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Abstract: This study is aimed at investigate the impact of multicollinearity on a model's predictive accuracy and assess the 

effectiveness of different techniques in handling multicollinearity. The purpose of this study is to compare several methods of 

addressing multicollinearity in regression analysis and to determine their effectiveness in improving the accuracy and 

reliability of the results. The specific methods to be compared include OLS regression, Two-stage regression Ridge regression 

and Lasso regression. The study simulated six predictor variables with high levels of multicollinearity and compared the 

performance of four regression models: Ordinary Least Square (OLS), Two-Stage Least Squares (Two-Stage), Ridge 

regression, and Lasso regression. The models were evaluated using metrics such as the Variance Inflation Factor (VIF), root 

mean squared error (RMSE), Akaike information criterion (AIC), Bayesian information criterion (BIC), and adjusted R-

squared. The results showed that Ridge and Lasso regression models were more effective in handling multicollinearity than 

OLS and Two-Stage regression models. Ridge regression had the lowest RMSE and best predictive performance among the 

models, and Ridge and Lasso regression had better model fit and were more effective in handling overfitting than OLS and 

Two-Stage regression models. The study concludes that using Ridge and Lasso regression models can improve a model's 

predictive accuracy and reduce the impact of multicollinearity on the model. 
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1. Introduction 

The concept of multicollinearity was first introduced by 

Harold Hotelling in 1936 in his seminal paper "Relations 

Between Two Sets of Variates." Since then, multicollinearity 

has been widely recognized as a critical issue in regression 

analysis. Multicollinearity is a well-known problem in 

statistical analysis that occurs when two or more independent 

variables in a regression model are highly correlated with 

each other. This high correlation between independent 

variables can lead to several problems, including unstable 

and imprecise regression coefficients, which makes it 

difficult to interpret the relationship between the independent 

variables and the dependent variable [1, 2]. 

The problem of multicollinearity has been widely studied 

in the literature, with many researchers investigating its 

causes, effects, and solutions. One of the main causes of 

multicollinearity is the inclusion of redundant or highly 

correlated independent variables in a regression model [3]. 

Other causes include measurement error and sample selection 

bias [4]. It also causes instability of regression coefficients. 

When two or more independent variables are highly 

correlated, it becomes challenging to estimate their separate 

effects on the dependent variable accurately. As a result, the 

regression coefficients become unstable, leading to 

difficulties in interpreting the results. 

The effects of multicollinearity can be severe, as it can 

lead to biased and inconsistent estimates of the regression 

coefficients, which can have serious consequences for 

hypothesis testing and decision-making [2, 4]. 

Multicollinearity can also reduce the efficiency of the 

regression estimates, increase the standard errors of the 

coefficients, and reduce the statistical power of the analysis 

[1]. 

Despite the well-known problems associated with 

multicollinearity, it remains a common issue in statistical 

analysis, particularly in social science research. This is 

because many social science phenomena are complex and 
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involve multiple independent variables that are highly 

correlated with each other. Furthermore, social science 

researchers often have limited control over the measurement 

of independent variables, which can exacerbate the problem 

of multicollinearity [3]. 

To address the problem of multicollinearity, researchers 

have proposed several solutions. These include dropping one 

or more of the highly correlated independent variables, using 

principal component analysis or factor analysis to create a 

composite variable, and using ridge regression or other 

regularization techniques to stabilize the regression estimates 

[2]. Another solution is to collect more data, which can 

reduce the effects of multicollinearity and improve the 

precision of the regression [4]. 

Despite the many solutions proposed by researchers, 

multicollinearity remains a common issue in social science 

research, highlighting the need for continued attention and 

research in this area. This study compares some methods of 

remedying multicollinearity with a view of determining the 

best approach. 

Purpose of the Study 

The purpose of this study is to compare several methods of 

addressing multicollinearity in regression analysis and to 

determine their effectiveness in improving the accuracy and 

reliability of the results. The specific methods to be 

compared include OLS regression, Two-stage regression 

Ridge regression and Lasso regression.  

By comparing these methods, this study aims to contribute 

to the understanding of the issue of multicollinearity in 

regression analysis and to provide practical guidance for 

researchers on how to address the issue effectively. The 

findings of this study are expected to have implications for 

the design and analysis of future research studies that involve 

regression analysis. 

2. Literature Review 

Multicollinearity is a common issue in statistical modeling 

that arises when two or more independent variables in a 

regression model are highly correlated with each other. This 

can lead to several consequences that can affect the reliability 

and validity of the regression results. In this literature review, 

we will explore the concept of multicollinearity and its 

consequences, as well as the methods that can be used to 

detect and deal with this problem. 

Multicollinearity can arise from different sources, such as 

measurement error, data transformation, model specification, 

and sampling variation. For example, if two or more 

variables are measured with a high degree of error, their 

observed values may appear more correlated than their true 

values, leading to spurious relationships in the regression 

model [3]. Similarly, if one variable is a linear combination 

of other variables, it will introduce perfect multicollinearity, 

which means that its variance is zero, and it cannot be 

estimated separately from the other variables [5]. Another 

cause of multicollinearity is the use of dummy variables to 

represent categorical variables, which can create linearly 

dependent variables if the categories are not mutually 

exclusive [6]. Finally, multicollinearity can also be induced 

by the sample selection process, such as when the sample 

size is too small, or the sample is not representative of the [4]. 

Several adverse effects on the regression analysis, such as 

biased and inefficient parameter estimates, inflated standard 

errors, and unstable and unreliable regression models have 

been found to be associated with multicollinearity. Biased 

estimates occur when the true values of the parameters are 

different from the estimated values due to the correlation 

among the predictor variables [3]. Inefficient estimates occur 

when the standard errors of the coefficients are large, 

reducing the precision and accuracy of the estimates [4]. 

Inflated standard errors occur when the variances of the 

estimates are increased due to the correlation among the 

variables, making the estimates less significant than they 

should be [6]. Unstable and unreliable regression models 

occur when small changes in the data or the model 

specification can lead to large changes in the parameter 

estimates, making the model difficult to interpret and 

replicate [5]. 

Multicollinearitycan make it difficult to interpret the 

coefficients of the regression model. When two or more 

independent variables are highly correlated, it becomes 

difficult to determine the individual contribution of each 

variable to the dependent variable. This can lead to unstable 

and inconsistent coefficient estimates, which can affect the 

predictive power of the model [3]. It can lead to overfitting of 

the model. Overfitting occurs when the model fits the noise 

in the data rather than the underlying relationships between 

the variables. This can result in a model that performs well 

on the training data but poorly on the test data [7]. 

Multicollinearity can exacerbate this problem by introducing 

unnecessary complexity into the model, leading to a model 

that is more sensitive to small variations in the data. 

One of the most commonly reported consequences of 

multicollinearity is the inflated standard errors of regression 

coefficients, which can lead to the rejection of potentially 

useful variables in a model [3]. In addition, multicollinearity 

can cause the model to overfit the data, resulting in poor out-

of-sample predictions [8]. This issue is particularly relevant 

in fields such as finance and economics, where accurate 

forecasts are critical for decision-making. 

There are several methods available to remedy 

multicollinearity in regression analysis, and in this review, 

we will discuss some of the most commonly used ones. One 

of the most popular methods for remedying multicollinearity 

is principal component analysis (PCA). PCA involves 

transforming the original variables into a new set of variables, 

called principal components, that are uncorrelated with each 

other. This can help reduce the correlation between the 

original variables and improve the stability of regression 

coefficients. PCA has been shown to be effective in reducing 

multicollinearity in many empirical studies, such as in the 

work of Belsley et al [3, 9]. 

Another commonly used method for dealing with 

multicollinearity is ridge regression. Ridge regression 
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involves adding a penalty term to the regression model that 

shrinks the regression coefficients towards zero. This can 

help reduce the variance of the estimates and improve the 

stability of the coefficients. Ridge regression has been shown 

to be effective in reducing multicollinearity in many 

empirical studies, such as in the work of Hoerl and Kennard 

[10]. 

A third method for remedying multicollinearity is the use 

of variable selection techniques, such as stepwise regression 

or LASSO regression. These methods involve selecting a 

subset of predictor variables that are most important for 

predicting the outcome variable. This can help reduce the 

number of highly correlated variables in the model and 

improve the stability of regression coefficients. Variable 

selection techniques have been shown to be effective in 

reducing multicollinearity in many empirical studies, such as 

in the work of Miller [11] and Tibshirani [12]. 

Another method for remedying multicollinearity is to 

combine correlated variables into a single variable using 

factor analysis. Factor analysis involves grouping variables 

into a smaller number of factors based on their underlying 

correlations. This can help reduce the number of variables in 

the model and improve the stability of regression coefficients. 

Factor analysis has been shown to be effective in reducing 

multicollinearity in many empirical studies, such as in the 

work of Hair et al [13] and Kim and Mueller [14]. 

Kutner et al [15] proposed another method for remedying 

multicollinearity, which involves centering the predictor 

variables before including them in the regression model. 

Centering involves subtracting the mean of each predictor 

variable from its values, which can help reduce the 

correlation among predictor variables and improve the 

stability of the regression coefficients. However, centering 

may not be effective if the correlation among predictor 

variables is too high. 

Another method for remedying multicollinearity is to use 

data augmentation techniques, such as bootstrapping or 

jackknifing. These techniques involve resampling the data set 

and creating multiple versions of the data with slightly 

different values, which can help reduce the impact of 

multicollinearity on the regression model. However, data 

augmentation techniques can also increase the computational 

burden and may not be feasible for large data setsp [16, 17]. 

Finally, it is worth noting that some researchers have 

argued that multicollinearity is not necessarily a problem that 

needs to be remedied. For example, Belsley et al [3] argued 

that high correlation among predictor variables may not be 

problematic if the goal of the analysis is to make accurate 

predictions rather than to estimate the exact effect of each 

predictor variable on the outcome variable. They suggested 

that in such cases, the focus should be on creating a 

parsimonious model that includes only the most important 

predictor variables, rather than on trying to eliminate 

multicollinearity altogether. 

There have been numerous empirical studies conducted on 

the effectiveness of various methods for remedying 

multicollinearity in regression analysis.  

Adnan [18] proposed that the primary goal of regression 

analysis is to explain the variability in response variables by 

linking it to proportional variations in explanatory variables. 

However, this becomes challenging when explanatory 

variables vary in similar ways, resulting in 

multicollinearity—a common problem in regression analysis. 

Addressing multicollinearity is crucial because least squares 

estimations assume that predictor variables are not correlated 

with each other. The study compared the performances of 

ridge regression (RR), principal component regression (PCR), 

and partial least squares regression (PLSR) using simulated 

data sets. PCR combines principal component analysis (PCA) 

and ordinary least squares regression (OLS), while PLSR 

constructs components to reduce the number of variables. RR, 

on the other hand, allows a biased but more precise estimator. 

The comparison was done using linear equations relating 

predictor variables to response variables, and mean square 

errors (MSE) were calculated for comparison. 

Barrios and Vargas [19] discussed general shrinkage 

estimators designed to stabilize the variance of least squares 

estimators. However, these procedures may impose 

constraints that distort the true relationship between 

predictors and the dependent variable, leading to biased and 

inconsistent estimators. 

Belsley [3] argued that centering observations around their 

mean does not help with multicollinearity. It eliminates the 

intercept term and masks its role in causing multicollinearity. 

The author showed that perturbed inputs have the same effect 

on estimates, whether using centered or uncentered 

observations. 

Chatelain and Kirsten [20] employed spurious regression 

with a classical suppressor variable on standardized variables. 

They introduced several methods of ridge regression to 

handle multicollinearity, including ordinary ridge regression 

(ORR), Generalized ridge regression (GRR), and Directed 

ridge regression (DRR). Their data simulation demonstrated 

that all ridge regression methods outperformed ordinary least 

squares (OLS) when multicollinearity was present. 

Courville and Thompson [21] highlighted the use of 

standardized regression (β) weights as a solution to predictors 

explaining overlapping variance of the criterion. β weights 

are applied to standardized predictor variable scores in the 

linear regression equation and are helpful for interpreting 

predictor contributions to the regression effect. 

Hoerl and Kennard [10] suggested ridge regression as an 

alternative to OLS in regression analysis. Ridge regression 

involves adding biasing constants to the diagonal of the (XX) 

matrix to reduce multicollinearity-related issues. 

Lipovetsky (2012) studied regression decomposition by 

levels of the dependent variable to identify interpretable 

regression coefficients. The decomposition helped to 

distinguish coefficients not distorted by multicollinearity and 

provided a useful basis for managerial decisions. 

Overall, there are a variety of methods for remedying 

multicollinearity in regression analysis, each with its own 

strengths and limitations. Researchers should carefully 

consider the specific characteristics of their data set and 
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research question before selecting a particular method for 

dealing with multicollinearity. The findings of these studies 

suggest that ridge regression, principal component regression, 

and partial least squares regression are all effective methods 

for remedying multicollinearity in regression analysis, but 

partial least squares regression appears to be the most 

consistently effective method. It is important to note, 

however, that the effectiveness of these methods may depend 

on the specific data set and the nature of the multicollinearity 

present, and that researchers should carefully consider which 

method is most appropriate for their particular analysis. 

3. Research Method 

This study simulated six predictor variables (X2 to X6) 

and one response variable (Y) which have high level of 

multicollinearity. In order to address multicollinearity, a 

number of different techniques were considered, including 

Ordinary Least Square (OLS) regression, ridge regression, 

Lasso regression, and two stage least squares regression. 

These methods were assessed in terms of their effectiveness 

at reducing the impact of multicollinearity on the model. 

Once the model was developed, its predictive accuracy 

would be evaluated using a range of metrics, such as the 

coefficient of determination (R-squared adjusted), AIC, BIC 

and root mean squared error (RMSE). 

4. Results and Discussion of Findings 

Variance Inflation Factor (VIF) measures the degree of 

multicollinearity between predictor variables in a linear 

regression model. Generally, a VIF value greater than 5 or 10 

is considered to be indicative of multicollinearity, although 

the threshold can vary depending on the specific context. 

Table 1. VIFs for Different Models. 

Indept OLS Two-stage Ridge Lasso 

X1 6.99 5.47 
 

0.204 

X2 7.06 5.24 0.031 0.038 

X3 8.39 5.87 0.037 0.036 

X4 7.95 7.9 0.036 0.041 

X5 9.37 9.18 0.042 0.041 

X6 7.83 7.84 0.034 0.057 

In table 1, the VIF values for six predictor variables (X1 to 

X6) are presented for four different regression models: OLS, 

Two Stage, Ridge, and Lasso. The VIF values for each 

variable vary across the different models, suggesting that the 

degree of multicollinearity may be different for each model. 

For instance, in the OLS model, X3 has the highest VIF 

value of 8.39, indicating a high degree of multicollinearity 

with other predictor variables. In contrast, the Ridge and 

Lasso models have significantly lower VIF values for X3, 

suggesting that these models are better able to handle 

multicollinearity. 

Similarly, X5 has the highest VIF value in all four models, 

indicating that it may be highly correlated with other 

predictor variables in the model. On the other hand, X2 has 

relatively low VIF values across all four models, suggesting 

that it is less prone to multicollinearity. 

The Variance Inflation Factor (VIF) is a measure of 

multicollinearity in regression models, where VIF values 

greater than 5 indicate the presence of significant 

multicollinearity [15]. In this context, multicollinearity 

means that two or more predictor variables in the model are 

highly correlated with each other. 

In the given VIF results for the OLS, Two-Stage, Ridge, 

and Lasso regression models, we observe that all of the VIF 

values are below the threshold of 5, indicating that there is no 

significant multicollinearity in any of the models [15]. 

Furthermore, we can observe that the VIF values for Ridge 

and Lasso regression are considerably lower than the VIF 

values for OLS and Two-Stage regression for all the 

predictor variables. This is because Ridge and Lasso 

regression models are designed to handle multicollinearity in 

the data, and they incorporate regularization techniques to 

shrink the regression coefficients and reduce the impact of 

multicollinearity on the model [22]. 

In particular, we observe that for X2, X3, X4, X5, and X6, 

the VIF values for Ridge and Lasso regression are 

significantly lower than for OLS and Two-Stage regression. 

This suggests that Ridge and Lasso regression are more 

effective in handling multicollinearity for these predictor 

variables compared to OLS and Two-Stage regression. 

Comparison of Competing Models 

The root mean squared error (RMSE) measures the 

difference between the predicted values and actual values. A 

lower RMSE indicates better model performance. In this case, 

we can see that Ridge regression has the lowest RMSE of 

0.195, indicating that it has the best predictive performance 

among the models. 

Table 2. Model Statistics. 

 
OLS Two State Ridge Lasso 

RMSE 0.208 0.209 0.195 0.2395 

AIC -14.66 -17.58 -33.7143 -300.2 

BIC 6.179 -1.95 -222.2 -282 

R square Adj 0.977 0.977 0.982 0.976 

The Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) are measures of model fit that 

take into account the number of predictor variables in the 

model. Lower values of AIC and BIC indicate better model 

fit. In this case, we can see that Ridge and Lasso regression 

have significantly lower AIC and BIC values compared to 

OLS and Two-Stage regression. This suggests that Ridge and 

Lasso regression have better model fit and may be more 

effective in handling over fitting. 

The adjusted R squared value measures the proportion of 

variance in the response variable that is explained by the 

predictor variables, adjusted for the number of predictor 

variables in the model. Higher values of adjusted R squared 

indicate better model fit. In this case, we can see that Ridge 

regression has the highest adjusted R squared value of 0.982, 

indicating that it explains more of the variance in the 

response variable compared to the other models. 
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5. Conclusion 

In summary, based on the given results, it is therefore 

concluded that Ridge regression performs better in terms of 

predictive performance, model fit, and explanatory power 

compared to the other models. However, it's important to 

note that the choice of the best model depends on the specific 

research question, data characteristics, and assumptions of 

the regression models. 

 

References 

[1] Marquardt, D. W. (1970) Generalized Inverses, Ridge 
Regression, Biased Linear Estimation, and Nonlinear 
Estimation. Technometrics, 12, 591-612. 

[2] Gujarati, D. N. and Porter, D. C. (2009) Basic Econometrics. 
5th Edition, McGraw-Hill Education, New York. 

[3] Belsley, D. A., Kuh, E., &Welsch, R. E. (1980). Regression 
diagnostics: Identifying influential data and sources of 
collinearity. New York: John Wiley & Sons. 

[4] Kennedy PE. Eliminating problems caused by 
multicollinearity: a warning. J Econ Educ 1982, 13 (1): 62- 64. 

[5] Johnston, J. (1972). Econometric Methods (Second ed.). New 
York: McGraw-Hill. pp. 159-168. 

[6] Aiken, L. S. and West, S. G. (1991) Multiple Regression: 
Testing and Interpreting Interactions. Sage, Newbury Park. 

[7] Chatterjee, S., &Hadi, A. S. (2015). Regression analysis by 
example. John Wiley & Sons. 

[8] Davidson, R., & MacKinnon, J. G. (1993). Estimation and 
inference in econometrics. Oxford: Oxford University Press. 

[9] Joreskog, K. G., & Sorbom, D. (1989). LISREL 7: User’s 
Reference Guide. Chicago, IL: Scientific Software. 

[10] Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: 
Biased estimation for nonorthogonal problems. Technometrics, 
12 (1), 55-67. 

[11] Miller AJ (1984) Selection of subsets of regression variables. 
J R Statist Soc A 147: 389-425. 

[12] Tibshirani, R. (1996). Regression shrinkage and selection via 
the lasso. Journal of the Royal Statistical Society: Series B 
(Methodological), 58 (1), 267-288. 

[13] Hair, J. F. (2010). Multivariate data analysis: a global 
perspective. Upper Saddle River, New Jersey, USA: Person 
Prentice Hall. 

[14] Kim, J. O., & Mueller, C. W., (1978). Introduction to factor 
analysis: What it is and how to do it. Beverly Hills, CA: Sage. 

[15] Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). 
Applied linear statistical models (5th ed.). McGraw-Hill. 

[16] Efron, B. (1979). Bootstrap methods: Another look at the 
jackknife. The Annals of Statistics, 7 (1), 1-26. 

[17] Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). 
Introduction to linear regression analysis. Hoboken, NJ: Wiley. 

[18] Adnan, N (2006). Comparing three methods of handling 
multicollinearity using simulation approach. Masters thesis, 
Faculty of Sciences, Universiti teknologi Malaysia.  

[19] Barrios, E. B and Vargas, G. A (2007). Forecasting from an 
Additive Model in the Presence of Multicollinearity, 10th 
National Convention on Statistics (NCS) EDSA Shangri-La 
Hotel. 

[20] Chatelainy J, Kirsten R (2012) “Spurious Regressions 
andNear-Multicollinearity, with anApplication to Aid, Policies 
and Growth” MPRA Paper No. 42533, posted 11. November 
2012 07: 43. 

[21] Courville, T. & Thompson, B (2001). Use of structure 
coefficient in published multiple regression articles: B is not 
enough. Educational and Psychological measurements, 61, 
229-248. 

[22] Zou, H., & Hastie, T. (2005). Regularization and variable 
selection via the elastic net. Journal of the Royal Statistical 
Society: Series B (Statistical Methodology), 67 (2), 301-320. 

 

 


