
ˆ( )

L
X L L

L

θλ θ θ
θ

 
− = − = − − 

  
  (12) 

Let ( ) log( ( ))l Lθ θ=  then using Tayler expansion near to 

θ̂ 21ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) '( ) ( ) ''( ) ......
2!

l l l lθ θ θ θ θ θ θ θ= + − + − +  

Where we are going to ignore the higher order terms it 

becomes 
21ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) '( ) ( ) ''( )

2!
l l l lθ θ θ θ θ θ θ θ≈ + − + −  and we 

have ˆ'( ) 0l θ =  
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2
2

ˆ( )ˆ ˆ2log ( ) ( ) ''( )
1

ˆ''( )

X l

l

θ θλ θ θ θ

θ

−− = − =
−

 where ˆ''( )l θ  is 

called information number (Fisher information. Let ˆ( )h θ  is 

the estimator of ( )h θ  We know from theorem of Cramer Rao 

lower bound the estimator of ( )h θ  has variance 

2( '( ))ˆ( ( ))
''( )

h
Var h

l

θθ
θ

=
−

 in our case ( )h θ θ=  then 

2(1)ˆ( )
''( )

Var
l

θ
θ

=  

2
2ˆ ˆ( )

2 log ( )
ˆ ˆ( ) ( )

X
Var Var

θ θ θ θλ
θ θ

 − − − = =
 
 

From central limit 

theorem 
ˆ

ˆ( )Var

θ θ

θ

−
is standard normal distribution. Hence the 

proof is completed. In a hypothesis 0 0:H θ θ= Vs 

1 0:H θ θ≠ , 0H will be rejected if 2log ( )Xλ−  is large 

To verify the theorem using simulation let us see the log 

likelihood ratio of some important distributions. Consider a 

binomial experiment as an example. Binomial experiment is 

a collection of Bernoulli trials. We are about to test 

hypothesis 0 0:H p p=  versus 0 0:H p p≠  to test this we 

have likelihood ratio test in equation (13) below 

01
2 log ( ) 2 ( 1) log log

1

p p
X n x x

x x
λ

 −   − = − −    −    
   (13) 

The following simulation is based on the assumption the 

population is come from 0.5p = . assume we want to test 

0 : 0.5H p =  versus 1 : 0.5H p ≠ . If the null hypothesis is 

true, then the log likelihood ratio is chi-square distribution 

with 1 degrees of freedom. The algorithm given below can 

simulate this situation. 

f=function(N,n){ #hypothesis test binomial 

c=matrix(0,N) 

for(i in 1:N){ 

x=sample(c(0,1),n,prob=c(0.5,0.5),rep=TRUE) 

c[i]=2*n*((mean(x)-1)*log((1-0.5)/(1-mean(x)))-

mean(x)*log(0.5/mean(x)))} 

return(c)} 

c=f(1000,100) 

plot(density(c,bw=0.3),xlim=c(min(c)+0.2,6),ylim=c(0,0.6

),main=expression(chi^2~"simulation for 

binomial"),xlab=expression(chi^2)) 

lines(sort(c),dchisq(sort(c),1),lty=2,lwd=2,col="red") 

legend(3,0.5,c("simulation",expression(chi[(1)]^2)),lty=c(

1,2),lwd=c(1,2),col=c("black","red")) 

Figure 4. depicts the simulation of the log likelihood ratio 

for binomial parameter test. 

The log likelihood ratio approximately chi-square 

distribution with 1 degree of freedom. The density of the 

simulation near to zero is lower than the theoretical density. 

This is due to the theoretical density near to zero is infinite. 

But the empirical density is based on finite number of 

simulations. 

 

Figure 4. Log likelihood ratio simulation for binomial parameter test. 

Now let us consider another example, a Poisson 

experiment. We are to test hypothesis 0 0:H λ λ=  versus 

1 0:H λ λ≠  to test this we have likelihood ratio test. 

( )0 02log ( ) 2 ( ) 2 log /X n x nx xλ λ λ− = − − −  (14) 

The following simulation is based on the assumption the 

population is come from 6λ = . 

f=function(N,n){ #hypothesis test poisson 

c=matrix(0,N);L0=c; L1=c 

for(i in 1:N){ 

x=rpois(n,6) 

L0[i]=exp(-n*6)*6^(sum(x)) 

L1[i]=exp(-n*mean(x))*mean(x)^(sum(x)) 

c[i]=-2*(log(L0[i]/L1[i]))} 

return(c)} 

c=f(1000,50) 

plot(density(c,bw=0.3),xlim=c(min(c)+0.3,6),ylim=c(0,0.7

),main=expression(chi^2~"simulation for 

poisson"),xlab=expression(chi^2)) 

lines(sort(c),dchisq(sort(c),1),lty=2,lwd=2,col="red") 

legend(3,0.5,c("simulation",expression(chi[(1)]^2)),lty=c(

1,2),lwd=c(1,2),col=c("black","red")) 

Figure 5. shows the simulation of the likelihood ratio test 

for Poisson parameter test. 

 

Figure 5. Log likelihood ratio for Poisson parameter test. 
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If the null hypothesis is true, then the log likelihood ratio 

in equation (14) is chi-square distribution with 1 degrees of 

freedom. A similar statement can be made as previous the 

empirical density near to zero is lower than the theoretical 

density. 
Another important statistical test we often found in 

statistical method is the population mean for normal 

distribution. That is we are to test hypothesis 0 0:H µ µ=  

versus 1 0:H µ µ≠ . The following is the log likelihood ratio 

test for hypothesis testing for the population mean when 
sigma is known. The log likelihood ratio is: 

2 2
0

1 1

2 2

( ) ( )

2log ( )

n n

i i

i i

x x x

X

µ
λ

σ σ
= =

− −
− = −

∑ ∑
 (15) 

We know that the first and the second term are chi-square 

distribution with n and n-1 degrees of freedom respectively. 

But the two terms are not independent. Equation (15) can be 

simplified as 
2

02log ( )
/

x
X

n

µλ
σ
 −

− =  
   

which is standard normal 

distribution square. The R code for simulation is 

f=function(N,n){ #hypothesis for normal mean test sigma 

is known 

c=matrix(0,N);L0=c; L1=c 

for(i in 1:N){ 

x=rnorm(n,8,3) 

c[i]=-sum((x-mean(x))^2)/9+sum((x-8)^2)/9} 

return(c)} 

c=f(1000,10) 

plot(density(c,bw=0.3),xlim=c(min(c)+0.3,6),ylim=c(0,0.6

),main=expression(chi^2~"simulation for 

normal"),xlab=expression(chi^2)) 

lines(sort(c),dchisq(sort(c),1),lty=2,lwd=2,col="red") 

legend(3,0.5,c("simulation",expression(chi[(1)]^2)),lty=c(

1,2),lwd=c(1,2),col=c("black","red")) 

Figure 2. depicts the simulation of the log likelihood ratio 

for normal distribution mean test when the population 

variance is known. 

 

Figure 6. The simulation of the log likelihood ratio for the population mean 

when sigma is known. 

When the population variance is known the likelihood 

ratio for normal distribution mean test is chi-square 

distribution with one degree of freedom. 
In statistical method we often found testing population 

variance when the population mean is known. We are about 

to test the hypothesis 2 2
0 0:H σ σ=  versus 2 2

1 0:H σ σ≠ . 

The following is the log likelihood ratio test for hypothesis 

testing for the population variance when µ  is known. The 

log likelihood ratio is: 

2

2
1 0

2 2
0

( )

2 log ( ) log
ˆ

n

i

i

x

X n n

µ
σλ

σ σ
=

−
 

− = − +   
 

∑
 Where 

2

2 1

( )

ˆ

n

i

i

x

n

µ
σ =

−
=
∑

                         (16) 

The algorithm for the simulation is given below. 

f=function(N,n){ #hypothesis test normal var test mu is 

known 

c=matrix(0,N) 

for(i in 1:N){ 

x=rnorm(n,8,3) 

sig=sum((x-8)^2)/n 

c[i]=sum((x-8)^2)/9-n+n*log(9/sig)} 

return(c)} 

c=f(1000,10) 

plot(density(c,bw=0.3),xlim=c(min(c)+0.3,6),ylim=c(0,0.6

),main=expression(chi^2~"simulation for 

normal"),xlab=expression(chi^2)) 

lines(sort(c),dchisq(sort(c),1),lty=2,lwd=2,col="red") 

legend(3,0.5,c("simulation",expression(chi[(1)]^2)),lty=c(

1,2),lwd=c(1,2),col=c("black","red")) 

Figure 7. depicts the simulation density for log likelihood 

ratio test for the population variance when the population 

mean is known. The simulation density is compared with the 

theoretical chi-square distribution with one degree of 

freedom. 

 

Figure 7. The log likelihood ratio test simulation population variance when 

mu is known. 
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When the population mean is known the log likelihood 

ratio for test of variance is chi-square distribution with 1 

degree of freedom, only the density of the simulation near to 

zero is lower than the theoretical density. 
The other case hypothesis testing of mean for normal 

distribution when the population variance is unknown. The 

hypothesis to be tested is 0 0:H µ µ=  versus 1 0:H µ µ≠  

since 2σ is unknown we substitute it with sample variance
2

S . The following is the log likelihood ratio test for 

hypothesis testing for the population mean when sigma is 
unknown. 

2

1

2

( )

2 log ( ) 1

n

i

i

x

X n
S

µ
λ =

−
− = − +

∑
                  (17) 

The algorithm for the simulation is given as: 

f=function(N,n){ #to test mu sigma is unknown 

c=matrix(0,N); 

for(i in 1:N){ 

x=rnorm(n,8,3) 

c[i]=-n+1+sum((x-8)^2)/var(x)} 

return(c)} 

c=f(10000,10) 

plot(density(c,bw=0.3),xlim=c(min(c)+0.3,6),ylim=c(0,0.6

),main=expression(chi^2~"simulation for 

normal"),xlab=expression(chi^2)) 

lines(sort(c),dchisq(sort(c),1),lty=2,lwd=2,col="red") 

legend(3,0.5,c("simulation",expression(chi[(1)]^2)),lty=c(

1,2),lwd=c(1,2),col=c("black","red")) 

Figure 8 depicts the simulation density of log likelihood 

ratio in equation (17) compared with the theoretical chi-

square distribution. The population variance is unknown and 

estimated from sample whose divisor is n-1. 

 

Figure 8. The log likelihood ratio simulation for mean test. 

The log likelihood ratio for population mean test is chi-

square distribution when the population variance is estimated 

from sample. 
The other case we often found in statistical method is 

testing population variance when the population mean is 

unknown. Since the true mean is unknown we estimate from 

sample. The hypothesis to be test is 2 2
0 0:H σ σ=  versus 

2 2
1 0:H σ σ≠ . The following is the log likelihood ratio test 

for hypothesis testing for the population variance when mu is 

unknown. The log likelihood ratio is: 

2

2
1 0

2 2
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( )

2 log ( ) log
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n
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x x
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 
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∑
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                         (18) 

The R-code is given as below. 

f=function(N,n){ #mu is unknown to test sigma 

c=matrix(0,N);L0=c; L1=c 

for(i in 1:N){ 

x=rnorm(n,8,3) 

c[i]=sum((x-mean(x))^2)/9-n+n*log(9/((n-1)*var(x))*n)} 

return(c)} 

c=f(10000,10) 

plot(density(c,bw=0.3),xlim=c(min(c)+0.3,6),ylim=c(0,0.6

),main=expression(chi^2~"simulation for 

normal"),xlab=expression(chi^2)) 

lines(sort(c),dchisq(sort(c),1),lty=2,lwd=2,col="red") 

legend(3,0.5,c("simulation",expression(chi[(1)]^2)),lty=c(

1,2),lwd=c(1,2),col=c("black","red")) 

Figure 9 shows the simulation of log likelihood ratio 

density compared with the theoretical chi-square distribution. 

Since the true mean is unknown it is estimated from sample. 

 

Figure 9. Simulation for test of population variance when the true mean is 

unknown. 

When the true mean is unknown we estimate from sample. 

The log likelihood ratio in equation (18) for population 

variance test is chi-square distribution with 1 degree of 

freedom. 

The importance of the log likelihood ratio is used even for 

more complicated models. The test can be used for testing 
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several variables at the same time. If we have k variables the 

log likelihood ratio is chi-square distribution with k degrees 

of freedom. 

Proof: 

1 2
1 2 1 2

1 2

( , ,...... ) ˆ ˆ ˆlog ( ) 2log 2(log ( , ,...... ) log ( , ,....... ))
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We take the approximation up to second order terms. Higher order terms such as third degree and higher are ignored. And 

terms involve in the first derivative are zero. And the cross products in the first derivative are zero because the log likelihood 

function is substituted at its critical values. 

2 22 2
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∂ ∂ ∂ ∂

                             (19) 

Each terms are chi square distribution with one degrees of freedom. The degree of freedom is the number of parameters in 

the model. Hence the proof is completed. 

To verify the distribution of the log likelihood ratio is chi-square distribution using simulation, let us consider the log 

likelihood ratio distribution for two parameters. 

Consider a normal distribution. Let 1 2, .... nX X X  are normally and independently distributed. Sometimes we are interested 

in testing the mean and the variance simultaneously. We want to test a hypothesis 2 2
0 : ,    H µ µ σ σ= =  Vs 

2 2
1 : ,    H µ µ σ σ≠ ≠  simultaneously. The following is the log likelihood ratio test for two parameters. 

2
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∑
                                                      (20) 

The R-code for the simulation is given as: 

f=function(N,n,mu,sig){ #mu and sigma are unknown 

simultaneous test 

c=matrix(0,N) 

for(i in 1:N){ 

x=rnorm(n,mu,sig) 

c[i]=sum((x-mu)^2)/sig^2-n-n*log(sum((x-

mean(x))^2)/(n*sig^2))} 

return(c)} 

c=f(1000,50,8,3) 

plot(density(c,bw=0.3),xlim=c(min(c)+0.3,22),ylim=c(0,0.

5),xlab=expression(chi^2),ylab=expression(chi^2~density),m

ain=expression(chi^2~"simulation mu and sigma unknown")) 

lines(sort(c),dchisq(sort(c),2),lty=2,lwd=2,col="red") 

legend(7,0.4,c("simulation",expression(chi[(2)]^2)),lty=c(

1,2),lwd=c(1,2),col=c("black","red")) 

Figure 10 is the density of the simulation of the log 

likelihood ratio for both of the normal parameters. The 

density of the simulation in equation (20) compared with chi-

square distribution with 2 degrees of freedom. 

 

Figure 10. Log likelihood simulation for population mean and variance 

simultaneous test. 
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The simulation agrees with the theoretical 2
(2)χ . Only the 

simulation has low density near to zero relative to the 
theoretical density. This problem cannot be solved increasing 
the simulation. The density of the simulation near to zero 
never coincides with the theoretical density. This problem is 

not unique to simulation. Even drawing samples from 2
(1)χ  

and 2
(2)χ and plotting the density do not agree to the 

theoretical distributions near to zero. 

2.5. Significance Test 

The importance of log likelihood ratio is it used to test 

significance of the parameter. In other words, it is used for 

model selection. To verify the theorem of the likelihood ratio 

distribution let us consider two models, Multiple linear 

regression and complicated logistic regression. We are about 

to test the significance of extra variable in the alternative 

hypothesis. 

Consider test of significance (model selection) for linear 

regression. Suppose Y  is the dependent variable and 1X  and 

2X  are independent (explanatory) variables. we want to test 

the significance relation between the response variable and 

dependent variable. Suppose we are interested in testing only 

1X  is significantly related to Y . and 2X  is not important 

predictor for Y . That is, we want to test a hypothesis. 

0 :H The model is 00 10 1Ŷ Xβ β= + Vs the model is 0 1 1 2 2Ŷ X Xβ β β= + +  

In other words we are about to test 0 0 00 1 10 2: , , 0H β β β β β= = =  Vs 1 0 0 1 1 2: , , 0H β β β β β= = ≠  

The log likelihood ratio is 

( ) ( )
2 2
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2 2
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n n
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i i

y X y X X
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β β β β β
λ

σ σ
= =

− − − − −
− = −

∑ ∑
                                      (21) 

The following algorithm gives the simulation of this 

situation. 

f=function(N,K,n){ #regression 

c=matrix(0,N) 

X1=runif(K,1,6); X2=rnorm(K,2,1);Y=rnorm(K,8,3) 

K=1:K 

for(i in 1:N){ 

k=sample(K,n) 

x1=X1[k];x2=X2[k]; y=Y[k] 

m0=lm(y~x1);b00=m0$coeff[1];b10=m0$coeff[2] 

m=lm(y~x1+x2);b0=m$coeff[1];b1=m$coeff[2];b2=m$co

eff[3] 

c[i]=-sum((y-b0-b1*x1-b2*x2)^2)/9+sum((y-b00-

b10*x1)^2)/9} 

return(c)} 

c=f(1000,500,50) 

plot(density(c,bw=0.3),xlim=c(min(c)+0.3,5),ylim=c(0,0.5

),xlab=expression(chi^2),ylab=expression(chi^2~density),ma

in=expression(chi^2~"simulation for significance test")) 

lines(sort(c),dchisq(sort(c),1),lty=2,lwd=2,col="red") 

legend(3,0.4,c("simulation",expression(chi[(1)]^2)),lty=c(

1,2),lwd=c(1,2),col=c("black","red")) 

The null hypothesis for the simulation is only 1X  is 

important predictor for Y and the alternative hypothesis is 

both 1X  and 2X  are important predictors. Figure 11. shows 

the simulation for log likelihood ratio for regression 

significance test. 

For significance test the log likelihood ratio in equation 

(21) follows chi-square distribution with 1 degree of freedom. 

Generally, the degree of freedom is the number of free 

parameters in the null hypothesis. The ratio of population 

size to the sample size determine the convergence of the 

simulation. 

 

Figure 11. Chi-square simulation for significance test for linear regression. 

Let us consider logistic regression whose log likelihood ratio 
distribution is difficult to find. Logistic regression is by far the 
most widely used tool for relating a binary response to a family 
of explanatory variables [8]. Let us take complicated model 
whose distribution is difficult to derive directly. But in likelihood 
ratio we can find its distribution. In likelihood ratio we can test 
the significance of the variable related to the other variable. In 
methods like survival analysis and regressions we need to test 
whether a variable is significantly related to the response 

variable. Suppose Y  is response variable 1 2,X X , and 3X  are 

explanatory variables we need to test the significance of the two 

variables (say 2 3    X and X ). The hypothesis to be tested is 

0 :H only significant variable is 1X  Vs 1 :H all variables 

1 2 3,     X X and X are significant. In other word we are about 

model selection. The same hypothesis is 

0 0 00 1 10 2 3: , , 0, 0H β β β β β β= = = =  Vs 

1 0 0 1 1 2 3: , , 0, 0H β β β β β β= = ≠ ≠  
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The log likelihood ratio is 
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                      (22) 

The log likelihood ratio is chi-square distribution with 

degrees of freedom the number of free parameters in the null 

hypothesis. If the null hypothesis is true, then the log 

likelihood ratio follows chi-square distribution with 2 

degrees of freedom. The R-code is given as follows 

f=function(N,K,n){ #logistic regression 

c=matrix(0,N);l0=c; l1=c 

X1=runif(K,1,3);X2=rbinom(K,3,0.5);X3=rnorm(K,0,1) 

Y=sample(c(0,1),K,prob=c(0.8,0.2),rep=TRUE) 

for(i in 1:N){ 

k=sample(1:K,n) 

y=Y[k];x1=X1[k];x2=X2[k];x3=X3[k] 

m0=glm(y~x1,family=binomial(link="logit")) 

b00=m0$coeff[1];b10=m0$coeff[2] 

m=glm(y~x1+x2+x3,family=binomial(link="logit")) 

b0=m$coeff[1];b1=m$coeff[2];b2=m$coeff[3];b3=m$coef

f[4] 

l0[i]=sum(y*log((exp(b00+b10*x1)/(1+exp(b00+b10*x1))

)))+sum((y-1)*log(1+exp(b00+b10*x1))) 

l1[i]=sum(y*log((exp(b0+b1*x1+b2*x2+b3*x3)/(1+exp(b

0+b1*x1+b2*x2+b3*x3)))))+sum((y-

1)*log(1+exp(b0+b1*x1+b2*x2+b3*x3))) 

c[i]=-2*(l0[i]-l1[i])} 

return(c)} 

c=f(1000,800,100) 

plot(density(c,bw=0.3),xlim=c(min(c)+1,15),ylim=c(0,0.3

1),main="Logistic regression 

simulation",xlab=expression(chi^2),ylab="density") 

lines(sort(c),dchisq(sort(c),2),lty=2,lwd=2,col="red") 

legend(8,0.2,c("simulation",expression(chi[(2)]^2)),lty=c(

1,2),lwd=c(1,2),col=c("black","red")) 

Figure 12 shows the simulation of the log likelihood ratio 

for 1000 simulation for logistic regression significance test. 

 

Figure 12. Chi-square simulation for significance test for logistic 

regression. 

For sufficiently large simulation the log likelihood ratio 

turns to chi-square distribution. The convergence depends on 

not only the number of simulation; the number of population 

we draw samples determine its convergence. For smaller 

sample n<50 the linear model does not converge. For smaller 

value of the ratio of sample size to population size the log 

likelihood ratio follows chi-square distribution with 2 

degrees of freedom. 

2.6. Derived Distribution 

t-distribution and F-distribution are most widely used 

statistic used in estimation and hypothesis testing. Both are 

derived from chi-square distribution. Next we consider these 

distributions. 

t-distribution 

t-distribution is most widely used distribution in statistical 
method. Let Z is standard normal distribution and X is chi 
square distribution with k degrees of freedom. Then 

/
X

t Z
k

=  is t-distribution with k degrees of freedom. It is 

developed by William Sealy Gosset (1908) 

Proof: Let / /t Z X k=  and /v X k=  this implies 

Z t v=  and X kv=  then the Jacobean is | |J k v=  then 
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The integration is easy that can be computed using gamma 

function or gamma distribution. 
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             (23) 

The equation in (23) is called the density of student’s t-

distribution. 
In many occasions we found t-distribution such as the 

distribution of the sample mean when the population variance 
is unknown. In testing (or estimating) population mean when 
the population variance is unknown the sample variance is 
the denominator. The simulation is given in “sampling 
distribution and simulation in R” [6] In so many other 
occasions we found t-distribution such as two population 
mean equality, correlation coefficient test and so on. One 
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thing draw our attention here is in testing equality of two 
population mean when the variances are unknown and 
unequal. In majority of cases in which mean test are required 
we have no a prior knowledge of the variance of the 
population [9]. In testing mean difference in two populations 
when the samples are come from population of different 
variance and unknown, then chi-square distribution is in the 
denominator. Our aim here is to show the statistic t given 

next is t- distribution 
( )

( )

X Y
t

Var X Y

− − ∆=
−

 where ∆  

hypothesized mean difference between the two population 
(groups in a population). If the variances are different and 
unknown, we estimate from samples. Then the estimated 
variance is in the denominator. 

2 2
1 2

1 2

( )X Y
t

S S

n n

− − ∆=

+

 to find the density of this statistics is 

difficult. But we use Satterthwaite approximation. It is easy 
to change the denominator in to chi-square distribution. 

Therefore, we try to change it t-distribution. If we divide 
both the numerator and denominator by a where 

2 ( )a Var X Y= − =
2 2

1 2

1 2n n

σ σ
+ the t will be 

2 2
1 2
2 2

1 2

[( ) ] /X Y a Z
t

XS S

ka n a n
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+

 for some value of k, the 

numerator is standard normal distribution. Let us change the 

denominator in to chi-square distribution 

2 2 2 2
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To find the distribution of X is quite difficult. If 1X  and 

1X  are chi-square distributions with 1k  and 2k  degrees of 

freedom then the distribution of 1 2X X+ is chi square 

distribution with 1 2k k+  degrees of freedom. However the 

distribution of 1 1 2 2a X a X+ , where 'ia s  are known 

constants, is quite difficult. But we might think 1 1 2 2a X a X+ , 

it does seem reasonable to assume that 
2

1 1 2 2

( )k
a X a X

k

χ+ ≈  for some value of k will provide good 

approximation called Satterthwaite. So that 

( )
2
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( ) /
k

X Y a
t t

k kχ
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Now we assume
2

1 1 2 2

( )k
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χ+ ≈ . If we take 

expectation both sides 
2

1 1 2 2

1
( ) ( ) ( ( )) 1a E X a E X E k

k
χ+ = =  

This equation cannot solve k but it tells us restriction on 

the first moment. So taking both sides second moment 

2 2 2
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Solving for k, 
2

1 1 2 2
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k
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+ −
             (24) 

This may give negative degrees of freedom. The degree of 

freedom is obtained but one can be negative. We might 

suppose that Satterthwaite was aghast this possibility [2]. He 

worked much harder as follows. 

2 2
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So he uses the first moment restriction 1 1 2 2[ ] 1E a X a X+ =  and write the variance 
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Now substitute this in k 
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                                                        (25) 

now the degrees of freedom is found 
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Therefor the degree of freedom can be found using equation (25). Since 1X  is chi-square with 1 1n −  degrees of freedom 

and 2X  is chi-square with 2 1n −  degrees of freedom and 1X  and 2X  are independent substituting in equation (25) 
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This completes the proof. The simulation is given in article “Sampling distribution and simulation in R” in [6]. 

F –distribution 

The ratio of two chi-square distributions divided by their corresponding degrees of freedom is F distribution. Let X and Y be 

two chi–square random variables with m and n degrees of freedom, then the probability density function of 
/

/

X m
u

Y n
=  derived 

below in equation (27) is called F-distribution. It is named after Ronald Fisher and George W. Snedecor. If we let /v Y n=  
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easily if we use gamma function or gamma distribution. 
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Simplifying this it will give 
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F-distribution arises in so many statistical tests. The 

simulation is given in in article “Sampling distribution and 

simulation in R” [6]. 

3. Discussion 

A solid understanding of inferential statistics is of major 

importance of for designing and interpreting results in any 

scientific discipline. However, students are prone to 

misconceptions regarding this topic [12]. The use of 

computer simulation in the teaching of statistical method can 

help undergraduate students under difficult or abstract 

statistics concepts [10]. One way to use simulation is to allow 

students to experiment with a simulation and to discover the 

important principles on their own [11]. 

4. Conclusion 

We have developed the distributional characteristics of 

chi-square statistic proof and simulation. It is tried to verify 

the probabilistic behavior of the resulting empirical chi-

square distribution. In this paper we try to verify the 
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sampling distribution of chi-square statistic that we often 

found in statistical methods using simulation. The aim is to 

aid students and researchers by giving a brief description of 

simulation, sampling distribution and its derivation. We try to 

derive the distribution of empirical chi-square statistic and its 

derivatives such as student’s t-distribution and F-distribution. 

The derivation and simulation of chi-square statistic we 

found in many occasions such as test of goodness of fit, test 

of homogeneity, test of independency, model selection and so 

on. Chi-square statistic for contingency table follows chi 

square distribution with (r-1)(c-1) degrees of freedom. The 

log likelihood ratio for k variables follows chi-square 

distribution with k degrees of freedom. For model selection 

the log likelihood ratio follows chi-square distribution with 

degrees of freedom the number of free parameters in the null 

hypothesis. 
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