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Abstract: Age replacement strategies, where a unit is replaced upon failure or on reaching a predetermined age, whichever 

occurs first, provide simple and intuitively attractive replacement guidelines for technical units. Within theory of stochastic 

processes, the optimal preventive replacement age, in the sense of leading to minimal expected costs per unit of time when the 

strategy is used for a sequence of similar units over a long period of time, is derived by application of the renewal reward theorem. 

The mathematical solution to the problem of what is the optimal age for replacement is well known for the case when the 

parameter values of the underlying lifetime distributions are known with certainty. In actual practice, such is simply not the case. 

When these models are applied to solve real-world problems, the parameters are estimated and then treated as if they were the 

true values. The risk associated with using estimates rather than the true parameters is called estimation risk and is often ignored. 

When data are limited and (or) unreliable, estimation risk may be significant, and failure to incorporate it into the model design 

may lead to serious errors. Its explicit consideration is important since decision rules that are optimal in the absence of 

uncertainty need not even be approximately optimal in the presence of such uncertainty. In the present paper, for efficient 

optimization of statistical decisions under parametric uncertainty, the pivotal quantity averaging (PQA) approach is suggested. 

This approach represents a new simple and computationally attractive statistical technique based on the constructive use of the 

invariance principle in mathematical statistics. It allows one to carry out the transition from the original problem to the equivalent 

transformed problem (in terms of pivotal quantities and ancillary factors) via invariant embedding a sample statistic in the 

original problem. In this case, the statistical optimization of the equivalent transformed problem is carried out via ancillary 

factors. Unlike the Bayesian approach, the proposed approach is independent of the choice of priors. This approach allows one to 

eliminate unknown parameters from the problem and to find the better decision rules, which have smaller risk than any of the 

well-known decision rules. To illustrate the proposed approach, the numerical examples are given. 
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1. Introduction 

Attention to age replacement has predominantly been based 

on a classical operational research (OR) perspective, where 

the probability distribution for the lifetime of the unit is 

assumed to be known. Age replacement strategies for 

technical units describe that a unit is replaced preventively 

upon reaching age T, or correctively upon failure before T, 

where preventive replacements are typically less expensive 

than corrective replacements. The classical mathematical 

approach for determining the optimal replacement age is 

based on the renewal criterion, which implicitly assumes that 

the same replacement strategy is used over a very long period 

of time, consisting of many cycles, where one cycle is the 

period of random length between two consecutive 

replacements; see, for example, Barlow and Hunter [1], 

Barlow and Proschan [2, 3]. They discussed the problem of 

determining an optimal preventive replacement age T to 

minimize the long-run average expected cost per unit time 

over the infinite horizon (the average cost in short). Since then, 

this basic model has been generalized and modified by many 
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authors to handle more practical situations, as summarized in 

Ascher and Feingold [4], Nakagawa [5], and Valdez-Flores 

and Feldman [6]. In practice, this procedure is also used even 

though one realizes that the resulting optimal strategy may 

only be used for a few such cycles, for example, because the 

unit would normally undergo some technical updates within 

reasonable period of time, or one wishes to keep the option 

open to change the policy in light of new information that may 

occur during the process. 

It should be noted that Barlow and Hunter [1] considered 

only minimal repair and preventive replacement as 

maintenance activities. Minimal-repair and replacement are 

often used as practical maintenance activities of real 

reliability systems. A minimal repair is the maintenance 

activity to repair the failed system so that its function is 

recovered, without changing its age, while a replacement 

restores the entire system into the new condition so that it 

behaves as a new system. Further, replacement is classified 

into preventive replacement or failure (or corrective) 

replacement according as whether the system is in operation 

or in failure. Phelps [7] introduced failure replacement as a 

maintenance activity, and discussed an optimal maintenance 

problem with minimal repair and failure replacement under 

the average cost criterion (since it was assumed in this model 

that the required costs for preventive and failure 

replacements are equal, the system should be replaced only 

when it is failed). Tahara and Nishida [8] discussed the 

maintenance problem with both preventive replacement and 

failure replacement which have different costs. The above 

studies concern, in general, the classical age replacement 

model and its some modifications. 

2. Classical Age Replacement Model 

In the well-known classical model for age replacement 

(Barlow and Proschan [2, 3]), the failure time of the unit 

(component) is assumed to be an absolutely continuously 

distributed random variable X ≥ 0 with known probability 

distribution, with cumulative distribution function (cdf) F(x) = 

Pr(X ≤ x), probability density function (pdf) f(x), hazard rate 

h(x) = f(x)/(1 − F(x)), and expected value E(X). It is assumed 

that h(x) is monotonously strictly increasing, which is often 

considered to be a natural assumption for situations where age 

replacement may be cost effective (Barlow and Proschan [2, 

3]) To avoid mathematical complications, it is assumed that 

F(0) = 0, F(x) > 0 for all x > 0, and E(X) < ∞. 

The simple age replacement policy of replacing a 

component when it fails or at time T, whichever comes first, 

requires fixed costs c1 and c2 for replacing a failed and 

non-failed item, respectively, with c1 > c2 > 0. Let N1(t) and 

N2(t) denote the number of failed and non-failed units, 

respectively, which are replaced in (0, t]. The optimum age 

replacement interval, T
*
, is chosen so as to minimize the 

limiting expected cost per unit time, C(T) (Barlow and 

Proschan [2], Glasser [9], Scheaffer [10]), where  

1 1 2 2( ) lim { ( ) ( )} /
t

C T E c N t c N t t
→∞

= +  

1 1 2

0

( ) ( )
,

( )

T

c c c F T

F x dx

− −
=

∫
               (1) 

( ) 1 ( ).F x F x= −                  (2) 

It can be shown (Berg [11]) that if h(T) increases in T and if, 

1

1 2

lim  ( ) ,
( ) { }T

c
h T

c c E X→∞
>

−
           (3) 

then there exists a unique minimum of (1) and T
*
 is the unique 

solution of the optimality equation 

1

1 20

( ) ( ) ( ) .

T
c

h T F x dx F T
c c

+ =
−∫           (4) 

Conditions for the existence of a unique minimum are 

established and an equation characterizing the optimal policy 

and minimal average costs is derived.  

In this paper, for efficient optimization of statistical 

decisions (based on a past random sample of lifetimes) under 

parametric uncertainty, the pivotal quantity averaging (PQA) 

approach is suggested. This approach represents a simple and 

computationally attractive statistical technique based on the 

constructive use of the invariance principle in mathematical 

statistics. It allows one to carry out the transition from the 

original problem to the equivalent transformed problem (in 

terms of pivotal quantities and ancillary factors) via invariant 

embedding a sample statistic in the original problem 

(Nechval and Vasermanis [12]). In this case, the statistical 

optimization of the equivalent transformed problem is 

carried out via ancillary factors. Unlike the Bayesian 

approach, the proposed approach is independent of the 

choice of priors. It allows one to eliminate unknown 

parameters from the problem and to find the better decision 

rules, which have smaller risk than any of the well-known 

decision rules. 

3. Innovative Age Replacement Model  

In this paper, to handle more practical situations, an 

innovative model for age replacement is proposed. The costs 

included in the age replacement model are not assumed to be 

constants. 

Consider a unit (component) with a stochastic lifetime X 

with cdf Fθ (x) and pdf fθ (x), where θ is a parameter (in general, 

vector). It is assumed that fθ (x) is continuous in x. If one 

adopts a policy of replacing the unit either at failure 

('corrective replacement' at cost c1(τ−X)), or at some specified 

replacement ageτ ('preventive replacement' at cost c2(X−τ) > 

0), whichever occurs first, the cost pet unit is  
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τ τ
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τ τ
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            (5) 

where c1 and c2 are assumed to be known constants with c1 > 

c2 > 0, a logical requirement to make preventive replacement 

possibly worthwhile; while the usage per unit is 

( ) min( , ).t Xτ τ=               (6) 

The expected cost per unit is 
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θ θ

τ
τ τ
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while the expected usage per unit is 

0 0

( ) ( ) ( ) ( ) .T xf x dx f x dx F x dx

τ τ
θ θ θ θ

τ
τ τ

∞
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The performance index (objective function) of the 

innovative age replacement model is given by 
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It measures the effectiveness of a replacement policy over 

an unlimited time span, because it represents the long-run 

average cost per unit of time of utilization. 

Remark 1. If 

1

2

  if    < ,
( )

  if   ,

c X
c

c X

τ
τ

τ


=  ≥
            (10) 

then the performance index of the classical age replacement 

model takes place: 
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θ τ
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∫
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4. Optimization of Replacement Policy 

Under Complete Information 

4.1. Optimality Equation 

To obtain the optimality equation forτ, the performance 

index (9) will be differentiated with respect to τ and set equal 

to zero to provide the optimal value ofτ as follows: 

2
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By requiring this equation to be zero, the desired 

optimality equation for τ is obtained as 

2
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( ) ( ) { }.
c

F x dx F E X
c

τ
θ θ θτ τ= −∫        (13) 

This equation represents a necessary condition for the 

existence of an optimal solution, 

2
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If 

0

{ } ( ) ,E X F x dxθ θ
∞
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it follows from (13) that the optimal solution (14) exists and 

is unique. 

To make sure that the optimal solution (14) represents a 

minimum of (9), not a maximum, the second derivative of the 

performance index (9) is calculated and evaluated at τ = τ*
: 

2
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       (16) 

which is positive (i. e., (14) represents a minimum point of 

(9)), as desired. Thus, the following theorem has been 

proven.  

Theorem 1. Consider units (components) with a stochastic 

lifetime X with cdf Fθ (x) and pdf fθ(x), where θ is a parameter 

(in general, vector). It is assumed that fθ (x) is continuous in x. 

Then the optimal preventive replacement age, 

* ( )
arg min ( )

( )

C

T

θ
θ

τ θ

ττ τ
τ

 
= Λ = 
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representing a minimum point of the performance index Λθ(τ) 

of the innovative age replacement problem, exists and is 

unique if and only if Eθ{X}< ∞. 

4.2. Numerical Example 1 

Consider units with a stochastic lifetime X with  

~ EXP( ( , )),X θ µ σ=              (18) 

( ) 1 exp ,
x

F xθ
µ

σ
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−
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{ } ,E Xθ µ σ= +  2var{ } ,X σ=           (22) 

where σ > 0 is a scale parameter and µ is both a location and a 

threshold parameter. When µ = 0 one gets the well-known 

one-parameter exponential distribution. The aim is to 

determine an optimal preventive replacement age τ*
. Let us 

assume that 

µ=0, σ=2000, c1=1000, c2=100.        (23) 

It follows from (14) that the optimal preventive replacement 

age is given by 

2
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It follows from (9) that the minimal value of the 

performance index is  
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4.3. Numerical Example 1 (Continued) 

If 

µ=100, σ=2000, c1=1000, c2=100,       (26) 

then it follows from (14) that the optimal replacement age is 

given by 

2

1

arg ( ) ( ) { }
c

F x dx F E X
c

τ
θ θ θ

µ
τ τ τ∗

 
 = = −
  
 

∫  

2

1

arg exp 1 1
c

c

τ µ µτ σ
σ σ

  −   = = − − +           
 

1119.124.=                              (27) 

It follows from (9) that the minimal value of the 

performance index is equal to 
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5. Optimization of Replacement Policy 

Under Parametric Uncertainty  

5.1. Scale Family of Lifetime Distributions 

Consider a situation described by a scale family of 

probability distribution functions, indexed by a parameter σ,
 
 

( ) Pr( ) ( ),
x

F x X x F F zσ σ
 = ≤ = = 
 

 

0 ,x< < ∞                   (29) 

where σ  > 0 is a scale parameter, the distribution of Z = X /σ 

does not depend on any unknown parameter. Let X1, X2, …, Xn 

denote a random sample of component lifetimes, each 

possessing a distribution function (29) such that F(0) = 0 and 
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Eσ{X} is finite. It is assumed that the scale parameter is 

unknown, but there exists some statistic S = S(X1, X2, …, Xn ) 

such that, 

S
V

σ
=                      (30) 

represents a pivotal quantity whose distribution does not 

depend on any unknown parameter. In this case, the expected 

cost per unit (7) and the expected usage per unit (8) are 

transformed, respectively, as follows:  
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where  

S
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is an ancillary factor. Using the pivotal quantity averaging 

approach, one can obtain 
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Thus, the unknown parameter σ is eliminated from the 

problem. Now, an optimal statistical decision (based on 

pivotal quantity averaging) for a preventive replacement age is 

determined as 
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Comparison of statistical decisions. For comparison, a 

maximum likelihood estimate MLτ  of τ ∗  is determined as 
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where σ̂  is a maximum likelihood estimate of σ. In this case, 

the index of improvement percentage in effectiveness of a 

replacement policy of the pivotal quantity averaging approach 

as compared with the maximum likelihood approach is given 

by 
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5.2. Location-Scale Family of Lifetime Distributions 

Consider a situation described by a location-scale family of 

probability distribution functions, indexed by a parametric 

vector ( , ),θ µ σ=  

( ) Pr( ) ( ),
x
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where −∞ < µ < ∞ is a location parameter and σ > 0 is a scale 

parameter, the distribution of Z = (X – µ) /σ does not depend on 

any unknown parameters. Let X1, X2, …, Xn denote a random 

sample of component lifetimes, each possessing a distribution 

function (42) such that Eθ{X} is finite. It is assumed that the 

scale parameter is unknown, but there exists some statistic S = 

S(X1, X2, …, Xn ) = (S1, S2) such that  

1
1 ,

S
V

µ
σ
−

=  2
2

S
V

σ
=              (43) 

represent pivotal quantities with probability distributions that 

do not depend on any unknown parameter. In this case, the 

expected cost per unit (7) and the expected usage per unit (8) 

are transformed, respectively, as follows: 
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and 
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where  

1

2

S

S

τρ −
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is an ancillary factor. Using the pivotal quantity averaging 

approach, one can obtain 
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Thus, the unknown parametric vector θ is eliminated from 

the problem. Now, an optimal statistical decision (based on 

pivotal quantity averaging) for a preventive replacement age is 

determined as 

PQA PQA
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where 
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Comparison of statistical decisions. For comparison, a 

maximum likelihood estimate MLτ  of τ ∗  is determined as 

ˆML
ˆ

ˆ

( )
arg min ( )

( )

C

T

θ
θτ θ

τ
τ τ

τ
 
 = Λ =
 
 

 

ˆ ˆ1 2 1 2

0

ˆ

0

{ } ( ) ( )

arg min

( )

c c E X c c F x dx

F x dx

τ

θ θ

ττ
θ

τ
 
 + − +
 
 =
 
 
 
 

∫

∫

 

ˆ1 2
1 2

ˆ

0

{ }
arg min ( )

( )

c c E X
c c

F x dx

θ
ττ

θ

τ

 
 
 +
 = − +
 
 
 
 
∫

 

( ) 1 2
ˆ ˆ ˆ

10

arg ( ) ( ) { } ,
c

F F x dx E X
c

τ

θ θ θτ τ
− 

 = = −
 
 

∫   (52) 

where θ̂  is a maximum likelihood estimate of θ. In this case, 

the index of improvement percentage in effectiveness of a 

replacement policy of the pivotal quantity averaging approach 

as compared with the maximum likelihood approach is given by 
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where 
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5.3. Numerical Example 2 

One-parameter exponential distribution of lifetime. Let us 

assume that a unit's lifetime is represented by a random 

quantity 

~ ( ) 1 exp ,
x

X F xσ σ
 = − − 
 

           (55) 

where the parameter σ is unknown. The aim is to determine an 

optimal statistical decision for preventive replacement ageτ. 

Let X1, X2, …, Xn be a sample of independent and identically 

distributed random quantities from (55). It is known that the 

statistic 

1

n

i
i

S X

=
=∑                   (56) 

is sufficient for σ with the probability density function 
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where the pivotal quantity V=S/σ has the probability density 

function 

11
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n
f v v v

n
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If n=1, S=2000, c1=1000, c2=100, it follows from (38) that 
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where 

ML
ML 0.416221.

S
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Comparison of statistical decisions. Thus, the index of 

improvement percentage in effectiveness of a replacement 

policy of the pivotal quantity averaging approach as compared 

with the maximum likelihood approach is given by 

PQA ML
imp.per ( , )I τ τ  

ML PQA

ML

( ) ( )
100% 3.66%.

( )

ρ ρ
ρ

• •

•
Λ − Λ= =

Λ
      (65) 

6. Conclusion 

In this paper, an innovative age replacement model is 

proposed. It is suitable for situations where the costs included 

in the model are not assumed to be constants. For effective 

optimization of statistical decisions for age replacement 

problems under parametric uncertainty, the pivotal quantity 

averaging (PQA) approach is suggested. It represents a new 

simple and computationally attractive statistical technique 

based on the constructive use of the invariance principle in 

mathematical statistics. This technique allows one to eliminate 

unknown parameters from the problem and to find the better 

decision rules, which are more effective than any of the 

well-known decision rules. The methodology, which is 

suggested in this paper, may be found to be useful for the use 

in many industries with parametric uncertainty of underlying 

models to better manage the information that we already have. 

While the details of problems considered in the paper can 

change significantly from one industry to the next, the focus is 

always on making better statistical decisions and predictive 

inferences − and not manually with guess work and intuition − 

but rather scientifically with models and technology, all 

implemented with disciplined processes and systems. Thus, 

the paper focuses on the development and implementation of 

new methodologies and technologies that should help one to 

effectively solve many real practical problems.  
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