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Abstract: In plant, glyoxalases [glyoxalase I (Gly-I, EC: 4.4.1.5) and glyoxalase II (Gly-II, EC: 3.1.2.6)] and glutathione S-

transferase (GST, EC: 2.5.1.18) are major detoxification enzymes. On the other hand, spermidine (Spd) is important polyamine 

(PA) with significant role which interacts with stress protection mechanisms functioning in common against different types of 

stress. In this study, exogenous Spd was applied on onion seedlings to investigate its protective role through regulation of 

glyoxalase and GST activities. Continuous increase was observed in the content of methylglyoxal (MG) in onion leaves under 

salinity, and at 7 day of stress, MG contents increased by 260% over control. Application of Spd reduced the MG contents in 

saline treated seedlings through increasing glyoxalase mediated detoxification by 21 and 48% at 1 and 3 day of stress, 

respectively. Salinity increased Gly-I and Gly-II activities which was further increased by Spd upto 3 day of stress. On the 

other hand, salinity increased GST activity by 14, 55, 93 and 109% over control at 1, 3, 5 and 7 day, respectively. Application 

of Spd increased the activity in stressed seedlings at 3 day of stress while 21% higher activity was found. However, after 3 

days, both glyoxalases and GST activities in Spd treated seedlings decreased and became almost similar to those in drought 

stressed seedlings without Spd. Considering the results, application of Spd in onion seedlings improved tolerance for short 

period of salinity. 
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1. Introduction 

Abiotic stress including salinity is one of the most 

important abiotic stress factors limiting plant growth and 

productivity of crops. Increased soil salinity has become an 

increasingly important topic globally. High exogenous salt 

concentrations cause ionic imbalance in the cells resulting in 

ion toxicity and osmotic stress [1, 2]. Salinity mediated 

osmotic stress produces reactive oxygen species (ROS) such 

as superoxide radical (O2
•-
), singlet oxygen (

1
O2), hydroxyl 

radical (OH
•
) and concomitantly hydrogen peroxide (H2O2) 

[3, 4, 5] and methylglyoxal (MG) [6, 7] in plant cells. ROS 

are highly reactive and toxic to plants and can lead to cell 

death by causing damage to proteins, lipids, DNA and 

carbohydrates [5, 8]. At the same time, MG can react with 

and modify other molecules including DNA and proteins [6], 

whereas proteins being one of the major targets of ROS. 

Therefore, ROS and MG are highly toxic and must be 

detoxified by cellular responses, if the plant is to survive and 

grow [9]. 

Plants possess both non-enzymatic and enzymatic 

antioxidant defense systems against ROS [9, 10]. Among the 

non-enzymatic antioxidants, reduced glutathione (GSH) is 

the most abundant low molecular weight thiol in plants and 

plays an important role in the detoxification of ROS and MG 
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[9]. Among the GSH dependent enzyme, glutathione S-

transferases (GSTs) are an ancient and diverse group of 

multi-functional proteins that are widely distributed amongst 

living organisms. They can function as GSH transferases, 

GSH-dependent peroxidases, GSH-dependent isomerases and 

GSH-dependent oxidoreductases [11], as well as functioning 

as non-enzymatic carrier proteins and antioxidant recycling 

[12]. Up to 90 genes encoding GSTs are transcribed in 

different plant species, most of which are differentially 

induced by stress, and they play important parts in enzymatic 

thiol-dependent ROS scavenging mechanisms [13, 14, 15]. 

Importantly, after discovering of GST in maize in 1970, large 

number of studies was reported on vacuolar sequestration of 

endogenous substrates into vacuole [16, 17, 18, 19, 20]. On 

the other hand, in plants, the MG is detoxified mainly by 

glyoxalase system [6] which consists of two enzymes: 

glyoxalaseI (Gly-I) and glyoxalaseII (Gly-II). Gly-I uses 

reduced GSH to convert MG into S-D-lactoylglutathione 

(SLG). Then Gly-II converts SLG to D-lactate and one 

molecule of reduced glutathione is recycled back into the 

system [21]. A large number of research group reported the 

role of glyoxalases in plant responses to salt stress [6, 7, 22, 

23, 24]. 

Polyamines (PAs), including the diamineputrescine (Put), 

triaminespermidine (Spd) and tetraminespermine (Spm) are 

ubiquitous low-molecular-weight aliphatic amines that are 

involved in regulation of plant growth and development [25] 

and are well known for their anti-senescence and anti-stress 

effects due to their acid neutralizing and antioxidant 

properties, as well as for their membrane and cell wall 

stabilizing abilities [26]. Because of their cationic nature at 

physiological pH, PAs are able to interact with proteins, 

nucleic acids, membrane phospholipids and cell wall 

constituents, thereby stabilizing these molecules [27]. Apart 

from their implication in growth and development, PAs have 

been reported to be involved in defense response to biotic 

and abiotic stresses [28]. It has been shown that a high 

cellular level of PAs correlates with plant tolerance to a wide 

array of environmental stresses such as salinity [29], 

oxidative stress [30, 31], low and high temperatures [32, 33, 

34], hyperosmosis [35] and hypoxia [36]. Several 

biochemical and physiological effects were elicited by 

exogenously applied PAs including Spd under environmental 

stress. It was reported that exogenous Spd was effective in 

enhancing the activity of peroxidase under salinity stress and 

the salt-induced increase in reducing sugar and free proline 

level was further promoted by Spd in indica rice [37]. 

Moreover, it has been demonstrated that over expression of 

Spd synthase gene in transgenic Arabidopsis thaliana 

maintained higher levels of Spd content and enhanced 

tolerance to salinity, chilling, hyperosmosis and drought 

relative to the wild-type plants, which suggests that Spd plays 

an important role in stress signaling pathway as a signaling 

regulator, leading to build a stress tolerance mechanisms for 

plants [38]. However, effect of Spd in regulation of 

detoxification enzymes like glyoxalasea and GST. Moreover, 

onion possesses higher glyoxalase and GST activities [39]. 

Therefore, Spd might play important role in regulation of 

these enzymes under salinity stress and hence, this 

experiment were undertaken to examine the modulation of 

glyoxalases and GST in onion seedlings under salinity. 

2. Materials and Methods 

2.1. Plant Materials and Stress Treatments 

Seedlings of ‘BARI Piaj- 3’ were used as plant material for 

stress responses. Onion bulb was used for GST purification. 

One month old seedlings were planted in buckets in green 

house of Plant Breeding Division. After establishment of 

seedlings, 16 dSm
-1 

were set up by adding NaCl solution or 

water for several days. Salinity level was measured by a 

digital EC meter (HI993310). Reaching the salinity level to 

16 dSm
-1

 was counted as stress treatment, Then 100 µM of 

Spd were used twice daily as foliar spray. A control set was 

also maintained side by side. Therefore, the treatments like 

control, salinity and salinity were maintained. The seedlings 

were observed for 7 days. Data were taken from leaves after 

1, 3, 5 and 7 day of stress implementation. 

2.2. Determination of Protein 

The protein concentration in the leaf extracts was 

determined according to the method of Bradford [40] using 

BSA as a protein standard. 

2.3. Enzyme Extraction and Assays 

Using a pre-cooled mortar and pestle, 0.5 g of leaf tissue 

was homogenized in 1 ml of 50 mM ice-cold potassium-

phosphate buffer (pH 7.0) containing 100 mM KCl, 1 mM 

ascorbate, 5 mM β-mercaptoethanol, and 10% (w/v) glycerol. 

The homogenates were centrifuged at 11,500×g for 10 min, 

and the supernatants were used for determination of enzyme 

activity. All procedures were performed at 0°C to 4°C. 

Glutathione S-transferase (GST, EC: 2.5.1.18) activity was 

determined spectrophotometrically by the method of 

Rohmanet al. [41]. The reaction mixture contained 100 mM 

Tris–HCl buffer (pH- 6.5), 1.5 mM GSH, 1 mM 1-chloro-2, 

4-dinitrobenzene (CDNB), and enzyme solution in a final 

volume of 0.7 ml. The enzyme reaction was initiated by the 

addition of CDNB, and the increase in absorbance was 

measured at 340 nm for 1 min. The activity was calculated 

using the extinction coefficient of 9.6 mM
−1

cm
−1

. 

Glyoxalase I (Gly-I, EC: 4.4.1.5) assay was carried out 

according to Yadavet al. [7]. Briefly, the assay mixture 

contained 100 mM K-phosphate buffer (pH- 7.0), 15 mM 

magnesium sulphate, 1.7 mM reduced glutathione, and 3.5 

mM MG in a final volume of 0.7 ml. The reaction was started 

by the addition of MG, and the increase in absorbance was 

recorded at 240 nm for 1 min. The activity was calculated 

using the extinction coefficient of 3.37 mM
−1

cm
−1

. 

Glyoxalase II (Gly-II, EC: 3.1.2.6) activity was determined 

according to the method of Principatoet al. [42] by 

monitoring the formation of GSH at 412 nm for 1 min. The 

reaction mixture contained 100 mM Tris-HCl buffer (pH- 
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7.2), 0.2 mM DTNB, and 1 mMSLG in a final volume of 1 

ml. The reaction was started by the addition of SLG, and the 

activity was calculated using the extinction coefficient of 

13.6 mM
−1

cm
−1

. 

2.4. Measurement of Methylglyoxal 

For methylglyoxal (MG) estimation in plants about 0.3 g 

tissue was extracted in 3 ml of 0.5M perchloric acid. After 

incubating for 15 min on ice, the mixture was centrifuged at 

4
○
C at 11,000×g for 10 min. A colored supernatant was 

obtained in some plant extracts that was decolorized by 

adding charcoal (10 mgml
-1

), kept for 15 min at room 

temperature, and centrifuged at 11,000×g for 10 min. Before 

using this supernatant for MG assay, it was neutralized by 

keeping for 15 min with saturated solution of potassium 

carbonate at room temperature and centrifuged again at 

11,000×g for 10 min. Neutralized supernatant was used for 

MG estimation following the method of Rohman et al. [43] 

by using N-acetyl-L-cysteine at a wavelength of 288 nm. 

3. Results and Discussion 

3.1. Effect of Spd on Methylglyoxal Content 

Continuous increase was observed in the content of MG in 

onion leaves under salinity stress (Fig. 1). After 3 day of 

stress, the content was significantly higher as compared to 

control. At 1, 3, 5 and 7 day of saline stress, MG contents 

increased by 38, 180, 187 and 260% over control. 

Application of Spd reduced the MG contents in saline treated 

seedlings by 21, and 48% at 1, 3, day of stress, respectively. 

However, Spd failed to reduce MG at 5 and 7 day. 

 

Fig. 1. Effect of Spd on Methylglyoxal content in leaves of onion seedlings 

under salinity stress. Values present in the bars are mean ± SE. Similar 

letters between the bars are not significant at 5% level. 

Application of Spd in onion seedlings reduced the MG 

contain (Fig. 1). However, Spd seemed to be more effective 

in MG detoxification system for short duration (upto 3 day) 

of salinity. 

3.2. Effect of Spd on Detoxification Enzyme 

Salinity stress increased the Gly-I activity gradually upto 5 

day of stress (Fig. 4.18). Salinity increased the activity by 3, 

25, 41 and 9% over salinity at 1, 3, 5 and 7 day after stress 

implementation, respectively. Notably, in application of Spd, 

the activity increased at 3 day salinity stress. However, Spd 

decreased the activity by 16 and 9% as compared to the 

activity level under salinity. 

 

Fig. 2. Effect of Spd on activity of Gly-I in leaves of onion seedlings under 

salinity stress. Values present in the bars are mean ± SE. Similar letters 

between the bars are not significant at 5% level. 

Salinity stress increased the Gly-I activity gradually upto 5 

day of stress (Fig. 2). Salinity increased the activity by 3, 25, 

41 and 9% over salinity at 1, 3, 5 and 7 day after stress 

implementation, respectively. Notably, in application of Spd, 

the activity increased at 3 day salinity stress. However, Spd 

decreased the activity by 16 and 9% at 5 and 7 day, 

respectively, as compared to the activity level under salinity. 

 

Fig. 3. Effect of Spd on activity of Gly-II in leaves of onion seedlings under 

salinity stress. Values present in the bars are mean ± SE. Similar letters 

between the bars are not significant at 5% level. 

Saline stress increased the activity of Gly-II, where the 

highest activity was found at 5 day salinity stress (Fig. 3). 

Salinity increased the activity by 11, 26, 55 and 52% over 

control at 1, 3, 5 and 7 day of stress, respectively. It was 

important that application of Spd increased the activity in the 

early stage of stress, while 4 and 24% higher activity was 

increased at 1 and 3 day of saline stress, respectively, over 

salinity. Spd decreased the activity by 19 and 12% in leaves 

at 5 and 7 day of stress, respectively, over salinity without 

Spd. 

The glyoxalase system consists of two enzymes (Gly-I and 

Gly-II) acts to convert the potential cytotoxic MG to non-

toxic hydroxyacids such as lactate. Gly-I use GSH to convert 
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MG to S-D-lactoyl glutathione, while the hydrolytic reaction 

catalyzed by Gly-II liberates the lactic acid and free GSH 

[44]. In several plant species, upregulation or overexpression 

of these enzymes increases tolerance to abiotic stresses [24, 

45, 46]. Under salinity stress, upto 5 day of stress, Gly-I and 

Gly-II activities increased and decreased thereafter (Fig. 2, 

3). However, the increases in Gly-I and Gly-II activities in 

salinity stressed onion seedlings suggested that the 

detoxification of MG via the glyoxalase system as both Gly-I 

and Gly-II increased concomitantly with lower contents of 

MG. The higher GSH level with higher Gly-I and Gly-II 

activities with Spd suggested the evidence for protective role 

of Spd for glyoxalase system for conferring saline stress 

tolerance in onion leaves. This tolerance might be via proline 

accumulation, because proline was reported to maintain 

higher glyoxalases and GSH in other plant species [43, 46]. 

 

Fig. 4. Effect of Spd on activity of Glutathione S-transferase in leaves of 

onion seedlings under salinity stress. Values present in the bars are mean ± 

SE. Similar letters between the bars are not significant at 5% level. 

Remarkable increase was observed in GST activity in leaves 

onion seedlings under salinity stress, where the activities 

increased gradually with stress duration (Fig. 4). Salinity 

increased the activity by 14, 55, 93 and 109% over control at 1, 

3, 5 and 7 day after stress implementation, respectively. 

Application of Spd increased the activity in the early stages of 

stress, while 6 and 21% higher activity was increased at 1 and 

3 day of salt stress, respectively over salinity. Spd decreased 

the activity slightly (4 and 6%) at 5 and 7 day of stress, 

respectively, in salinity stressed seedlings. 

The GST activity increased under salinity stress in 

presence or absence of Spd (Fig. 4). Increased activity of 

GST in onion leaves under salinity stress can participate in 

detoxification of ROS, xenobiotics, and membrane lipid 

peroxidation [47, 48], stabilize flavonoid or transportation 

them to vacuole [41, 49]. The high GST activity might be due 

to regulation of flbonoid in onion ([41]. On the other hand, 

the increased GST activity also suggested its flavonoid-

binding properties, and indirectly facilitating the vacuolar 

uptake of anthocyanins by preventing their oxidation and 

cross-linking in the cytoplasm [16]. GST also shows GPX 

activity which might reduce oxidative damage in onion [49]. 

In this study, theincreased GST suggested its biological role 

in stress mitigation which thrusts more research. GSTs are an 

ancient and diverse group of multi-functional proteins that are 

widely distributed amongst living organisms. Originally 

defined solely as enzymes that catalyze conjugation of GSH to 

an electrophilic substrate [16], it is now clear that GSTs 

catalyze a variety of reactions. Early plant GST research 

focused on the role of GSTs in herbicide resistance and 

vacuolar sequestration of anthocyanins [20]. In the present 

study, the induced GST activity and (Fig. 4) under salinity 

might play important physiological role like vacuolar 

sequestration of flavonoids like quercetine [50]. On the other 

hand, high activity might be associated with recycling and 

stabilizing flavonoid [12, 51], to protect cell from toxic effect. 

In addition to being induced by xenobiotic-type stresses, plant 

GST expression is activated by abiotic stress like chilling [52], 

hypoxic stress [53], dehydration [54, 55], wounding [56], 

pathogen attack [57], ethylene andauxin [16] H2O2 [58] and 

the defense signal salicylic acid [59]. GSTs have been shown 

to possess GST activity towards 4-hydroxy-2-nonenal (HNE) 

[60], a naturally occurring lipid peroxidation product that can 

cause oxidation and alkylation of proteins and DNA. 

Potentially, GST activity allows GSTs to detoxify electrophilic 

compounds by catalyzing their conjugation to GSH, while 

GSH peroxidase (GPX) activity allows GSTs to directly 

detoxify lipid and DNA peroxidation products [61]. It is also 

possible that the induced GST activities detoxify lipid 

peroxidation product or leaf senescencein onion under stress 

condition. The Spd boosted GST activity in the onion 

seedlings suggested its detoxification role by conjugation or 

directly detoxification via GPX activity and also vacuolar 

sequestration of flavonoids [51]. 

4. Conclusion 

Considering the above results, salinity stress increased the 

content of MG as well as activities of glyoxalase and GST. 

Exogenous application of Spd reduces the MG content upto 3 

day of stress. Activitiy of GST was also increased by Spd 

upto 3 day of stress. Therefore, exogenous application of Spd 

might confer tolerance in onion seedlings with shorter 

salinity. 
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