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Abstract: In cells, molecules do not arbitrarily interact with others; interact only with molecules of a particular type. This 

molecular recognition is a very important molecular function as one of the molecular bases on which the cells sustain their 

lives. Recently, it has been found that molecular recognition, which occurs not only between protein and protein but also 

between RNA and protein, plays important roles in the cell. Understanding of the molecular recognition at the atomic level is 

one of the challenging problems in the field of molecular biology and biochemistry. In this review, we address the theoretical 

and practical aspects of molecular dynamics simulation, which has become an important tool for studying the molecular 

recognition. From the theoretical viewpoint, many free energy calculation methods based on statistical mechanics have been 

developed. As for the practical aspects, it is important that the evolution of the computing technique not only enabled long-time 

simulations, but also enhanced prediction accuracy of simulations with developing new reliable force fields. By the recent 

development of theory and technology, the challenging tasks such as analysis and prediction of conformational distribution, 

structural change, and free energy of protein and/or nucleic acid systems are becoming possible. 
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1. Introduction 

Many types of molecules are present in a cell and the 

function of the cells is expressed by their interaction. 

However, molecules do not arbitrarily interact with others but 

only with molecules of a particular type [1]. Due to this 

molecular recognition, the cells can perform the orderly 

biological activity with maintaining the interaction network. 

Thus, this molecular recognition is a very important 

molecular function as one of the molecular bases on which 

the cells express their functions. Recently, it has been found 

that molecular recognition, which occurs not only between 

protein and protein but also between RNA and protein, plays 

an important role in the cell [2].  

Understanding of molecular recognition at the atomic level 

is one of the challenging problems in the field of molecular 

biology and biochemistry. To quantify the molecular 

recognition, the binding free energy is the most important 

physical quantity. In addition to the interaction energy 

calculated from given structures, the binding free energy is 

also affected by the entropy involving dynamic effects. 

Therefore, in order to understand the molecular recognition 

at the atomic level, it is important to describe the dynamics of 

wandering through various conformations as well as to 

precisely describe a particular conformation of biomolecules. 

As an important tool for such analyses, molecular dynamics 

(MD) simulation is expected to be a promising one. This 

review addresses the theoretical and practical aspects of MD 

simulation related to analysis of molecular recognition. From 

the theoretical point of view, many free energy calculation 

methods based on the theory of statistical mechanics have 

been developed. As for the technical aspects, the evolution of 

the computing technique not only enabled long-time 

simulations, but also higher accuracy of the force field, 
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which inherently improves the prediction of the physical 

quantity. It is essential to reproduce and analyze the 

long-time scale structural change dynamics of protein 

associated with the molecular recognition. 

The evolution of MD simulation technology is also 

expected to accelerate the drug development process in the 

near future [3]. Currently, a number of software programs 

developed for drug design include the function of 

approximate calculation of the binding free energy, according 

to which drug candidates are selected from many compounds. 

These approximate calculation methods utilize only one 

structure of the protein (in most cases, a crystal structure), 

while the effect of dynamic structural changes of a protein in 

water (in particular, those related to entropy) is not taken into 

account. Furthermore, water molecules are not explicitly 

considered, either. With these approximations, the free 

energy calculation becomes simple and fast enough to 

analyze many compounds even with a personal computer. 

However, such binding free energy predictions often have 

large errors. Therefore, as a new technology for the next 

generation, we expect to apply the all-atom MD simulation 

technique to the drug design. In the all-atom MD simulation, 

not only the target proteins and/or compounds, but also water 

molecules and salts are described at the atomic level and the 

behavior of the system is naturally reproduced on the 

computer. This point is a crucial difference from the free 

energy evaluation methods involved in the conventional drug 

design software. 

The use pattern of MD calculations can be roughly 

categorized into two. Firstly the MD simulation is used as a 

"high-resolution microscope." The MD simulation can visualize 

the behavior of atoms, which cannot be observed directly in the 

experiments. Recently, Shaw et al. [4] developed a 

special-purpose computer “Anton” capable of nearly 

millisecond-scale MD simulation, and incidentally the computer 

is named after Antonie van Leeuwenhoek, who paved the way 

for microbial research by improving the microscope. The second 

type of usage is that to obtain information of a virtual system 

that does not exist in reality. The value of the information about 

a system non-existent in reality is mainly a more efficient 

calculation of physical quantities. To estimate the binding free 

energy by the normal MD simulation, interminably long 

simulation is required to sample events of binding and 

dissociation between the molecule and the protein. For example, 

since the dissociation rate constant of HIV protease and the 

inhibitor saquinavir is in the order of 10
-4

 s
-1

 [5], the dissociation 

process cannot be reproduced by MD simulation even with the 

latest supercomputer. However, by taking advantage of the 

information of a virtual system (in the case of MP-CAFEE 

calculations performed in our studies), the binding free energy 

can be accurately obtained from the information of ca. 1 µs in 

total. 

In the next section, several important theories fundamental 

to the second usage are explained and addressed. There is a 

long history of theoretical constructions for coupling virtual 

system calculations and free energy, and new theories for 

improvement still continue to be proposed. The topic is not 

simply to establish statistical mechanics theories by making 

connection between motions of virtual systems and free 

energy via mathematical formulae, but statistical sampling 

efficiency is also important to predict how accurate physical 

quantities can be obtained from a limited calculation. In the 

third section, we discuss the first usage to understand the 

structural change dynamics of biomolecules, which is often 

essential to the molecular recognition. Currently, by 

increasing the accuracy of the MD simulation via the 

development of novel force fields as well as the advancement 

of computing power, it has become possible to reproduce 

slow structural changes of biological molecules. Based on 

several examples, we will discuss what insight can be 

extracted from the MD simulation. Finally, we provide 

concluding remarks in Section 4. 

2. Theories of Free Energy Calculation 

2.1. Alchemical Free Energy Calculation Method 

The term "alchemical free energy calculation method" [6, 7] 

often appears in many scientific articles in these years. This is 

a collective term of the thermodynamic integration (TI) 

method, the free energy perturbation (FEP) method, etc., and 

the word “alchemical” implies the use of an imaginary state as 

discussed above. 

As an example, let us consider the process of annihilating 

the interaction of a ligand in aqueous solution. By dividing the 

Hamiltonian H of the aqueous system dissolving one ligand 

into the term V expressing the interaction of the ligand with 

other molecules and the other term H0, a scaling parameter λ is 

introduced into the former. 

0
H H Vλ λ= +                 (1) 

Obviously, when λ = 1, Hλ becomes the Hamiltonian H of 

the real system. When, on the other hand, λ = 0, the ligand 

disappears from the original system, corresponding to a state 

without any interaction, i.e., to a state of an isolated ligand, 

such as in the gas phase. Thus, the change of λ from 1 to 0 

corresponds to the state change: 

( ) ( )L aq L gas→                 (2) 

Here, L denotes the ligand, and aq and gas mean aqueous 

solution state and gas phase state, respectively. The change in 

free energy associated with the reverse state change is called 

solvation free energy. 

A computer simulation enables the free energy calculation 

by changing the parameter λ adequately. In reality, however, 

there is no intermediate state corresponding to λ = 0.5. Thus, 

one of the great advantages of the computer science is that it 

can investigate systems that do not exist in reality to derive a 

physical property of the real system. 

To calculate the binding free energy between a ligand and a 

protein, similarly to the above example, the scaling parameter 

λ is introduced into the interaction term relative to the ligand 

in the total Hamiltonian representing the ligand-protein 
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complex system in aqueous solution. When λ = 1, Hλ 

represents the ligand-protein complex system in aqueous 

solution. On the other hand, when λ = 0, Hλ corresponds to the 

state where only protein remains in the aqueous solution and, 

separately, the ligand is in the state of a gas phase. Therefore, a 

change of λ from 1 to 0 corresponds to the state change of the 

system: 

( ) ( ) ( )PL aq P aq L gas→ +         (3) 

Subtracting Eq. (2) from Eq. (3),  

( ) ( ) ( )PL aq P aq L aq→ +          (4) 

is obtained. This equation represents the transition from the 

binding state to the dissociated state in solution. The 

corresponding free energy change is referred to as binding free 

energy. Thus, the binding free energy can be calculated as the 

difference between the free energy change of Eq. (3) and the 

free energy change of Eq. (2). In this binding free energy 

calculation, the free energy calculation corresponding to 

annihilation of the ligand is carried out twice, and therefore 

this method is called double annihilation [8]. 

In the following section, detailed explanation is given about 

how to calculate the free energy change due to state changes 

according to Eqs. (2) or (3). 

2.2. Thermodynamic Integration Method 

First of all, we explained the TI method [9]. Here, in an 

equation similar to Hamiltonian of Eq. (1) 

0
(1 )H H Vλ λ= + − ,            (5) 

the transition of λ from state 0 to state 1 is assumed. Although 

Eq. (5) is essentially the same as Eq. (1), but the difference 

from Eq. (1) is that interaction is fully included when λ = 0 and 

disappears when λ = 1. Here, the free energy difference can be 

written as: 

1

1 0
0

F
F F F dλ

λ λ λ
λ= =

∂
∆ = − =

∂∫         (6) 

On the other hand, the free energy and Hamiltonian can be 

linked by the relational expression: 

ln exp[ ( ) / ]B BF k T d H k Tλ λζ ζ= − −∫     (7) 

Here, kB is the Boltzmann constant, T is the temperature, 

and ζ=(q,p) are phase space coordinates (positions and 

momenta of all particles). In combination with Eq. (6), the 

following equation is obtained: 

1

0

exp[ / ]

exp[ / ]

B

B

H
d H k T

F d
d H k T

λ
λ

λ

ζ
λλ

ζ

∂ −
∂∆ =

−

∫
∫

∫
 

1

0
     

H
d λ

λ

λ
λ

∂
=

∂∫                       (8) 

This is the fundamental equation of the TI method. Here, <..> 

λ denotes the ensemble average in the equilibrium state of the 

system governed by the Hamiltonian Hλ. 

As a simple idea to actually calculate Eq. (8), considering λ 

as a function of time, MD simulation can be carried out, 

through the following equation: 

0

ft Hd
F dt

dt

λλ
λ

∂
∆ =

∂∫               (9) 

while changing the λ from 0 to 1 monotonically. This is so 

called slow growth method. However, in order to make the 

calculation of formula (8) with Eq. (9), it is required to 

maintain equilibrium at each time and sufficient sampling 

must be performed before λ substantially changes. In 

particular, the case when the former condition is not satisfied 

is referred to as Hamiltonian lag problem [10]. 

There is also the method of integrating Eq. (8) numerically 

by discretizing the parameter λ. Here, for simplicity, 

equidistant discretization is performed. Thus,  

i

i
i i

H
F

λ

λ

λ
λ

∂
∆ = ∆

∂∑  

can be obtained. To obtain 

i

i
i

Hλ

λ
λ

∂
∂ , 

one just need to perform MD calculation (or Monte Carlo 

calculation) of the system with a Hamiltonian Hλi and to 

average 

i

i

Hλ

λ
∂
∂

 

over the sampled coordinates. It may be a difficult issue to 

sufficiently equilibrate the system and sufficiently converge 

the ensemble average in each λi. 

2.3. Free Energy Perturbation Method 

Formally, the free energy difference of two states can be 

described more directly. The basic equation for FEP method 

has been derived by Zwanzig [11] in 1954. In the Hamiltonian 

system governed by Eq. (1), the free energy of the system with 

λ = 1 can be expressed as follows: 

1 ln exp[ / ]B BF k T d H k Tλ ζ= = − −∫  

0ln exp[ ( ) / ]B Bk T d H V k Tζ= − − +∫  

0

0

0

/

//

/
ln

B

BB

B

H k T

H k TV k T

B H k T

e d
k T e e d

e d

ζ
ζ

ζ

−
−−

−

 
 = −
 
 

∫
∫

∫
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0

0

0

//

/

/
ln

BB

B

B

H k TV k T

H k T

B H k T

e e d
k T e d

e d

ζ
ζ

ζ

−−
−

−

 
 = −
 
 

∫
∫

∫
 

( )0 0
ln exp /B BF k T V k Tλ λ= =

= − −            (10) 

Thus, the free energy difference can be written as 

1 0
F F Fλ λ= =∆ = −  

( )
0

ln exp /B Bk T V k T
λ=

= − − .      (11) 

This is the basic equation of the FEP method. In general, the 

free energy difference from system A to system B can be 

calculated by the ensemble average in the system A: 

( )ln exp /AB B AB B A
F k T V k T∆ = − −∆ .     (12) 

Here, ∆VAB is the difference between the potential energy of 

the system A and system B in the same particle arrangement. 

Note that no approximation is contained at the stage of Eq. 

(12). 

While in Eq. (8), the basic equation of the TI method, the 

free energy difference is calculated as an integral with respect 

to continuous change of the parameter λ, it is directly 

calculated only from the sampling in system A in Eq. (12). 

However, such a primitive FEP calculation rarely provides 

an accurate prediction of free energy difference. One of the 

reasons for this is the ensemble average of the exponential 

function in Eq. (12). In principle, an accurate free energy value 

should be obtained if the structures were sampled infinitely; in 

reality, the calculation must be performed with finite samples. 

This is an interesting and fascinating point of molecular 

simulation not encountered in the pure theoretical science. If 

the distribution of ∆VAB is broad, only the low-energy side tail 

determines the free energy. In other words, most of the ∆VAB to 

be sampled in the molecular simulation do not play a dominant 

role in the free energy calculation. Therefore, the majority of 

∆VAB important in the calculation of the free energy is not, or 

cannot be, sampled in the real MD simulation. To accurately 

calculate the free energy by the FEP method, in order to 

diminish the distribution of ∆VAB, it is necessary to calculate 

by dividing the λ into small steps. 

For a high temperature state (|∆VAB/kBT| << 1), Zwanzig 

also derived an approximate equation based on the second 

order perturbation expansion, 

22

2

AB AB AA

AB AB A
B

V V
F V

k T

∆ − ∆
∆ = ∆ − .     (13) 

Although the average of exponential function disappears, it 

is still necessary to discretize the change of λ into small steps 

for the accurate free energy calculation because of the strong 

constraint of |∆VAB/kBT| << 1. Although Eq. (12) is exact, one 

may need to add more ingenuity to the calculation process for 

accurate free energy calculation with finite samples. 

2.4. Jarzynski Equality 

In 1997, Jarzynski has proposed an equation (Jarzynski 

equality) [12] which connects works of nonequilibrium 

processes to the free energy difference. It is highly interesting 

that this equation allows us to understand the TI and FEP 

methods systematically through the concept of “work”. (Note 

that the following proof of Jarzynski equality is basically the 

same as in Ref. [13].) 

Jarzynski equality assumes a situation where a system of 

interest is coupled with a heat bath while the entire system is 

isolated. Here, the system of interest represented by Eq. (1) is 

in contact with a heat bath having a Hamiltonian HB (η). η is 

the phase space coordinates of the heat bath. The total system 

(= system + heat bath) is isolated and the Hamiltonian can be 

given by 

int
( ) ( ) ( ) ( ; )tot

B
H H H Vλ λ ζ η ζ ηΓ = + + .    (14) 

Here, Vint represents the interaction between the system and 

the heat bath, Γ = (ζ, η). The whole system is assumed to reach 

thermal equilibrium in the initial state. Since the partition 

function of the total system is 

( )exp ( ) /tot tot

BY d H k Tλ λ= Γ − Γ∫ ,     (15) 

the appearance probability of a phase space point Γ in the 

initial state (λ = 0) is 

0 ( )/

0
( ) /

tot
BH k T totP e Yλ

λ
=− Γ

=Γ = .        (16) 

For this initial condition, increasing the parameter λ 

monotonically as a function of time, the work is done on the 

system. (Here, λ = 0 at t = 0 and λ = 1 at t = τ.) The change in 

internal energy of the system for this work is represented as 

1 0 0
0

( ) ( )
H H

H H dt
τ λ λ

τζ ζ λ ζ
λ ζ

 ∂ ∂
− = + ∂ ∂ 

∫ ɺ ɺ .   (17) 

Here, ζt is the coordinate ζ of the system at time t and 

represents a single path for the time evolution in accordance 

with equation of motion of the system starting from ζ0. 

Assuming the work done on the system as 

0

H
W dt

τ λλ
λ

∂
=

∂∫ ɺ ,             (18) 

the heat absorbed by the system is 

0

H
Q dt

τ λζ
ζ

∂
≡

∂∫ ɺ .             (19) 

These equations define W and Q only in dynamical 

operation of a partial system, but Eq. (17) can be still regarded 

as the first law of thermodynamics. The change in internal 

energy of the total system is 
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1 0 0
0

( ) ( )
tot tot

tot tot H H
H H dt

τ λ λ
τ λ

λ
 ∂ ∂

Γ − Γ = + Γ ∂ ∂Γ 
∫ ɺ ɺ  

0

H
dt W

τ λλ
λ

∂
= =

∂∫ ɺ ,           (20) 

which is equal to the work done on the system of interest. 

Since the partial differential in Γ becomes zero according to 

Liouville theorem for an isolated system and the 

λ-dependence of the Hamiltonian of the total system is solely 

the λ-dependence of the Hamiltonian of the system of interest, 

Eq. (20) can be derived. 

Since in the initial state the total system has a distribution of 

the thermal equilibrium state, the average of the exponential 

function of the work is: 

( )/

0 0 0
0

( )exp ( ) /BW k T

Be d P W k T
λ

−

=
= Γ Γ − Γ∫  

( )0 0( )/

0 0

0

exp ( ) /
tot

BH k T

B

tot

d e W k T

Y

− ΓΓ − Γ
= ∫  

1 0
0

//

0

0

tot tot
tot

B
B

H H k TH k T

tot

d e e

Y

 − −−  Γ
= ∫  

1 /

0

0

( / )
tot

BH k T

tot

d d d e

Y

τ τ
−Γ Γ Γ

= ∫  

1 /

1

0 0

tot
BH k T tot

tot tot

d e Y

Y Y

τ
−Γ

= =∫ ,           (21) 

indicating the ratio of the partition function in the initial state 

to that in the final state of the total system. Importantly, Eq. 

(21) is derived independently of whether the system of interest 

or the total system remains in equilibrium at time τ. Also, this 

equation is independent of the time evolution of the parameter 

λ. In Eq. (21), terms from lines 1 to 2 are obtained by only 

substituting the definition of formula (16). W(Γ0) explicitly 

expresses that the work depends on the initial conditions. 

From lines 2 to 3, Eq. (20) is used. In line 4, the Γ0 integral is 

replaced with Γτ integral with using the fact that the Jacobian 

dΓ0/dΓτ is 1 in accordance with the Liouville theorem for an 

isolated system. 

On the other hand, in an equilibrium state of the total 

system, the probability that the system is found in ζ is 

int( )/

*
exp[ ( ) / ]

( )

B BH V k T

B

tot

H k T d e
P

Y

λ

λ

ζ η
ζ

− +−
= ∫

 

*exp[ ( ) / ]

/

B

tot

B

H k T

Y Z

λ

λ

ζ−
= .               (22) 

Here, note that 

int( )/

*

/
( ) ( ) ln

B B

B B

H V k T

B H k T

d e
H H k T

d e
λ λ

η
ζ ζ

η

− +

−
≡ − ∫

∫
  (23) 

exp[ / ]B B BZ d H k Tη≡ −∫ .          (24) 

Here, the denominator of the second term of Eq. (23) is 

introduced so as to obtain Hλ
*
=Hλ when Vint=0. The partition 

function corresponding to Eq. (22), assuming 

* *
exp[ / ]BZ d H k Tλ λζ≡ −∫ ,          (25) 

can be written as 

*tot

B
Y Z Zλ λ= .                   (26) 

Because ZB is independent of λ, Eq. (21) can be rewritten 

as: 

*
/ 1 1

*0
0 0

B

tot
W k T

tot

Y Z
e

Y Zλ

−

=
= = .           (27) 

Furthermore, since in the limit of Vint=0, Eq. (25) takes the 

form of 

exp[ / ]BZ d H k Tλ λζ= −∫ ,        (28) 

the free energy difference of the system of interest can be 

represented as 

1 0 1 0
ln( / )

B
F F F k T Z Z∆ = − = − .      (29) 

Consequently, Eq. (27) is obtained: 

/ /

0

B BW k T F k T
e e

λ
− −∆

=
= .           (30) 

This Eq. (30) is the Jarzynski equality. It is important that 

any approximation is excluded in this derivation and Eq. (30) 

is an exactly established theoretical formula. Even if work is 

carried out in a nonequilibrium process, it is related to the free 

energy difference between two equilibrium states.  

In the case λ varies in a quasi-static process, Eq. (30) 

becomes 

/

0
ln BW k T

BF k T e
λ

−

=
∆ = −  

0( ) /

0 0ln ( )BW k T

Bk T d e P
− Γ= − Γ Γ∫  

/

0 0ln ( )BW k T

Bk T e d P
−= − Γ Γ∫  

1

0

H
W d λ

λ

λ
λ

∂
= =

∂∫ .          (31) 

Once trying to write explicitly the ensemble average as in 

the second line, Γ0-dependence on W disappears in a 

quasi-static process and can be written as in line 3. Then, it is 

straightforward to obtain line 4, which is the same as Eq. (8), 
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the basic formula of the TI method, indicating that the 

Jarzynski equality (30) encompasses the TI method. 

In the case of adiabatic change with infinitely rapid change 

of λ, the process is completed instantaneously, and the work is 

simply equal to the difference of Hamiltonian difference (W = 

V = ∆H = H1-H0). Thus, Eq. (30) can be rewritten as 

/

0
ln BV k T

BF k T e
λ

−

=
∆ = − .           (32) 

This is identical with the basic equation of the FEP method 

[Eq. (11)]. While the proof of Zwanzig only associates the free 

energy difference between the two states with the difference of 

the Hamiltonian mathematically, the proof using the Jarzynski 

equality associates the free energy difference with the physical 

processes under the adiabatic and non-equilibrium condition. 

The Jarzynski equality provides a comprehensive 

understanding of the TI method and FEP method, although the 

basic equation of the TI method looks just different from that 

of the FEP method. The two methods correspond to the two 

opposite limits of physical processes; the TI method implies 

quasi-static change, whereas an instantaneous adiabatic 

change is considered in the FEP method. Although both the 

methods are correct from a pure theoretical viewpoint, it is 

important to consider which one is capable to efficiently 

provide the accurate free energy prediction with limited 

computer resources from the viewpoint of computational 

science. In this context, one key would be to consider whether 

the molecular simulation reproduces the physical process 

underlying the free energy calculation. It may be more 

difficult to simulate a quasi-static process accurately in 

computer than to reproduce an instantaneous adiabatic 

transition. Therefore, it seems easier to properly perform the 

FEP calculation than the primitive TI calculation through MD 

simulation. In the case of the slow growth method, the 

problem of Hamiltonian lag [10] occurs frequently. This 

indicates that the equilibration of the system cannot follow the 

changes of λ in the simulation and the quasi-static process 

assumed in the theory is not completely realized. Therefore, it 

should be difficult to obtain the accurate free energy 

prediction by using the MD simulation inducing the 

Hamiltonian lag. 

2.5. Bennett Acceptance Ratio Method 

The Jarzynski equality derives the free energy difference 

from the work associated with the transition from state 0 to 

state 1. However, the reverse transition from the state 1 to 0 

also exists in principle. The Bennett acceptance ratio (BAR) 

method [14] takes advantage of the information of transitions 

in both directions aiming at improving the accuracy. (Not 

written explicitly in the original paper of Bennett, but this 

would be the spirit of the BAR method. In the derivation of 

Shirts et al., to be introduced later [15], this can be seen more 

clearly.) 

In Bennett’s paper, the basic equation is derived by 

minimizing the error of the free energy difference to be 

calculated. First, the free energy change associated with the 

transition from state 0 to state 1 can be written as: 

1

0

/

/
ln

B

B

H k T

B H k T

d e
F k T

d e

ζ

ζ

−

−
∆ = − ∫

∫
 

0 11

0 0 1

( )//

/ ( )/

( )
ln

( )

BB

B B

H H k TH k T

B H k T H H k T

d e d w e
k T

d e d w e

ζ ζ ζ

ζ ζ ζ

− +−

− − +
= − ∫ ∫

∫ ∫
 

1

0

/

0

/

1

ln

B

B

H k T

B H k T

we
k T

we

−

−
= −  

0 1/ /

01
ln lnB BH k T H k T

B B
k T we k T we

− −= − . (33) 

As shown by line 3 and 4, sampling is assumed both in state 

0 and state 1. Here, w(ζ) is a weighting function, which will be 

determined later to minimize the square of the difference 

between the statistically estimated value ∆Fest and the true 

value ∆F (variance).  

The true average of wexp(-H0/kBT) for the ensemble of λ = 1 

is denoted by m1, and then the first term of the last line in Eq. 

(33) becomes 

0 /
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B
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Here, s1 is a normalized deviation from m1. Then, the 

variance of wexp(-H0/kBT) is  

0 0
2

2 / /2 2

1
1 1
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From the above, when taking n1 samples of the λ = 1 

ensemble, the variance of Eq. (34) is (kBT)
2
σ1

2
/m1

2
n1  

according to the central limit theorem. The same discussion is 

valid for the second term of the last line in Eq. (33). Hence, the 

assessment function for determining the w is as follows: 
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The optimal function w is obtained by minimizing the 

numerator of the first term, while the denominator is kept 

constant. With introducing the Lagrange undetermined 

multiplier Λ corresponding to this constraint, the variation of 

w leads to 
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Then, Eq. (33) can be rewritten as: 
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Here, 

0 1
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lnB
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=                (39) 

and the function f is the Fermi distribution function: 

( ) 1/ (1 )xf x e= + .             (40) 

By eliminating Z1/Z0 with Eq. (38) and Eq. (39), the 

following equation is obtained: 

1 0 0 1
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C is obtained by determining the intersection of the two 

curves corresponding to the left-side function and right-side 

function with respect to C. The free energy change can be 

directly determined from Eq. (39): 

1

0

lnB

n
F C k T

n
∆ = −            (42) 

Shirts et al. [15] re-formulated the BAR method as a 

maximum likelihood estimation (MLE), which clarifies the 

spirit of this method. The starting point of their derivation is 

the Crooks equation [16],  
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It should be noted that the Crooks equation assumes that the 

time evolution of the system is discrete and the dynamics are 

Markovian. In Eq. (43), PF(W) and PR(W) mean the 

probabilities that the work W is done in the forward (F) and 

reverse (R) transitions, respectively. Here, PF(W) = P(W|F) 

can be regarded as a conditional probability that the work W is 

done when the non-equilibrium transition is forward. 

Similarly, PR(-W) = P(W|R) can be regarded as a conditional 

probability that the work -W is done when the non-equilibrium 

transition is reverse. Note that in the conditional probability 

form the sign of work is defined in the forward transition. 

Because 
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is obtained, Eq. (43) can be rewritten as 
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Here, M=kBTln(nF/nR), where nF and nR are the numbers of 

samples of forward transitions and reverse transition, 

respectively. Therefore, when one work W is obtained, the 

probabilities of receiving it from forward transition and 

reverse transition are 
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respectively. Therefore, the probability that given works of Wi 

(i=1.. nF) are obtained from forward transitions and the works 

of Wj (j=1.. nR) from reverse transition is written as: 
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with using ∆F as a parameter. The most likely value of ∆F is 

obtained by maximizing the likelihood function, Eq. (47). 

Here, lnL is maximized, but not L. Then, from the stationary 

condition,  

ln
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one obtain 
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When the work W is done in the instantaneous adiabatic 

transition, W = ∆V. Then, Eq. (49) becomes identical to Eq. 

(41). In the BAR method, ∆F is given as the most likely value. 

In the case of an extreme condition of nF>>nR, Eq. (49) can 

be rewritten as 
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Thus, one obtain 

/ /B BW k T F k T

F
e e

− −∆= .           (51) 

The basic formula of the BAR method encompasses the 

exponential function average (Jarzynski equality), Eq. (51). In 

the instantaneous adiabatic process, Eq. (51) becomes 
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equivalent to the FEP method [Eq. (11)], and the original 

Bennett’s formula [Eq. (41)] encompasses the FEP method. 

At the beginning of this subsection, we intuitively mentioned 

that the advantage of the BAR method is to utilize the works 

both for forward and reverse transitions. In fact, the ratio nF/nR 

greatly affects the accuracy. As shown in Fig. 2 of Bennett’s 

original paper [14], the free energy calculation becomes most 

stable and precise, where nF/nR ≈1. However, the computational 

cost for the calculation of the transitions in both the two 

directions is not much higher than the cost of calculating 

one-way transition. This is because in performing the MD 

simulations for λ = λi, not only the work for the transition to the 

state of λ = λi+1 (W = ∆V), but also the work for the transition to 

the state of λ = λi-1 can be calculated simultaneously. Thus, both 

from the computational and theoretical viewpoints, we can 

consider that the BAR method is more advantageous than the 

exponential function averaging method. 

2.6. Discussion 

In this paper, we have discussed the TI method, the FEP 

method and the BAR method as important theoretical 

foundations of the free energy calculation. Interestingly, these 

methods can be interpreted as the relation between the free 

energy difference and works associated with state transitions. 

For example, whereas Zwanzig’s derivation of the FEP 

method is simply mathematical, the Jarzynski equality can 

lead to the FEP equation as an exponential function average of 

work done in instantaneous adiabatic transition. On the other 

hand, for the quasi-static process, the Jarzynski equality 

provides the TI method. Also, the Crooks equation leads to the 

BAR method, which claims that the free energy difference can 

be obtained via the MLE evaluation of the set of works in 

forward and reverse transitions. In the case of sampling 

forward transitions extremely more, the BAR method 

becomes equivalent to the exponential function average. 

As described above, it is very important to consider what 

physical scenario is hypothesized in the calculation method. If 

the physical scenario is not reproduced in the MD simulation, 

the accuracy of the free energy difference prediction should be 

low. Therefore, in estimating the binding free energy in an 

actual drug design process, it is important to carefully check 

whether the physical scenario is reproduced or not. 

In fact, it is often observed that an MD simulation is not 

carried out in the expected way. For example, the problem of 

Hamiltonian lag frequently experienced in the slow growth 

method is an issue due to MD simulation breaking the 

quasi-static process assumed in the slow growth method. 

When Hamiltonian lag occurs, the prediction of free energy 

change will not be reliable.  

Similar phenomenon appears also in the calculation of the 

free energy landscape (PMF, potential of mean force) [17]. We 

investigated the free energy profile of an antigen-antibody 

system along the dissociation pathway obtained via steered MD 

(SMD) method and found that the dissociation free energy 

change is largely dependent on the dissociation route. The fact 

that the dissociation pathway had a higher free energy change 

than another dissociation pathway indicates that the former 

pathway lead the system to a metastable state instead of an 

equilibrium dissociation state, meaning that the internal 

structure of the proteins should become distorted. Although it 

was assumed that the SMD method naturally dissociate the 

antigen-antibody complex, the dissociation pathway is deviated 

from a natural dissociation pathway in the actual SMD 

calculations because the separation speed is artificially fast. 

To avoid this problem, the multi-step targeted MD (mTMD) 

method has been developed to determine a dissociation 

pathway with fixing the internal structure. Along the 

dissociation pathway derived with the mTMD method, the 

free energy change was significantly lower than that along the 

SMD dissociation pathway [17]. Moreover, the free energy 

difference among the pathways obtained by the mTMD 

method was much smaller, indicating that the free energy 

calculations became stable. For the hen egg white lysozyme 

(HEL)-HyHEL-10 system, the free energy change calculated 

with the mTMD method was consistent with the experimental 

results, which indicated the N32
L
D mutation of the antibody 

(HyHEL-10) was successfully reproduced. (Fig. 1) Evaluation 

of the antigen-antibody interaction is still one of the difficult 

problems, and therefore the methodological development and 

improvement continue to be active. 

 

Figure 1. (a) Structure of HEL-HyHEL-10 complex. Cyan and orange 

ribbons represent HEL and HyHEL-10, respectively. (b) PMFs with respect to 

distance between the centers of mass of HEL and HyHEL-10. Experimental 

values are the binding free energies, which are closely related to the PMFs. 

See Ref. [17] for details. 
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Recently, we tried to apply an accurate MD-based free 

energy calculation method, called MP-CAFEE method [18], 

to the actual drug development process. The MP-CAFEE 

method employs most appropriate methods and parameters 

from various viewpoints (e.g., the BAR method with 

appropriate λ points). In fact, the calculation accuracy 

reported so far was very high. For example, for MUP-I (Fig. 2), 

the calculated binding free energies were -9.0 and -8.2 

kcal/mol with IBMP and IPMP, respectively, which were in 

good agreement with the experimental values (-9.2 and -8.1 

kcal/mol, respectively) [19]. Furthermore, the decomposition 

analysis showed that this difference is mainly due to the van 

der Waals (vdW) interactions of MUP-I and the ligand. 

(∆GvdW = -9.1 and -8.3 kcal/mol for IBMP and IPMP, 

respectively.) 

 

Figure 2. (a) Structure of MUP-I. Ribbon is MUP-I and red balls are 

3-Isobutyl-2-methoxy pyrazine (IBMP). (b) IBMP. (c) 2-isopropyl-3-methoxy 

pyrazine (IPMP). 

In the MP-CAFEE method, to calculate the binding free 

energy for a single compound, 768 MD trajectories are 

required. Because in the drug design it is necessary to 

calculate binding free energies of a number of compounds, the 

application of MP-CAFEE method requires huge 

computational resources. In fact, by utilizing the K computer 

of RIKEN with the world's first 10 PFlops operation 

performance, the application has become possible [19, 20]. 

While the free energy calculation theories are important for 

the reliable prediction, as discussed above, the accuracy of the 

force field [19, 21, 22] is also of particular importance. 

Whatever free energy calculation method we utilize, sampling 

must be conducted in the correct equilibrium state. However, 

the long MD simulations with an inaccurate force field, could 

possibly lead the system to an odd structure. In addition, it 

may be possible that the quantum effects become important. It 

was found that the quantum effect cannot be neglected even 

for heavy atoms [23-25]. Thus, these should be carefully 

investigated in the future. 

3. Molecular Dynamics Simulations of 
Protein and RNA 

In this paper, we discuss the dynamics of biomolecules that 

can be observed through the latest MD simulation technology. 

The improvement of MD calculation technology plays an 

important role not only in the free energy calculations but also 

in the “high-resolution microscopy”, where the observed 

dynamics should be essential to the understanding of the 

molecular recognition. In this section, we focus on the 

achievements of the MD simulation as a “high-resolution 

microscope”. Due to the recent evolution of computer, it 

becomes easy to investigate dynamics of a small protein with 

MD simulation. However, there remain many problems in the 

study of protein complexes and non-protein biomolecules. In 

the following, after discussion about the predictability of the 

dynamics and structure distribution in several short peptide 

systems, we will discuss the structural changes of the 

antigen-antibody complex as an example of the analysis of 

protein complexes. Because new functions of RNA were 

recently discovered [2], the dynamics of RNA or RNA-protein 

complex systems becomes an important issue. In the last of 

this section, we will investigate short RNAs with MD 

simulation to see the problem in the RNA dynamics. 

3.1. Short Peptides 

For short peptides, it becomes possible to reproduce the 

native structure (or conformational distribution) accurately 

with the current MD calculation technique. For example, 

Shaw et al. [26] observed that proteins consisting of up to 80 

amino acid residues folded correctly in long MD simulations 

starting from some unfolded states. For chignolin, consisting 

of 10 amino acids, we also succeeded to reproduce the folding 

in a MD simulation (Fig. 3). These results indicate that the 

folding phenomenon can be simulated with the current 

all-atom level model, if chaperone, which assists protein 

folding, is not involved in the real folding. 

 

Figure 3. Folding of chignolin. Distance between Cα atoms of the terminal 

Gly residues (G1 and G10) is shown as a function of time. 
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The Ala dipeptide (Fig. 4) is not folded into a specific 

conformation, but is often utilized to examine the model and 

calculation method as a minimum unit of peptide. In particular, 

since the conformational distribution was measured by the 

spectroscopic techniques [27], it can also be used to verify the 

accuracy of the force field. The conformational distribution 

obtained in the MD simulation significantly depends on the 

employed force field [19]. While for many force fields the 

distribution of α-type conformation is overestimated, it agrees 

well with experimental results (Table 1) for the FUJI force 

field [28], of which the main-chain dihedral parameters are 

improved based on the high-level electronic state calculation. 

This means that even with the same function form, the update 

of the parameters can improve the force field. (Note that the 

FUJI force field was employed in all of the MD simulations 

below, unless otherwise stated.) 

 

Figure 4. Ala dipeptide. 

Table 1. Conformational distribution of Ala dipeptide (in percentage). 

 αR β PII Others 

FUJIa 5.9 ± 0.2 22.6 ± 0.2 70.6 ± 0.5 0.8 ± 0.4 

ff94a 86.7 ± 1.3 3.0 ± 0.5 9.5 ± 1.0 0.7 ± 0.3 

ff99a 88.0 ± 0.6 6.2 ± 0.4 1.9 ± 0.0 3.8 ± 0.3 

ff99SBa 26.4 ± 0.5 27.7 ± 0.6 44.0 ± 0.3 1.8 ± 1.0 

ff03a 42.0 ± 2.0 19.6 ± 1.0 37.3 ± 1.2 1.1 ± 0.1 

IRb 11 29 60 --- 

Ramanb 9 29 62 --- 

a The values were taken from Ref. [19]. b The experimental values were taken 

from Ref. [27]. 

The influence of the side chain may not be negligible even 

if the peptide is not folded. To see the side chain effect, MD 

simulation was performed for three capped tetra-peptides 

(YYY, FFF, and WWW) [29]. Since the residue Y as well as F 

and W has a 6-membered carbon ring in the side chain, we 

characterize the peptide structure with the distance between 

the centers of mass of the 6-membered carbon rings of the first 

residue and the second residue. For all the three peptides, there 

are low peaks at ~0.5 nm (Fig. 5). This corresponds to 

structures formed by direct interaction between the 

6-membered rings, but not a predominant peak. At the 

dominant peak ~0.8 nm for each peptide, the first residue and 

the second residue do not interact directly. Because the peaks 

for all the peptides are similar to one another, they should be 

mainly affected by the dihedral interaction of the main chain. 

The slight shift of the WWW peak is due to the fact that the 

6-membered rings are farther from the main chain than those 

of FFF and YYY. In this sense, the interaction effects between 

adjacent side chains do not seem so relevant. 

 

Figure 5. (a) YYY. (b) FFF. (c) WWW. (d) Distribution of distance between the 

first and second six-membered rings. To sample the structural data, five 900 

ns MD simulations were conducted for each peptide. 

However, when looking into more detail, the right wing (~ 

0.9 nm) of the FFF peak is larger than that of YYY. This is due 

to the effect of OH groups of YYY, which probably involves 

the third residue. Moreover, the YYY peptide has a small peak 

around 0.45 nm that cannot be seen in WWW or FFF. This 

peak should correspond to the formation of the direct 

hydrogen bond between Y1 and Y2. Thus, we can consider 

that the structural distribution of the peptide chain is 

influenced by the sequence of amino acid residues, even if a 

secondary structure is not formed. Such a point of view will be 

important to understand the function of the intrinsically 

disordered protein [30] at the atomic level. 

3.2. Antigen-Antibody Complexes 

Although the MD simulation of a simple single protein has 

become relatively easy, that of a system consisting of several 

proteins is still very challenging. The difficulty of the protein 

complex simulation arises not only in the fact that longer time 
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scale is required, but also in the absence of skillful techniques 

to characterize a protein-protein interface. 

One example of the protein complexes is an antibody bound to 

a protein antigen, where the structure of antigen-antibody 

interface is considered to be important for the antigen-recognition 

of the antibody. The antigen-recognition of the antibody not only 

plays an important role in the immune system, but also becomes a 

technology for treating intractable diseases such as cancer [31]. 

Therefore, the understanding of the interfacial effect exerts a 

spreading effect on a wide range of fields. 

B2212A is an antibody that recognizes the Fn3 domain of 

ROBO1, which is specifically expressed in human 

hepatocellular carcinoma and is a potential therapeutic target 

[32]. The X-ray crystallography revealed considerable 

conformational changes of Y50
L
 of B2212A on binding the 

Fn3 domain (Fig. 6). As a result of structural change, the 

hydroxyl group of Y50
L
 forms a hydrogen bond to the main 

chain oxygen of F68 of Fn3, whereby the antigen-antibody 

interaction is enhanced. In fact, the MD simulation and 

thermodynamic analysis confirmed that Y50
L
A mutation 

significantly decreased the antigen-antibody interaction 

energy (or the binding enthalpy). It was found by the MD 

simulation that this mutation not only leads to a direct effect of 

losing hydrogen bonding, but also causes non-negligible 

indirect impact on the binding free energy through subtle 

adjustment of the interface. 

 

Figure 6. ROBO1 Fn3 domain-B2212A Fv complex. Light-colored sticks 

represent the Y50L conformation in the ROBO1-binding state, while the blue 

sticks represent the conformation in the free state. 

In contrast, no apparent structural change of the 

HEL-antibody, HyHEL-10, is observed when it binds to HEL 

(Fig. 1a). However, there is a possibility that the antibody 

surface in contact with the antigen should have different 

structure and fluctuation from that in contact with bulk water. 

To investigate systematically the differences in the structure 

and fluctuation, we proposed to use the directional analysis of 

dihedral angles of the main chain [33]. Although the 

fluctuation in the Cartesian coordinates can be investigated 

with the root mean square fluctuation (RMSF) method, it is 

difficult to determine the meaningful average structure and to 

specify the internal coordinates that affect the RMSF. The 

directional analysis of the main chain dihedral angle, which 

overcomes the periodicity problem, enables to calculate the 

average and fluctuation of dihedral angle systematically. In the 

directional analysis, the average and variance of the angle 

property are defined as: 

( )

AVE, 1

1
arg n

N i k

n k
e

N

ϑϑ
=

 =  
 
∑            (52) 

( ) ( )

1

1
var 1 n

N i k

n k
e

N

ϑϑ
=

= − ∑            (53) 

Here, ϑn is a Ramachandran angle (φ or ψ) of the nth residue 

and k is the index of the sample and we analyzed the 150–210 

ns time region of six MD trajectories for each state. ∆(property) 

= (property of HEL-bound antibody) − (property of free 

antibody) is calculated to evaluate the difference. In this study, 

we focus on a part of light chain (from S28
L
 to Y36

L
). (See 

Table 2.) In the RMSF analysis, the fluctuation of N32
L
, N31

L
 

and G30
L
 is diminished by the direct contact with its antigen, 

while the fluctuation of N31
L
 and G30

L
 is significantly 

decreased also in directional analysis of the ψ and φ angles. 

However, the correlation between the RMSF value and the 

variance of the dihedral angle is not high, and the correlation 

coefficients (R
2
) are 0.3 and 0.1 for φ and ψ, respectively. For 

example, the changes of variances for φ and ψ of N32
L
 are not 

as large as those of N31
L
, whereas the fluctuation is greatly 

decreased with respect to ψ of H34
L
 and φ of W35

L
. 

Interestingly, we found that the fluctuation of φ of H34
L
 is 

significantly enhanced by the antigen-binding. 

Table 2. Difference of structural and dynamic properties a. 

Residue 

No. 
∆RMSF 
(×10-2Å) 

∆φAVE (deg) ∆ψAVE (deg) 
∆var(φ) 
(×102) 

∆var(ψ) 
(×102) 

S28L −0.4 ± 0.7 −0.5 ± 0.4 +1.5 ± 0.6 −0.02 ± 0.01 −0.10 ± 0.09 

I29L −3.5 ± 0.6 −2.8 ± 0.5 −2.1 ± 0.5 −0.11 ± 0.09 −0.34 ± 0.05 

G30L −4.1 ± 0.4 +2.6 ± 0.5 +6.0 ± 0.8 −0.34 ± 0.02 −0.51 ± 0.04 

N31L −4.4 ± 0.8 −6.0 ± 0.5 +3.1 ± 0.4 −1.65 ± 0.07 −0.77 ± 0.02 

N32L −4.8 ± 0.6 +2.9 ± 0.2 −2.1 ± 0.9 −0.22 ± 0.01 +0.17 ± 0.09 

L33L −2.2 ± 0.3 −1.6 ± 0.7 −5.5 ± 0.8 +0.17 ± 0.09 +0.15 ± 0.06 

H34L −0.3 ± 0.5 +7.7 ± 1.4 +4.3 ± 1.0 +0.54 ± 0.11 −0.53 ± 0.15 

W35L −0.7 ± 0.7 −3.3 ± 1.9 −1.2 ± 1.3 −0.61 ± 0.20 +0.15 ± 0.08 

Y36L +0.1 ± 0.9 +2.4 ± 1.2 +0.7 ± 1.1 +0.22 ± 0.10 −0.11 ± 0.12 

a The values were taken from Ref. [33] 

The directional analysis allows us to determine the average 

angle (Table 2). Significant changes are clearly observed in φ 

of H34
L
, ψ of G30

L
, φ of N31

L
 and ψ of L33

L
 on average. Note 

that the binding effects on the mean dihedral angles appear 

randomly. Even though an apparent structural change does not 

occur as in the case of B2212A, we can detect and discuss the 

change in the mean structure and fluctuation by carefully 

analyzing the MD simulation. 

3.3. Short RNAs 

Recently, a novel function of non-coding RNA (ncRNA), 

which is not translated into protein, has been discovered [34]. 
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A certain ncRNA recognize and binds to a protein, then 

influencing transcription. For example, Kurokawa et al. [35] 

found the pncRNA-D, an ncRNA binding to TLS, is deeply 

involved in the control of gene expression. Thus, the study on 

the structure and dynamics of the RNA-protein complex is 

important for understanding the RNA-protein interaction. 

Importantly, structure and dynamics of RNA are significantly 

different from those of a peptide. Here, in order to clarify the 

features of RNA, MD simulations of four short RNAs (AAA, 

GGG, CCC, and UUU) are discussed [29]. (Note that the bsc0 

force field [36] was used here.) 

Since all the nucleic acid bases (A, G, C, and U) include 

aromatic 6-membered rings, the RNA structure is 

characterized by distance between centers of mass of the 

6-membered rings of the first base and second base (Fig. 7). 

While in the cases of the peptides (Fig. 5), structures where the 

side chains directly interact to each other are not often 

observed, the base stacks are effectively formed and the direct 

interaction of adjacent bases is predominant in the cases of 

short RNAs. In fact, the main peak of the distribution of 

distance (Fig. 7) can be observed at 0.45-0.5 nm. Furthermore, 

although the sampling of RNA structures is performed for the 

same time period of MD simulation as in the case of peptides, 

the standard errors of the distributions for the RNAs are larger 

than those for the peptides. The reason is that formation and 

breaking of the interaction between the adjacent bases are 

slow, which is one of the factors that render more difficult the 

MD simulations of RNA. Even for the short RNAs discussed 

here, we have already performed five MD simulations for 900 

ns (i.e., totally 4.5 µs) to suppress the errors to this extent. 

 

Figure 7. (a) AAA. (b) CCC. (c) GGG. (d) UUU. (e) Distribution of distance 

between the first and second six-membered rings. To sample the structural 

data, five 900 ns MD simulations were conducted for each peptide. 

The structure and dynamics characterized by the distance 

between the 6-membered rings of two adjacent bases depend 

largely on the base type. In the cases of purines (A and G), the 

faces of the base rings prone to form the stack structure more 

strongly. In the cases of pyrimidines (C and U), the stack face 

of the base is small and the stack structure is less stabilized. 

Therefore, the positions of main peak of the distance 

distributions for CCC and UUU are slightly shifted to right. In 

addition, the stack structure is more frequently collapsed 

(distance > 0.8nm) in CCC and UUU than in AAA and GGG. 

In more detail, although both of A and G are purines, the 

distribution in AAA is different from that in GGG. Although C 

and U are pyrimidines, the structural distributions of UUU and 

CCC are different to each other. This means that the difference 

of modification of base also affects the structure and 

fluctuation in short RNAs. For the long RNA, many 

informatics-based prediction methods have been proposed, 

some of which focus on the secondary structure with assigning 

Watson-Crick base pairs in the RNA chain [37]. In contrast, 

the short RNAs studied here do not form a Watson-Crick base 

pair, and therefore the dynamics under the influence of the 

interaction between adjacent bases is predominant. In addition, 

we consider that the study of the RNA dynamics is crucial for 

the understanding of the molecular function of long RNA and 

RNA-protein complexes, because the structural change of 

RNA reflects the individual nature of the nucleic acid base 

sensitively. Therefore, the RNA research by MD simulation 

will become increasingly important in the future. 

4. Concluding Remarks 

In this review, we discussed how molecular recognition, the 

foundation of biological activities, could be approached with 

MD simulation. This is still a very challenging subject and 

therefore many ideas have been made from theoretical and 

practical viewpoints. For the theoretical aspects, we described 

the development of the free energy calculation theories and 

discussed the recent developments. The theory of free energy 

calculation continues to evolve under the influence of the 

latest statistical mechanics. For example, by using the 

Jarzynski equality, physical processes can be corresponded to 

the free energy calculation to suggest suitable conditions in the 

FEP and TI calculations. From the practical aspects, we 

discussed how the conformational dynamics of the 

biomolecule could be analyzed with long-time MD 

simulations, which become available due to the technological 

evolution of computer. Although several simple examples 

were considered here, the structural change dynamics are 

often essential to the molecular recognition. In flexible protein 

systems with more complex energy landscape, further 

development of effective methods is required to realize the 

highly accurate prediction of free energy. It may not be 

sufficient to simply enable a long time simulation, but the 

effective use of efficient techniques, such as generalized 

ensemble method [38], umbrella sampling method [39] and 

Markov state model method [40], are also important. 

The "fragility" of the protein structure should be paid due 
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attention when using the MD simulation. For example, the 

motion of a ligand bound to a protein is characterized in the 

protein frame axes usually defined by the entire protein. 

However, when some domain of the protein is greatly 

unfolded in the MD simulation, the protein frame moves and 

consequently affects apparent movement of the ligand due to 

the large motion of the unfolded domain. In order to avoid 

such an illusion, it is necessary to define the coordinate axes 

only with the skeletal core (the protein domain with small 

fluctuation) [41]. 

MD simulation is a general-purpose technique, capable of 

investigating not only biomolecules but also macromolecular 

materials. In this review, although we addressed as many 

topics as possible, still many subjects were left uncovered. For 

these subjects, see Refs. [42, 43]. For biomolecules, it will 

become a challenging research to analyze functions of protein 

complexes and nucleic acid-protein complexes. Although not 

covered in this paper, the study of lipid bilayer will also 

become important. In fact, the lipid bilayer [44, 45] as well as 

proteins embedded in a membrane [46] also plays an 

important role e.g., in the proton transport. 

Finally, we emphasized that the success of MD calculations 

greatly depends on the accuracy of the force field. Even if 

sufficiently long MD simulations were performed, reliable 

prediction might not be provided with an inaccurate force field. 

The force field development is a sober work, but not 

necessarily easy. While we need to pay attention to the 

consistency of the model over the whole system, we have to 

model individual molecules, which have often very different 

characteristics from one another. For example, since the 

peptide main chain forms an intramolecular hydrogen bond, it 

is necessary to carefully select an appropriate electronic state 

calculation method for deriving the dihedral angle parameters. 

If the potential energy is overestimated only by 1 kcal/mol, the 

existence probability becomes about five times smaller 

decrease, which indicates the quantitative modeling is 

necessary. Thus, it will be important to further improve the 

biomolecules force field in the future. 

Many methods effectively utilizing MD simulations 

continue to be developed, inspired by various applications and 

associated with the advancement of the relevant theories and 

techniques. We expect that such developments will expand 

frontier of research on the molecular recognition. 
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