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Abstract: A Fourier-Bessel basis set in cylindrical coordinates is used to cast Maxwell’s wave equations into an eigenvalue 

problem from which the steady states of rotationally symmetric photonic structures can be determined.  The rotational 

symmetry of the structure significantly reduces the order of the matrix making an efficient computation process that can be 

accommodated by desk top computers running MATLAB ©. In addition the matrix can be tuned to a particular mode profile 

type such as monopoles, dipoles, … enabling the user to target the desired mode features in the computations. The technique 

is applied to solving for the states of three different photonic structures; 12-fold quasi-crystal, silicon ring resonator and 

photonic crystal fiber. The particular features of a modal state are easily obtained by examining the eigenvector. 
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1. Introduction 

Many photonic structures used in integrated optic 

devices display a rotational symmetry about a central 

reference point in a 2-D plane. The most notable of these 

are the photonic crystals[1] having 2, 3, 4 and 6 fold 

rotational symmetries, photonic quasi-crystal[2] which may 

have any rotational order and ring resonators[3] that have 

infinite rotational order.  When the structures are axially 

extended perpendicular to the plane they can be easily 

represented in cylindrical coordinates.  A uniform 

extension results in the traditional 2-D photonic crystals 

and photonic crystal fibers[4].  When the out of plane 

extension contains structure such as multiple layers, 

cavities can be formed such as for laser resonators, ring 

resonators and VCSELS.  The objective of this 

presentation is to present a numerical computation 

technique suitable for determining the in-plane centrally 

localized steady states which may contain an out of plane z 

directed wave-vector component.  The technique is based 

on expanding the fields, ����, �����, and the inverse of the 

dielectric, Ω 	 1 �� , using a set of orthogonal basis 

functions generated from the product of the lowest order 

Bessel functions, 
�, in the radial direction and complex 

exponential in the angular and azimuthal directions.  Due 

to the choice of a coordinate system that matches the 

in-plane rotational symmetry present, the resulting 

eigenvalue equation matrix order is significantly reduced 

and the solution process can be tuned to a particular mode 

type (monopoles, dipoles, quadrupoles, … ). The next 

section provides the key steps in obtaining the eigenvalue 

expression starting from the vector wave equations.  This 

is followed by a few numerical examples in which the 

steady states, ��� 	 0�, of a 2-D photonic quasi-crystal 

and 3-D ring resonator, and the propagated fields, ��� � 0�, for a microstructures photonic crystal fiber are 

obtained.The broad application base of the 3-D 

Fourier-Bessel technique presented can easily be 

implemented, complementing existing design and 

simulation software researcher tools and applied to a large 

number of cylindrically symmetric dielectric profiles. 

2. Eigenvalue Equation 

The wave equations are produced from Maxwell’s 

equations for non-magnetic medium free of charges and 

currents: 

������� ���� � ���� � ���� 	 ��� �� ���� , ���� � ������� ���� �  ���� 	 ��� ��   �����  (1) 

The eigenvalue equation is developed for ���� 	 �" #̂ %�&'( % ��)̂ .  Since both equations differ only by the 

placement of the relative dielectric, the electric field 

expression (in form) can be obtained from the magnetic 

field equation by setting derivative of the dielectric to 
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zero.The inverse dielectric and each field component are 

expanded in a cylindrical coordinate equivalent of a Fourier 

Bessel series: 

1��#�� 	 * 	 + ,-./01 
� �2-0
#3� 45.0&45670�

-./0
 

�8 	 ∑ ,-./:8 
� �2-: ";� 45.:&45�67:<=>��-./:         (2) 

In these expansions, ?  are the expansion coefficients, @AB  the expansion indices, C  the zeros of the Bessel 

function, DBE  the expansion spatial frequencies in the z 

direction only, FG the z directed propagation constant and H 

is the radius of the dielectric structure considered.The 

eigenvalue equation is obtained by introducing the 

expansion series into (1), working through all derivatives 

and then forming three equations, one for each of the 

coordinate unit vector directions.  The orthogonality of the 

basis functions is then made use and the resulting 

expressions can be written in matrix form[7]: 

I3" '" J"3& '& J&3� '� J�
K LRΦJ O 	 �PQ �R S LRΦJ O            (3) 

The column vectorLRΦJO, multiplied by the identity matrix 

S,is formed from the basis functions written in increasing 

index order and starting with the radial field block, R, 

followed by the angular block, Φand the azimuthal block, Z. These match up with the right hand field components of 

(1). The square matrix on the left of (3)has the radial field 

equation along the first row, angular field equation along 

the second row and azimuthal field equation along the third 

row. The subscript indicates the row designation.  Because 

of the double curl process, field components on the left side 

of (1) are rotated and the subscripts in the matrix elements 

represent which coupling that takes place.  The diagonal 

elements are the self-coupling terms and the off diagonal 

elements are the cross coupling terms.  The expressions 

for the elements in the square matrix are provided in 

Appendix A. 

2.1. Numerical Computation Process 

The eigenvalue equation (3) can be solved for the 

frequencies, U, using the eig() function in MATLAB©. The 

angular dielectric decomposition index, V1, has non-zero 

expansion coefficients which are an integer multiple of 

the dielectrics rotational symmetry.  Due the mixing of 

dielectric and field expansion series, the field index, V8, 
is linked to the dielectric index V1, through V8 % VΩ 	V8W (see Appendix A). For instance, if the dielectric has 

rotational symmetry of 12 in the 2-D plane, then: 

 V1 	 X0, Y12, Y24, Y36, … _.         (4) 

When searching for steady state solutions with pole 

order Q, the angular field indices are related through: 

V8 	   V1 Y `                (5) 
This relationship allows the original matrix to be 

segmented into individual steady state pole matrices and 

solved at a much reduced matrix order. 

3. Computation Examples 

3.1.Steady States 2-D 12-Fold Quasi-Crystal 

Fig. 1 shows the 12-fold quasi-crystal plotted in the �#, '� 

plane composed of circular air holes (black) in a silicon 

background (white).  Due to the 12-fold symmetry the expansion 

coefficients are restricted to the set given by (4) and since the 

structure is infinite in extent along the z-axis,a/0 	 X0_.The field 

components also have a/: 	 X0_ and V8 are related through (5).  

Fig. 2 shows the TM polarized eigen-wavelengths �b 	 PRcQ� in 

the 1 to 2 µm range computed using (3) for monopoles and for 

dipoles.  The expansion indices used areXd, V, e_ 	 X150, Y90,1_. 

Note that (3) returns as many eigenvalues as there are basis 

functions used in the expansions.  Examination of the dominant 

field expansion coefficients in the eigenvector enables the steady 

state to be classified as TM or TE. When dipoles or higher mode 

orders are solved for the eigen-frequency solutions show up in 

pairs due to the CW and CCW degeneracy.  Three monopole 

mode �� field profiles (intensity in grey scale) are plotted in the 

insert of Fig. 2.  

 

Figure 1. 12-fold quasi-crystal air hole pattern in silicon (h" 	 12.1104�. 

radius of the structure is 2.5 µm. 

 

Figure 2. TM polarized states obtained from (3) in the 1 to 2 µm range for 

monopoles (+) and dipoles (X).  Two of the monopoles and a dipole field 

profiles are plotted, obtained using the eigenvector associated with the 

corresponding eigen-wavelength.  
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3.2. 3-D Ring Waveguide Modes 

Fig. 3 shows the 3-D representation of the silicon ring 

waveguide considered.  The waveguide has a 0.25 by 0.50 

µm rectangular cross-section and an inner edge radius of 2 

µm. The expansion indices used areXd, V, e_ 	 X50,1, Y20_.  

The eigenmatrix (3) was solved for a mode with rotational 

symmetry of 20 and 24.  Fig. 4 shows three highly confined 

modes, wavelength 1.311 µm (radial dipole, rotational order 

24), wavelength 1.390 µm(radial dipole, rotational order 20) 

and wavelength 1.444 µm (radial monopole, rotational order 

20). These profiles are reconstructed from their eigenvectors 

and plotted in the �#, j, 0� plane.  These modes are typical 

of modes observed in ring waveguides using other numerical 

and experimental techniques. 

 

Figure 3. 3-D representation of the ring resonator examined using the 

Fourier-Bessel mode solving technique.  

 

Figure 4. Three highly confined modes of the ring resonator determined for 

mode rotational order 24 (λ = 1.311 µm, left) and rotational order 20 

(λ=1.390 µm, center, λ=1.444 µm right).  

3.3. Waveguide Modes of 16-fold Perfect Periodic 

Photonic Quasi-Crystal Fiber 

The �#, '� plane dielectric profile of the photonic crystal 

fiber having equal periodicity in the angular and radial 

direction is shown in Fig. 5.  The term perfect periodic 

photonic quasi-crystal relates to the dual equal periodicity.  

In the �#, '� polar space, over the extent of the dielectric a 

lattice and basis can be defined in a similar way to 

translational periodic crystals.  The central ring of holes is 

masked out with silicon as these holes would be poorly 

defined when the structure is discretized. 

The propagated modes of the fiber can be obtained by 

solving (3) with the �� propagation constant as parameter 

and for the particular mode profile of interest.Fig. 6 shows 

the plot of mode wavelength versus z-axis propagation 

constant for the field profiles dominated by the �� field 

component and of the monopole class.  Centrally localized 

states can be determined by reconstructing the field using 

the eigenvectors. Two of these are shown in the insert and 

for �� 	 0 the mode lines start at 1.590 µm and 1.012 µm.  

The plot also shows a mode with rotational order 16 also 

solved in the monopole class. This plot and the 

reconstruction of the field profiles indicate that the 

Fourier-Bessel eigen-matrix approach can be used to 

extract information on guided modes for highly micro 

structured fibers.The larger than normal number of mode 

lines displayed results from the technique solving for all 

modes of a particular mode rotational order.  These 

include the usual centrally localized states and the surface 

states and the boundary states.  Examination of the 

eigenvector efficiently sorts the modes into either category. 

 

Figure 5. 16-fold perfect-periodic photonic quasi-crystal.  Structure has 

16-fold rotational symmetry and periodicity of 16 in the radial direction up 

to the 2.5 µm radial boundary. 

  

Figure 6.Plot of mode wavelength obtained from (3) verse z-axis 

propagation constant for the monopole solutions.  Mode lines are observed 

and three of the centrally localized field profiles are plotted from the 

eigenvectors. 

4. Conclusion 

A Fourier-Bessel mode solving technique was developed 

in cylindrical coordinate space where Maxwell’s wave 

equation is configured into an eigenvalue problem.  The 

rotational symmetry of the dielectric profile about the 

cylinder axis enables the eigenmatrix to be significantly 

reduced in order making the computation of the steady states 

a computational efficient process.  In addition the 

eigenmatrix is tuned to solve for a particular mode order 

such as monopoles, dipoles, …,and through an examination 

of the eigenvectors, the dominant polarization and field 

localization were obtained. The computation process was 

highlighted for three different photonic structures.  Steady 
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states of a 12-fold quasi-crystal were determined for 

monopoles and dipoles and the field profiles plotted for 

highly localized central states as well as a less localized 

surface state.  The rotational mode orders of 20 and 24 were 

obtained for a 3-D silicon ring resonator.  The final 

application of the technique demonstrates that modes of 

photonic crystal fibers can be determined when the z-axis 

propagation constant is included in the eigenmatrix 

construction.  The technique presented here is suitable for 

structures that present in-plane rotational symmetry about a 

central point and directly returns the steady states.  Such a 

computation technique complements nicely the plane-wave 

method for determining band structures in translationally 

symmetric structures. 
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Appendix A 

The nine equations of the matrix elements of (3) are:   

3" 	 N + ,l,Ω �mVlVΩ % V"Rnopq�d", dΩ, d"W�
"Ω % ra/sa/Ω % a/s Rt3Roq�d", dΩ, d"W�� 

'" 	  N + ,&,Ωu�VΩ % V&� vopq�d& , dΩ, d"W� w �2-x� y��d& , dΩ, d"W�z
&Ω

 

J" 	 { + ,|,Ω�wu2-}3��a/Ω % a/}�
�Ω

yq�d�, dΩ, d"W� 

3& 	 { + κrκΩr‐jqrS‐1�pr,pΩ,pφ*�‐jqrρpry��d", d1, d&W�
rΩ w uV"2-0���d", d1 , d&W�t 

'& 	 { + ,&,1�R ��a/xa/0 % a/xR % 2-xR
�R � oq�d& , d1, d&W�

&1 % 1�R opq�d& , d1, d&W� % �2-0�R � ���d& , d1 , d&W�
% �w 2-x2-0�R � �q�d& , d1, d&W�� 

J& 	 { + ,�,1��wV�a/0 w V�a/>�
�1

o��d& , d1 , d&W� 

3� 	 { + ,",13R ��ua/�� � o��d" , dΩ, d�W� % �w ua/�2-�� � yq�d", dΩ, d�W�
"1 % �w ua/�2-0� � �q�d", d1 , d�W�� 

'� 	 { + ,&,1� �wa/xV1 w a/xV&� o��d& , dΩ, d�W�
&1

 

J� 	 { + ,�,1 v2R->oq�d�, dΩ, d�W� %  �V�V1 % V�R�opq�d�, dΩ, d�W�
�1 w �2->2-0��q�d�, d1, d�W�t 

Were the factor { 	 �R�
v������sW�z�  if V8 % VΩ 	 V8W  and 

e8 % eΩ 	 e8W (�  indicates a particular field component) 

or zero otherwise. Within these expressions the �o, y, �, �� 

are integrals involving the Bessel function obtained when 

applying the orthogonality condition and are: 

oq�d", dΩ, d"W� 	 � 
��2-�b��
��2-Ωb��
��2-sWb��b� b�q
�  

o��d" , dΩ, d�W� 	 � 
��2-�b��
��2-Ωb��
��2-}Wb�� b�q
�  

opq�d", dΩ, d"W� 	 � 1b� 
��2-�b��
��2-Ωb��
��2-sWb�� b�q
�  

yq�d�, dΩ, d"W� 	 � 
q�2->b��
��2-Ωb��
��2-sWb��b� b�q
�  

y��d& , dΩ, d"W� 	 � 
q �2-xb�� 
��2-Ωb��
��2-sWb�� b�q
�  

�q�d", d1 , d�W� 	 � 
��2-�b��
q�2-0b��
��2->W b��b� b�q
�  

���d", d1 , d&W� 	 � 
��2-�b��
q�2-0b��
� �2-xWb��  b�q
�  

�q�d�, d1, d�W� 	 � 
q�2->b��
q�2-0b��
��2->W b��b¡ b�q
�  

Note: It is common to use 
¢ instead of 
� in the basis 

function expansion.  The use of 
¢ results in an 

unmanageablelarge set of integrals of the �o, y, �, �� type, 

one set for each order £.  The use of 
� provides a finite 

set.  These integrals are calculated once and used for all 

computations for any optical structure. 
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