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Abstract: This paper examined chromium transport through dispersion and storage coefficient influences. The study has 

monitored the deposition of chromium in silty and fine sand formation. The developed model expressed the behaviour of 

chromium in the study location, storage coefficient and dispersions of chromium were examined through the behaviour of 

chromium transport in silty and fine sand formation, the behaviour were expressed through graphical representation, the 

fluctuation on concentration reflect the influences from porosity variation thus dispersion and storage coefficient. This 

generated slight accumulation of chromium deposition in silty and fine sand formation, this condition was examined through 

the rate of chromium deposition; some fluctuations were experienced from the experimental values for model validation. The 

heterogeneous settings in the formation were also observed, the developed model was compared with other experimental 

values, and both parameters expressed favourable fits validating the model. 
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1. Introduction 

For several years experts in different dimension has 

been developed various sources of heavy metal, more soil 

were examined to deposited over a billion individual cells 

and estimation of 104–105 distinct genomes per gram of 

soil [15, 18, 19 and 23], it is observed that bacteria in soil 

are the reservoirs for much of Earth’s genetic biodiversity. 

This vast phylogenetic and efficient diversity can be 

attributed to the dynamic physical and chemical 

heterogeneity of soil, the results has express spatial and 

temporal separation of microorganisms including chemical 

constituents [8-10]. More so it is observed from high 

diversity of carbon (C) – rich compounds in soils, it has 

been observed that the ability of each taxon to compete for 

only a subset of resources could also contribute to the high 

diversity of bacteria including chemicals of natural origin 

in soils through resource partitioning [9-11, and 13]. 

Indeed, [10, 14 and 17] this were thoroughly express 

through distinct substrate preferences by broad microbial 

groups in grassland soils relating it to natural chemical 

deposition and C resource partitioning it, such condition 

demonstrate some key that contribute patterning of 

bacterial co-existence in model communities on plant 

surfaces [7, 12-13, and 14]. The development of high-

throughput tools to evaluate the composition of soil 

bacterial communities is rapidly contributing to an 

enhanced perceptive of bacterial diversity and 

biogeographically distribution [4-6, and 11]. However, our 

ability to evaluate the purpose of different bacterial taxa 

has not reserved pace [15 - 16]. There are some limits in 

defining the consequences shifting community in response 
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to environmental change [1-3, and 16]. Numerous 

concepts applied to monitor the trace of the bacteria for 

this reason, the application of tracer molecules such as 

stable-isotopes and the thymidineanalog, 3-

bromodeoxyuridine (BrdU), have been widely accept. 

Effort to connect phylogeny to function will be easier 

through this process. Stable-isotopes, particularly the 

heavy carbon isotope 13C, have been regularly applied to 

recognize microbial community members capable of 

catabolizing particular substrates [17-21, and 23]. This 

method requires separation of nucleic acids based on 

buoyant density, so high concentrations of isotopically 

labeled substrate are needed. This approach was first 

applied to the study of bacterial populations over a decade 

ago [21-22] and it has since been used to categorize soil 

bacterial taxa that respond to various environmental 

stimuli [2-3 and 6]. Recently, BrdU incorporation has 

been shown to detect a broad diversity of bacterial phyla 

in marine system [4-8 and 19] [and fungal taxa in 

temperate [13, 22] (and boreal forest soils [5-8 and 20]. 

2. Theoretical Background 

The behaviour of chromium in the soil has been observed 

by experts in different dimension, the rate of migration in 

soil and water environment are monitored through various 

way under the influences of flow in the soil through various 

formation characteristics, the study of storage coefficient 

including dispersion of chromium in Phreatic bed 

influencing it transport process has not been thoroughly 

expressed. This implies that the migration of the chromium 

through these sources has not been evaluated from this 

study, the rate of dispersions of the chromium are through 

these flows, these are base on the fluctuation rate on its 

permeation of the formation between the lithology in the 

study area. 

3. Governing Equation 
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Subject equation (16) for the following boundary conditions 
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4. Materials and Method 

Standard laboratory experiment where performed to 

monitor the concentration of chromium depositions 

indifferent formation, applying AAS to monitor various rates 

of concentration in different strata, the soil strata were 

collected in sequences base on the structural deposition at 

different locations, this samples collected at different location 

generated variation at different depth producing different 

migration of chromium concentration through pressure flow 

at different strata, the experimental result are applied to be 

compared with the theoretical values to determined the 

validation of the model. 

5. Result and Discussion 

Results and discussion are presented in tables including 

graphical representation of chromium concentration 

 
Figure 1. Concentration of chromium at Different Depth. 

 
Figure 2. Predicted and Validate Concentration of chromium at Different Depth. 
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Figure 3. Concentration of chromium at Different Depth. 

 
Figure 4. Predicted and Validate Concentration of chromium at Different Depth. 

 
Figure 5. Concentration of chromium at Different Depth. 
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Figure 6. Predicted and Validate Concentration of chromium at Different Depth. 

 
Figure 7. Concentration of chromium at Different Depth. 

 
Figure 8. Predicted and Validate Concentration of chromium at Different Depth. 
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Table 1. Concentration of chromium at Different Depth. 

Depth [M] chromium Concentration 

3 1.13E-05 

6 2.20E-05 

9 3.31E-05 

12 4.41E-06 

15 5.51E-06 

18 6.62E-06 

21 7.72E-07 

24 8.82E-07 

27 9.93E-07 

30 1.10E-08 

33 1.21E-08 

36 1.32E-08 

39 1.43E-08 

Table 2. Predicted and Validate Concentration of chromium at Different 

Depth. 

Depth [M] Predictive Values Experimental Values 

3 1.13E-05 1.10E-05 

6 2.20E-05 2.21E-05 

9 3.31E-05 3.34E-05 

12 4.41E-06 4.48E-06 

15 5.51E-06 5.66E-06 

18 6.62E-06 6.74E-06 

21 7.72E-07 7.44E-07 

24 8.82E-07 8.85E-07 

27 9.93E-07 9.88E-07 

30 1.10E-08 1.21E-08 

33 1.21E-08 1.31E-08 

36 1.32E-08 1.42E-08 

39 1.43E-08 1.52E-08 

Table 3. Concentration of chromium at Different Depth. 

Time Per Day chromium Concentration 

10 1.54E-03 

20 3.00E-03 

30 4.41E-03 

40 6.18E-03 

50 7.72E-03 

60 9.27E-02 

70 1.01E-02 

80 1.24E-02 

90 1.39E-02 

100 1.54E-02 

110 1.69E-02 

120 1.85E-02 

130 2.00E-02 

140 2.16E-02 

Table 4. Predicted and Validate Concentration of chromium at Different 

Depth. 

Time Per Day Predictive Values Experimental Values 

10 1.54E-03 1.64E-03 

20 3.00E-03 3.04E-03 

30 4.41E-03 4.24E-03 

40 6.18E-03 6.09E-03 

50 7.72E-03 7.54E-03 

60 9.27E-02 9.54E-02 

Time Per Day Predictive Values Experimental Values 

70 1.01E-02 1.12E-02 

80 1.24E-02 1.31E-02 

90 1.39E-02 1.45E-02 

100 1.54E-02 1.66E-02 

110 1.69E-02 1.74E-02 

120 1.85E-02 1.78E-02 

130 2.00E-02 2.05E-02 

140 2.16E-02 2.21E-02 

Table 5. Concentration of chromium at Different Depth. 

Depth [M] chromium Concentration 

3 2.62E-05 

6 5.25E-05 

9 7.88E-05 

12 1.05E-05 

15 1.31E-04 

18 1.51E-04 

21 1.83E-04 

24 2.10E-04 

27 2.36E-06 

30 2.62E-06 

33 2.89E-06 

36 3.15E-06 

39 3.41E-06 

42 3.67E-06 

Table 6. Predicted and Validate Concentration of chromium at Different 

Depth. 

Depth [M] Predictive Values Experimental Values 

3 2.62E-05 2.65E-05 

6 5.25E-05 5.34E-05 

9 7.88E-05 8.24E-05 

12 1.05E-05 1.27E-05 

15 1.31E-04 1.28E-04 

18 1.51E-04 1.31E-04 

21 1.83E-04 1.70E-04 

24 2.10E-04 2.35E-04 

27 2.36E-06 2.28E-06 

30 2.62E-06 2.69E-06 

33 2.89E-06 2.86E-06 

36 3.15E-06 3.23E-06 

39 3.41E-06 3.50E-06 

42 3.67E-06 3.77E-06 

Table 7. Concentration of Chromium at Different Depth. 

Depth [M] Chromium Concentration 

3 7.65E-03 

6 1.53E-03 

9 2.30E-03 

12 3.06E-03 

15 3.83E-06 

18 4.59E-06 

21 5.31E-06 

24 6.12E-07 

27 6.89E-07 

30 7.65E-07 

33 8.45E-07 

36 9.19E-08 

39 9.96E-08 

42 1.07E-08 

45 1.15E-08 
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The study has show the behaviour of the system through 

graphical representation expressing the behaviour of the 

chromium. The figures show the level of transport at 

different concentration. Figure one to four expresses the 

migration system under fluctuation phase, it implies that the 

deposition maintained high concentration at three metres to 

the lowest at thirty nine metres, these also express the rate 

of depositions in various strata structured in the study area, 

the concentration of chromium were observed to develop 

rapid heterogeneity on migration process within figure one 

and two, these increase are with respect to change in depth 

base on the transport system, it is influenced by the 

variation of the heterogeneity in porosity, such porous 

medium were observed to influences the migration rate of 

chromium concentration in the study area, while figure 

three maintained similar condition like one and two, 

fluctuation were observed with the optimum values 

recorded at sixty days. These developments increase the 

rate of concentration, because if the fluid velocity decreases 

its accumulation it definitely will reflect on the fluctuation 

increase in concentration; these conditions were 

experiences from figure one to four. While figure five and 

six maintained similar experiences, migration process 

observed fluctuation where the optimum values were 

recorded at twenty seven metres, but with different rate of 

concentration in the formation, figure seven and eight 

express it in physical process from high to low 

concentration, this can be attributed to slight deposition of 

inhibitors including rate of heterogeneity from degree of 

porosity between those strata. But slight increment of 

concentration were observed in figure seven and eight, the 

variation from porosity level and deposition of inhibitors 

were found to reflect on the concentration rate of chromium 

in these figures, their transport rate maintained fluctuation 

phase with increase in concentration from change in depth 

and time, their behaviour observed in this condition are 

base on the rate of inhibition and variations observed from 

increase rate of porosity in the formation, the transport of 

chromium were observed through these developed 

simulated values, the comparative analysis between 

predictive and experimental values generated best fits 

validating the developed model for chromium transport. 

6. Conclusion 

The study defined the behaviour of chromium in silty and 

fine sand formation, the study discuses the heterogeneity in 

various rate of concentration under the influences of porosity 

variation on its rate of deposition. The variation and inhibition 

observed in the transport process are reflected on  the 

deposition of chromium in the study area. the migration rate of 

chromium has expresses its behaviour deposited on silty and 

fine sand formation, the developed model were to monitor the 

rate of concentration through its fluctuation phase expressed in 

graphical representation, the vacillation of the chromium in the 

strata shows the rate of influences from the stated parameters, 

the developed model were compared with experimental values, 

both parameters developed favourable fits, the behaviour of 

chromium has been expressed thoroughly through the 

developed model simulation values, the transport system in 

silty and fine sand formation has express the refection of slight 

immobile velocity generating slight fluctuation and 

accumulation in the study area. 
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