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Abstract: Previous non-invasive Diabetes Mellitus (DM) prediction methods for rapid screening suffered from the 

trade-off between speed and accuracy. The accurate results of questionnaires rely on long and detailed questions thus 

sacrifice speed, meanwhile, photoplethysmography (PPG) offers convenient and fast testing but lacking accuracy. In this 

work, we developed a 5-grade model to accurately screen out non-DM subjects (low prediction grades) via one-minute PPG 

measurement. This efficient and effective rapid screening will practically reduce the loading for further invasive verification 

on the remaining DM-grade subjects. A total of 2538 subjects are recruited (DM: 1310, non-DM: 1228) with two 1-minute 

PPG samples taken from each subject. The model includes 8 features: 3 autonomic- and 3 vascular-related PPG features, 

heart rate, and waist circumference. All 8 features monotonically alter with increased DM prediction grade. The model 

provides users 5 DM risk grades. While defined grade 1 and grade 2 as non-DM grades, the prediction result shows a low 

false-negative rate of 13%. If only considering grade 1 as non-DM, the false-negative rate will be significantly reduced to 

1.3%. Thus subjects predicted as grades 1 and 2 are substantially away from DM. The remaining subjects with higher DM 

risk grades such as grades 3, 4, and 5 (or unlikely grade 2) are recommended to take clinical-standard invasive DM test for 

corresponding therapeutic treatment. A table for assessing the risk index for each feature is also compiled. We have 

experimentally demonstrated a 1-minute pulsation measurement with PPG-based device (SpO2 oximeter, smartphone, or 

wearable device) can be an efficient/effective DM rapid screening technique to filter out non-DM subjects. The resulted 

high-risk feature indexes also pose as warning signs of the degradation of either autonomic or vascular functions for 

personal healthcare management. The fast and convenient execution and useful results suggest that our approach is very 

simple and informative for quick DM risk assessment. 
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1. Introduction 

Diabetes mellitus (DM) population is growing rapidly and 

often accompanied with cardiovascular diseases (CVD), 

which increases the mortality rate [1]. To detect or monitor 

disease progression on the rapidly increasing DM population, 

an efficient DM detection method with some information on 

disease progression is in need. An accurate diagnosis of 

diabetes remains expensive and inconvenient due to the 

time-consuming and invasive processes, such as traditional 

oral glucose tolerance test [2], HbA1C test [3], and C-peptide 

test [4]. On the other hand, current non-invasive DM 

classification methods can be generally divided into 

questionnaire-based and signal-based binary classification 

models. Although they avoid uncomfortable or painful 

invasive methods, there are still various issues that prevent 

them from widely used in clinical settings. 

Attempts to predict DM from questionnaire’s information 
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such as body shape, lifestyle, and family history have been 

studied by using machine learning and data mining 

techniques in the last decades. Logistic regression, decision 

tree, and SVM methods are applied for undiagnosed diabetes, 

pre-diabetes, and diagnosed diabetes from large scale survey 

in United States [5-7]. Among the body shape information, 

waist circumference is the indispensable index for DM 

evaluation. Carey et al. [8] found that the relative risk for 

developing diabetes for people with waist circumference of 

92cm could be 5.1 times greater than those with waist 

circumference of 67cm. Though with prominent performance, 

the questionnaire heavily depends on the detailedness of the 

questions and sometimes self-unaware information may be 

the key to figure out the subject’s current physiological status 

precisely. 

Among signal-based prediction methods, 

photoplethysmography (PPG), commonly used for heart rate 

and saturation of peripheral oxygen (SpO2), is popular on 

wearable device applications and has been studied for DM 

classification [9]. DM can be caused by factors such as obesity, 

unhealthy diet, and genetics and resulted in the degradation of 

one’s autonomic and vascular functions. Features extracted 

from PPG signals can be generally divided into two 

categories: heart rate variability (HRV) and morphological 

profile. HRV can be correlated to autonomic neuropathy [10], 

whereas morphological profile can be correlated to vascular 

function [11] in DM progression. 

HRV, originally derived from ECG RR intervals for 

evaluating the autonomic nervous system [12], is believed to 

be significantly decreased in DM patients. To be more 

specific, HRV has been viewed as an easy and reliable way 

for cardiovascular and autonomic neuropathy assessment 

[10]. Since HRV is calculated from heart rate in a time span, 

being popularly used in wearable products, PPG has been 

studied to replace ECG as a convenient surrogate with some 

restrictions [13, 14]. The lower sharpness of PPG peak 

shapes making it more difficult to define accurately and can 

cause some deviation in calculation. Another concern is the 

recording time span. Previous studies [13, 14] mainly use 

short-term HRV features (normally from 5 minutes PPG 

measurement). It is too lengthy and unrealistic to ask user to 

remain still for 5 minutes for every measurement in real 

application. The effectiveness of ultra-short-term 

(one-minute measurement preferred) features on diabetes 

prediction remains unclear. On the other hand, morphological 

features derived from PPG have been associated with 

vascular stiffness, age, and cardiovascular diseases [16, 17]. 

Previous studies extracted tens to hundreds of features from 

PPG signals, and then reduced the feature size by feature 

selection, signal decomposition, or dimensional projection 

[18-21]. 

These works faces various different challenges, such as the 

complexities of machine-learning model, nonlinear 

transformation characteristic, and small size or monotonic 

samples, making the result difficult to interpret. In this study, 

we introduce an efficient and effective model that assesses 

DM risk with a 5-grade representation while using 1-minute 

PPG measurement to achieve usability in practice. To 

identify DM patients, this study integrates both body shape 

information (waist circumference) and PPG signal-derived 

features (HRV and morphology) as input. Not only the grade 

1 and grade 5 subjects are corresponding to the most 

confident for non-DM and DM prediction, but we also expect 

that the grades can correlate to the degree or severity of DM. 

The logistic regression model is chosen for its 

generalizability and interpretability characteristics in order to 

observe a global trend of relevant factors. The quantitative 

risk indexes of features are also available for users to learn 

where their DM risk grade was from. The rationale of DM 

risk prediction with PPG signal and some morphological 

feature are illustrated in Figure 1 (a). 

 

(a) 

 

(b) 

Figure 1. Rationale of DM risk prediction and experimental setup in this 

study. (a) Illustrated the cause and effect of DM. It shows that DM can be 

caused by factors such as obesity, unhealthy diet, and result in reducing one’s 

autonomic and vascular functions which can be monitored through PPG 

pulsation signals. In addition, some PPG pulsation morphological features 

are also illustrated. (b) Graphical representation of the experiment PPG 

signals measuring setup. 



8 Justin Chu et al.:  One-Minute Finger Pulsation Measurement for Diabetes Rapid Screening with  

1.3% to 13% False-Negative Prediction Rate 

2. Material and Methods 

We conducted a large-scale study on comparing DM and 

non-DM subjects’ PPG and basic physical examination items. 

Total of 5076 samples of 1-minute ECG and PPG signals 

were recorded from 2538 subjects (DM: 1310, non-DM: 

1228), while ECG signals were only used as a PPG signal 

reference. The study was approved by the Institutional 

Review Board of Academia Sinica, Taiwan (Application No: 

AS-IRB01-16081). 

2.1. Measurement Protocol 

The subjects were asked to sit on the chair in resting 

position at least 5 minutes while filling out a questionnaire. 

Personal information, including, sex, age, height, weight, 

waist circumference, smoking habit, family history, SpO2 

(peripheral oxygen saturation), blood pressure, blood glucose, 

and HbA1C was asked or measured by commercial products 

listed in the next section. The subjects were then asked to 

paste the ECG patches at lead-I angle and PPG finger clips 

on index fingers of both hands for consecutive two 1-minute 

recordings of waveform signals. The experiment setup for 

PPG is depicted in Figure 1 (b). 

2.2. Hardware 

The devices and instruments used in the experiment are as 

follows: POM-201 for SpO2, Omron HEM-7320 for blood 

pressure, Roche Accu-chek mobile for blood glucose, 

SEIMENS DCA Vantage Analyzer for HbA1C, and 

CardioChek PA analyzer for blood lipid. PPG and ECG are 

recorded with TI AFE4490 module and ADI 

AD8232-EVALZ, respectively. 

2.3. Data Process 

Filters were first applied to raw PPG signals to acquire 

useable AC signal. The high-frequency signals (>40Hz) were 

filtered out to remove noise, and low-frequency signals 

(<0.1Hz) were filtered out to remove DC components [16]. 

PPG peaks and valleys were then defined by applying peak 

detection to the signals. ECG signal were only used to 

confirm the validity of each PPG sample in this study. Valley 

to valley (V-V) interval was selected to represent PPG pulse 

intervals for its better consistency with R-R intervals. Out of 

the total 5076 samples from 2538 subjects, 58 samples were 

removed due to the mismatch numbers between V-V intervals 

and R-R intervals, leaving 5018 samples. Samples with 

measured HbA1C level over 6.5% (48 mmol/mol) or already 

under diabetic related treatments are labeled as DM in this 

study. 

2.4. Arrhythmia (Irregular Rhythm) Samples Removal 

After valley detection and segmentation, the area, 

amplitude, and interval value of each pulse are evaluated. 

Samples with significant irregular rhythm pulses and 

abnormal pulse profile are removed to not confound HRV 

and morphology calculation. If the width of any two 

continuous pulses or areas under the signal curve differs by 2 

or more than 2-folds, or half or less than one-half folds, the 

signal is determined to be irregular. A total of 97 samples (71 

for DM, 26 for non-DM) were further removed at this step 

from the previously remaining 5018 samples. Finally, 4921 

samples were used for the following work. 

2.5. HRV and Morphological Features 

Although many features are listed below, a large portion 

was removed by feature selection process during modeling. 

Total of 6 of features (3 HRV and 3 morphological) were 

used in junction with heart rate and waist circumference to 

generate two sets of modeling: 

1. Model without waist circumference (W/O-WC) 

2. Model with waist circumference (W-WC). 

HRV features are correlated to one’s autonomic function, and 

morphological features are correlated to one’s vascular function. 

Many HRV features in time and frequency domain were 

calculated from V-V intervals of PPG. 

Time-domain features are derived from interval differences 

as follows: 

1) SDNN: the standard deviation of NN (normal 

beat-to-beat) intervals. NN intervals are equivalent to 

VV interval in this study. 

2) RMSSD: the root mean square of successive differences 

between adjacent NN intervals. 

3) SDSD: the standard deviation of successive differences 

between adjacent NN intervals. 

4) pNN50: the proportion of NN50 (number of successive 

NN interval difference exceeds 50ms) divided by total 

number of NN intervals. 

5) pNN20: the proportion of NN20 (number of successive 

NN interval difference exceeds 20ms) divided by total 

number of NN intervals. 

Frequency domain (power spectral density) features are 

calculated from one-dimensional discrete Fourier Transform 

with the sample’s pulse intervals as follows: 

1) LFP: low-frequency power (variance) of frequency 

between 0.04-0.15 Hz. [12] 

2) HFP: high-frequency power (variance) of frequency 

between 0.15-0.4 Hz. [12] 

3) TP: total power (variance) of frequency below 0.4 Hz. 

4) FP_ratio: ratio between LFP and HFP 

5) nLFP: normalized low-frequency power, LFP/TP. 

6) nHFP: normalized high-frequency power, HFP/TP. 

Pulse-wise morphological features are defined from time 

span of relative amplitude of AC signal as follows: 

1) FW_25: full width of 25% amplitude 

2) FW_50: full width of 50% amplitude 

3) FW_75: full width of 75% amplitude 

4) nFW_25: normalized full width of 25% amplitude by 

pulse width 

5) nFW_50: normalized full width of 50% amplitude by 

pulse width 

6) nFW_75: normalized full width of 75% amplitude by 

pulse width 

7) UT: pulse width (time) from the valley to 100% amplitude 
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8) Total_Area: Sum of pulses area under curve in 1 minute 

9) Normed_Area: Mean Area under curve for each pulse in 

1 minute (total_area divided by pulse number) 

2.6. Model 

The logistic regression model is chosen for better 

explanation of the feature influence to the target (DM risk 

probability, P), easy implementation, and probability 

information. The logistic regression module from scikit-learn 

version 0.19.1 for python3 is used in this section. The logistic 

regression function is as follows: 

��Y = 1|X = �) =

�� �∑ ����

�
��� )

��
�� �∑ ����
�
��� )

 (× 100%)     (1) 

The DM risk corresponds to the conditional probability P, 

which describes the chance of observing Y=1 on condition 

that X is a particular vector x. The binary outcome Y of 1 

stands for DM and 0 stands for non-DM. The vector 

component stands for the value of selected feature i, and βi 

stands for the coefficient of the i
th

 feature. 

Maximum-likelihood estimation of β updates minimizes the 

error of model prediction with respect to the true class. The N 

features are selected through a backward elimination 

procedure from p-value of individual feature. For several 

iterations, a model is trained, and the feature with the highest 

p-value is removed to eliminate the least significant features. 

This process continues until the model scores stop improving. 

Total of 8 features remaining includes waist circumference, 

heart rate, Normed_Area, FW_50, Total_Area, TP, SDNN, 

and pNN20. After feature selection with iterations, the model 

predicted probability is stored and put into 5-grade 

representation. Grade 1 to 5 is defined corresponding to 

0~20%, 20~40%, 40~60%, 60~80%, and 80~100% region of 

DM probability. In addition to 5-grade probabilities, the risk 

indexes for individual features were also derived. For each 

feature, mid-point values of the mean values of consecutive 

grades for each feature are used as boundaries to define their 

risk index grades. 

3. Result and Discussion 

First, overviews on W-WC and W/O-WC models are 

given, and then their DM probabilities are compared in 

5-grade representation. Next, how the hybrid model is 

introduced to improve the false-negative region of the result 

is shown. Then, we present an overview of our input features 

and the distribution of different grades. Last, we explain how 

the model can be used. 

3.1. Model Comparison 

When looking at the distribution of the two models in 

Figure 2 (b), we can see the prediction results on the same 

sample from both models may vary. In comparison, using 

waist circumference results in a generally more desirable 

distribution of the prediction result (better differentiability 

and more separation between DM and non-DM samples). 

On the downside, it also brings an unwanted result of 

having more DM subjects in the lowest DM risk grade. To 

compare the differences in low DM risk grades, the 

confusion matrix using both grades 1 and 2 or only grade 1 

as non-DM, and the rest as DM are shown in Table 1. 

Despite the model W-WC having a lower false-negative 

rate on grades 1 and 2 combined, it has significantly more 

DM samples classified to grade 1 when compared to 

model W/O-WC as shown in figure 2. The false-negative 

rate in grade 1 specifically had increased from 2.3% to 3%. 

In the clinical setting, it is more costly and problematic to 

give the users false-negative diagnose, which could result 

in delayed treatment or remain untreated completely. A 

false-positive result would only require the user to get a 

more comprehensive test to verify. A hybrid model was 

created by combining models with and without waist 

circumference. When comparing the same sample with 

inconsistent prediction results between with and without 

waist circumference model, the higher DM risk prediction 

grade is taken as its hybrid model prediction grade. As 

waist circumference is the strongest feature but could be 

over dominating in some cases and result in some 

false-negative results. Our hybrid model solved this 

problem from the viewpoint of reducing high 

false-negative rate for rapid screening application. The 

whole modeling process is summarized as a flowchart in 

Figure 2 (a). It significantly reduces the number of 

false-negative predictions in grade 1 down to 32 samples 

and grade 2 down to 290 samples. Resulting in the 

false-negative rate from only 1.3% in grade 1 to 13% from 

grades 1 and 2 combined. This minimizes the number of 

false-negative prediction results at the cost of some more 

non-DM predictions classified into higher grades. Based 

on the hybrid model in high DM risk grades, 85.1% (333 

out of 391 samples) of the samples in grade 5 and 69.0% 

(1170 out of 1696 samples) of the samples in grade 4 

already have diabetes. As our study uses the diabetes 

definition of having HbA1C above 6.5% (48 mmol/mol) 

for labeling DM and non-DM. Many of the samples from 

non-DM subjects classified into grades 4 and 5 have 

elevated HbA1C but were just under the DM spec (6.5% 

or 48 mmol/mol). Around 3 quarters of the non-DM 

samples in grades 4 (353 out of 526) and 5 (48 out of 58) 

were within the prediabetes range (HbA1C 5.7% ~6.5% or 

39~46 mmol/mol) leaving very little truly non-diabetic 

subjects in grades 4 and 5 (183 truly non-diabetic subjects 

out of 2087). As many labeled non-diabetic subjects are 

actually in the pre-diabetes range, it may have taken parts 

in why the result distribution is skewed toward higher DM 

grades. 
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                                     (a)                                                      (b) 

 
(c) 

Figure 2. Modeling procedure and prediction results. (a) Presents the flow chart of the modeling process of the hybrid model. (b) Shows the distribution of the 

two initial models W-WC and W/O-WC prediction results and how their results can differ on the same sample. The top bar plot shows the prediction result 

distribution of the model W/O-WC, and the right bar plot shows the prediction result distribution of the model W-WC. If the model results are consistent, the 

scatter plot should look like a diagonal line. (c) The bar plot shows the final prediction results after applying the hybrid method. 

Table 1. Confusion matrixes of all three models (W/O-WC, W-WC, and 

Hybrid) When using Grades 1 and 2 as non-DM grades or using Grades 1 

only as non-DM grades. 

W/O-WC Model Grade 1 & 2 as non-DM 
Predicted 

Non-DM DM 

Actual 
non-DM 1109 1346 

DM 465 2001 

 

W/O-WC Model Grade 1 as non-DM 
Predicted 

Non-DM DM 

Actual 
non-DM 221 2234 

DM 58 2408 

 

W–WC Model Grade 1 &2 as non-DM 
Predicted 

Non-DM DM 

Actual 
non-DM 1331 1124 

DM 433 2033 

 

W–WC Model Grade 1 as non-DM 
Predicted 

Non-DM DM 

Actual 
non-DM 407 2048 

DM 74 2392 

 

Hybrid Model Grade 1 &2 as non-DM 
Predicted 

Non-DM DM 

Actual 
non-DM 986 1469 

DM 322 2144 

 

Hybrid Model Grade 1 as non-DM 
Predicted 

Non-DM DM 

Actual 
non-DM 183 2272 

DM 32 2434 

3.2. Feature Analysis 

The selected features from a backward elimination process 

for DM prediction are shown in Table 2 with the format of 

mean value ± standard deviation for all samples in each grade. 
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Heart rate and waist circumference are deemed to be the most 

important feature by the model W/O-WC and W-WC and have 

an increasing trend with higher prediction grade. 

Compared with non-DM subjects, both HRV and 

morphological features show a decreased value in DM subjects, 

which supports the assumption of vascular and autonomic 

dysfunction. Instead of a more commonly used HRV feature 

pNN50 in other studies [15], pNN20 is proved to be more 

suitable with 1-minute PPG signal due to the significantly 

shorter measuring time span. Another notable eliminated 

feature is UT, which correlates to the systole states. The 

elimination of UT is attributed to the difficulty on labeling the 

signal peak accurately due to its low sharpness on PPG 

pulsation signal, which results in some inconsistency. The table 

also summarizes the relationship between model predicted 

grades and features with corresponding HbA1C values for 

acquiring the individual feature risk index. Table 2 also 

illustrates that the higher the grades of the logistic regression 

probability are, the higher the HbA1C values of the 

corresponding subjects are. This evidence suggests that the 

model learns physiological meaning from DM binary labels, 

and the predicted probability is appropriate to be treated as a 

quantitative measure of DM progression. Box plots for a more 

visualized relationship across grades are shown in Figure 3. As 

many lifestyles affect the DM progression, one can track his or 

her own status dynamically with this grade and be aware of the 

corresponding risk feature to improve. 

 

Figure 3. Box plots of the distribution of each feature across different prediction grades. This figure shows the distribution of features in each prediction grades 

based on the prediction result of the hybrid model. From this figure, we can see the features monotonically increased or decreased with DM prediction grades. 

Table 2. Feature distribution by different grades and DM or non-DM. 

Item Grade I Grade II Grade III Grade IV Grade V non-DM group DM group 

DM Prob. 0~20% 20~40% 40~60% 60~80% 80~100% Labeled 

non-DM by 

HbA1C value 

Labeled DM 

by HbA1C 

value 
DM Risk Very low Low Medium High Very high 

HbA1C, % 

(mmol/mol) 

5.81±0.58 6.09±0.90 6.39±1.19 7.23±1.62 7.53±1.47 < 6.5 ≥ 6.5 

(40.02±6.38) (43.08±9.86) (46.35±12.95) (55.48±17.73) (58.81±16.04) (48 mmol/mol) (48 mmol/mol) 

 W_cir, cm 77.17±7.49 79.22±7.96 82.14±8.46 86.51±9.42 99.14±10.66 80.99±9.62 87.25±10.07 

 HR, beats/min 57.47±8.27 63.96±7.58 69.29±7.60 77.07±9.63 80.27±10.30 68.61±9.88 73.66±10.80 

Vascular 

Normed_Area, - 474.38±73.66 399.94±49.49 359.33±41.68 316.08±41.72 279.54±58.36 371.15±63.63 333.20±60.80 

FW_50, ms 682.18±91.28 568.78±62.20 510.23±55.14 446.19±57.37 382.34±86.08 528.34±87.18 468.83±87.52 

Total_Area, - 26727±1535 25241±1162 24619±1284 24017±1541 22095±3561 24905±1621 23980±2043 

Autonomic 

TP, ms2/Hz 3.15±2.38 2.06±1.65 1.34±1.24 0.81±0.81 0.58±0.58 1.59±1.46 1.08±1.31 

SDNN, ms 48.89±16.60 34.80±12.27 25.34±9.95 17.75±8.19 14.53±6.93 28.42±13.18 21.58±12.47 

pNN20, % 71.30±9.67 55.42±12.49 34.27±14.24 14.64±13.15 9.50±11.71 39.17±21.87 24.56±20.71 
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The table shows the mean value ± standard deviation of 

individual features and Hba1C of all samples grouped by 

different predicted risk grades and when grouped by DM and 

non-DM groups. Based on this table, we can assess one’s 

individual feature risk index with mid-point value as boundary 

between the mean values of adjacent grades. We can also see 

DM groups generally have higher HR and waist 

circumference, and lower HRV or morphology related 

features. 

3.3. Interpretation of Predicted DM Risk Grades and 

Corresponding Recommendations 

From the application point of view, there are two scenarios 

of using the proposed model to predict DM risk – 

undiagnosed and diagnosed DM patients. For undiagnosed 

DM patients, this can be used as a rapid screening tool to 

identify high DM risk patients and offer warning to low-risk 

patients at the same time. The devices capable of recording 

PPG signals such as smartphones, wearable devices, and 

SPO2 oximeter are commonly available. This method can be 

easily achieved on a massive scale with very little to none 

additional cost if implemented on said devices. For 

diagnosed DM patients, predicted results and feature indexes 

can help them monitor their physiology status for managing 

or improving their DM condition to prevent further 

degradation, especially on vascular and autonomic functions. 

The risk grading of individual features is defined by 

mid-point value as the boundary between the mean values of 

the adjacent grade. The mean values of features with the 

corresponding model’s risk prediction are presented in Table 

2. Assessing DM status using hybrid model prediction grades 

in combination with the grades of individual features provides 

a more informative result for the users. For example, when 

non-DM subjects classified into the higher risk group, this 

may be a false-positive prediction in terms of diabetes risk; 

however, with the individual feature risk index, the user 

could assess whether or not they are suffering from other 

related underlying health conditions often associated with 

high DM risk. As for prediction results in lower DM risk 

grades, users can still pay extra attention to individual 

features for warning signs and act upon them accordingly. 

3.4. Comparison of Autonomic-Related Features 

All of the HRV parameters show a decreasing trend with 

increased DM risk grade, which is consistent with previous 

studies [10]. However, we found that in our 1-minute 

recording setting, the most sensitive parameter is pNN20, 

whereas and the least sensitive parameter is SDNN. The 

reason why pNN20 has not been highlighted as a significant 

factor for DM in HRV parameters in previous studies may be 

due to the time span of calculation. As the time span 

increases, it also increases the chance of recording larger 

interval variation changes. For the 1-minute time span, 20 ms 

may be the appropriate threshold to distinguish DM from 

non-DM. 

3.5. Comparison of Vascular-Related Features 

For vascular correlated features, the model selected total 

area, normed area (average pulse area), and the full width of 

half amplitude as significant features for DM classification. 

These features all reflect the blood perfusion that the higher 

values suggest better blood perfusion, which is expected to 

perform better on healthy subjects. There is the possibility of 

heart rate as the true factor that dominates these features. We 

believed we can view the feature relation of normed_area is to 

area (total_area) as the relation of stroke volume is to cardiac 

output, which manifests the characteristic of blood perfusion. 

3.4. Comparison to Previous Studies 

Previous works generally gives concise DM or non-DM 

answers with overall accuracy and emphasis on new methods 

or features [5-9]. In this study, we focused on achieving low 

false negative rate when applying in practical uses. To the 

extent of our knowledge, this presents the best low 

false-negative rate result. 

4. Conclusion 

This study demonstrates a probability-based 5-grade 

classifications scenario for DM risk prediction. We, 

especially, conclude that this technique with waist 

circumference and PPG signal-derived features is capable of 

rapidly screening out non-DM subjects. All of the features 

used in the model are monotonically increasing or decreasing 

along with risk grades. Our model having the false-negative 

rate forms 1.3% to 13% for only 1.3% and 11.8% of all DM 

samples were classified into grade 1 and grade 2, respectively. 

For samples classified into grade 4 and grade 5, 69.0% and 

85.1% of samples have diabetes. Even though the rest of the 

samples were not suffering from diabetes, their high risk 

autonomic- or vascular-related features may arise from other 

health complications. Based on these prominent results, we 

conclude that the 5-grade DM prediction with the hybrid 

model is effective and efficient. With the additional feature 

risk indexes derived from 1-minute PPG measurement for 

in-depth analysis, this is also a very simple and informative 

methodology to predict DM risk. 
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