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Abstract: QSAR analysis of a set of previously synthesized azole derivatives tested for growth inhibitory activity against 

Candida albicans was performed by using Associative Neural Network. To overcome the problem of overfitting due to 

descriptor selection, 5-fold cross-validation with variable selection in each step of the analysis was used. The predictive 

ability of the models was tested through leave-one-out cross-validation, giving a Q
2
 = 0.77 - 0.79 for regression models. 

Predictions for the external evaluation sets obtained accuracies in the range of 0.70 - 0.80 for regressions. Biological testing 

of compounds was performed by disco-diffusion method on solid medium culture versus strain C. albicans ATCC 10231 

M885. Most of compounds demonstrated high antifungal activity. Five synthesized compounds also showed activity against 

clinical isolate strain of C. albicans received from a biological material and resistant to fluconazole. 
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1. Introduction 

The frequency of infections caused by pathogenic 

microorganisms has increased worldwide, becoming an 

important cause of morbidity in many countries. Candida 

albicans is the most common human fungal pathogen, and 

mortality from C. albicans infection is still unacceptably 

high [1]. C. albicans is able to colonize nearly every part of 

the gastrointestinal tract, from the mouth cavity up to the 

perianal tissues, epidermis and the vulvovaginal region [1]. 

For example, about 75% of adult women have at least one 

episode of vulvovaginal candidiasis during their life, with 

predominance of C. albicans in 70–90% [2]. C. albicans is 

notorious for causing candidiasis, it can affect the 

oesophagus with the potential of becoming systemic, 

provoking a much more serious condition, a fungemia 

named candidemia [3]. Therefore, C. albicans infections 

detect a number of problems including limited number of 

effective antifungal agents, resistance of Candida to 

commonly used antifungals, toxicity of the available 

antifungal agents, relapse of Candida infections and 

inexpensive effective antifungal agents. Thus, the search 

for new and effective synthetic inhibitors of C. albicans is 

an actual and important task for basic science and clinical 

medicine. 

The experimental measurement of bioactivity of 

compounds are difficult, more expensive and 

time-consuming, thus a great deal of effort has been done 

into attempting to predict activity through statistical 

modeling. In order to design new inhibitors with higher 

inhibitory activity based on the inhibitors with known 

activity, it is quite necessary to study the quantitative 

structure-activity relationship (QSAR) of these compounds. 

In practice, QSAR models provide valuable tools for 

automated virtual screening, combinatorial library design, 

and data mining [4]. The Multiple Linear Regression 

analysis (MLRA), Support Vector Machines (SVM), 

Random Forests, Partial Least Squares (PLS) Regression, 
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Artificial Neural Networks (ANNs), Bayesian Neural 

Networks, etc., are widely used techniques to discover 

structure-property relationships [5-8]. 

In recent years, substantial progress has been made in the 

application of in silico computational methods to predict 

Candida albicans inhibition activities of some chemicals 

[9-12]. However, many of these QSAR models were 

designed for specific classes of chemicals using small 

number of compounds and could not be used for virtual 

screening of big compound libraries aimed at identifying 

potential C. albicans inhibitors. Within our research group, 

a database has been assembled with more than 1878 azole 

derivatives which are potential C. albicans inhibitors, their 

respective biological activity expressed in terms of 

minimum inhibitory concentration (MIC), as well as, a 

large set of molecular descriptors and properties 

(geometrical and electronic parameters, etc.). The azole has 

been an important pharmacophore and privileged structure 

in medicinal chemistry. Many azoles are known as 

antifungal drugs, inhibiting the fungal enzyme 

14α-demethylase which produces ergosterol (an important 

component of the fungal plasma membrane) [13]. However, 

the emergence of azole resistant strains has stimulated the 

search for new antimycotic compounds. This study 

describes the (1) creation of QSAR models to identify new 

potential azole inhibitors with above-stated activity using 

Artificial Neural Network approach, (2) methods that were 

employed to optimize the predictive performance of these 

models and (3) synthesis and biological testing a series of 

azole derivatives as new potential antifungal compounds. 

2. Material and Methods 

2.1. Experimental Data and Descriptor Generation 

The data for our analysis were obtained from many 

publications and stored in the ChEMBL database [14]. The 

detailed structures and the corresponding bioactivities of 

the compounds and full list of publications are listed in 

Supplementary Materials. The biological data obtained as 

minimum inhibitory concentration (MIC) were converted 

into log (1/MIC) values and used as dependent variable in 

the following QSAR analyses. The dataset consisted of 

1878 C. albicans inhibitors. The range of MIC values of the 

1878 compounds was from 1.4 nM to 2.7 mM. All 

molecules were “transformed” using the ChemAxon 

standardizer in order to identify their standardized forms 

[15]. The 2D coordinates of atoms were recalculated, 

counter ions and salts were removed from molecular 

structures, molecules were neutralized, mesomerized, 

aromatized. Data sets were filtered to remove duplicates. 

The 3D structures were calculated using the ChemAxon 

standardizer from the SMILES notation available for each 

compound, and stored in SDF format [15]. Then, the 

resulted geometries were input into DRAGON software to 

calculate molecular descriptors [16]. The Dragon program 

provides many types of molecular descriptors such as 

numbers of hydrogen bond donors and acceptors, 

topological polar surface area, RDF, WHIM descriptors and 

many others. Finally, constant or near constant values and 

descriptors found to be correlated pairwise (one of any two 

descriptors with a correlation coefficient greater than 0.99 

was removed to reduce redundant and useless information) 

were excluded in a preliminary step [16]. 

2.2. Associative Neural Networks 

An Associative Neural Network (ASNN) combines an 

ensemble of Feed-Forward Neural Networks (FFNNs) with 

the method of k-Nearest Neighbours (k-NN) [17]. FFNNs 

represent supervised regression methods that are trained 

using a data set in which the property to be modeled is 

known. The traditional FFNN represents a memoryless 

approach, i.e. after training, the initial data are no longer 

needed and all the information necessary for predictions is 

stored within the neural network weights [18]. To the 

contrary, such methods as k-Nearest Neighbor Method 

represent the memory-based approach [19]. The k-NN 

keeps in memory the input data and their predictions are 

based on some local approximation of the stored examples. 

ASNNs use the k-NN method in the space of ensemble 

residuals. All compounds are represented as vectors of 

neural network predictions by the neural network ensemble. 

Correlation between such vectors is used by the nearest 

neighbor method as a measure of distance between the 

analyzed cases. Therefore, ASNN perform k-NN in the 

space of ensemble residuals. So the ASNN improves 

prediction by the bias correction of the neural network 

ensemble [17]. 

We have used the neural networks algorithm trained by 

SuperSAB [20]. The neural networks had a number of 

inputs equal to the number of descriptors. One hidden layer 

with five neurons was used in the calculations. Weights 

were initialized with random numbers. A bias neuron was 

also presented in both the input and hidden layers. The 

FFNNs used one output neuron for regression tasks, and the 

output values were linearly scaled between 0.1 and 0.9 [21]. 

All neural networks had the same architecture. 

Cross-validation techniques were used to strictly control 

the possibility of over-fitting the data. Each FFNN 

ensemble included M=200 networks. More details of the 

algorithm can be found in earlier publications [21, 22]. 

2.3. Search of an Optimal Descriptor Number 

Usually, the initial data consist of big quantity of 

descriptors many of them not directly related to the solved 

problem. The selection methods can optimize number of 

descriptors. In the past years, several methods for the 

selection of molecular descriptors have been developed [23, 

24]. In this work, the descriptor’s importance measure was 

obtained by “pruning methods” implemented in ASNN 

software. Pruning algorithms introduce some measure of 

importance of the ASNN matrix weights by the so called 

"sensitivities". These algorithms work similarly to a 
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stepwise multiple regression analysis, whereby one input 

parameter considered to be non-significant is excluded at 

each step. Another word at each step, the model sensitivities 

to all weights and input nodes are evaluated and the 

descriptor associated with the input neuron showing the 

smallest sensitivities is deleted [25, 26]. For these studies, 

the descriptors obtained from previous stage were used. We 

analyzed the influence of the number of selected descriptors 

on the ASNN model quality (on the basis of the 

leave-one-out results for the training sets). Detailed 

explanations of the various sensitivity methods can be found 

elsewhere in literature [25, 26]. 

2.4. Validation of QSAR Models 

To overcome the problem of overfitting given by 

descriptor selection (see section Search of an optimal 

descriptor number) we performed 5-fold cross-validation 

with variable selection in each step of the analysis [6]. In 

the 5-fold cross-validation the original data set was divided 

into 5-subsets of approximately equal size. Out of 5-subsets 

a single sub sample was retain as validation data for testing 

the model, and remaining four subsamples were used as 

training data. For each subset, we first selected descriptors 

using the corresponding training set, developed the model 

and then applied it to predict the molecules which were 

excluded from the training set. This procedure was 

sequentially repeated five times producing five different 

external validation data sets and corresponding training set 

molecules [27]. Then the average statistical coefficients for 

all 5-test sets were computed. Therefore we developed five 

predictive models by ASNN and a united model. The 

prediction statistics for QSAR models are given in Tables 1 

(see section Results and Discussion). 

The conventional way of summarizing “lack of fit” in 

QSAR models is the Root-Mean-Square Error (RMSE) and 

Mean Absolute Error (MAE) between observed and 

predicted activities. Another is the cross-validation 

coefficient (Q
2
) [27, 28]. 

It was defined as: 

Q2= (SD-PRESS)/SD           (1) 

Here, the SD is the sum of the squared deviations of the 

target variable values from their mean, and PRESS is the 

prediction error sum of squares obtained from the 

leave-one-out cross-validation procedure. Use of the 

cross-validation coefficient Q
2
 makes redundant the analysis 

of residuals by means of standard deviation, because both 

coefficients are interrelated and can be derived one from 

another. Here, we considered a QSAR model to have an 

acceptable predictive power if Q
2
 > 0.5 [27]. 

2.5. Applicability Domain 

The dataset used for QSAR analysis only covers limited 

chemical space. Therefore, QSAR models should have a 

well-defined applicability domain (AD) within which 

reliable predictions can be made [29]. The AD of a QSAR 

model is partly a function of the molecular coverage of the 

test molecule relative to the molecules in the training data 

set. If a test molecule is very different from the other 

compounds in the training set, the prediction of its activity 

is unreliable. A concept of the AD was created and used to 

avoid such an incorrect extrapolation of activity predictions. 

Thereby it is possible to predict the model accuracy for a 

particular compound and to select a subset of much more 

confident predictions. AD approaches rely on finding a 

measure, which correlates with the accuracy of predictions. 

The “distance to a model” can be defined as a metric that 

defines the similarity between the training set molecules 

and the test set compound for the given property in the 

context of a specific model [30]. 

We used approach based on similarity analysis for 

estimation of “distance to a model” [29]. The AD of the 

QSAR models was calculated from the distribution of 

similarities between each compound and its k nearest 

neighbors in the training sets [30]. Similarity of each 

molecule in test set was defined as the Dice Index (DI) 

between this molecule and the training set. They were 

computed as the average DI to the k nearest neighbors of 

this molecule in the training set [30]. Average DI values 

were calculated using k=10, which was the optimal number 

of nearest neighbors for the models. Thus, if the similarity 

of the external compound from all its nearest neighbors in 

the training set less this cutoff value, the prediction is 

considered unreliable. Our results have demonstrated that 

molecules with higher similarity are better predicted (see 

sections Results and Discussion). 

3. Results and Discussion 

3.1. Results of QSAR Modeling for C. Albicans Inhibitor 

Set 

578 descriptors calculated by the DRAGON software were 

used. In the first stage, ASNN models were developed 

using total set of descriptors. Then, the number of 

descriptors was reduced for each set by ASNN pruning 

methods, keeping basically the same accuracy for training 

and test sets. In total, five models differing in the types of 

descriptors for each subset have been developed. Table 1 

summarizes the statistical parameters for all models. 

Table 1. Statistical parameters for ASNN models for Candida albicans 

inhibitory activity. 

Name 
Number of 

descriptors 

Training set Test set 

Q2 MAEa Q2 MAE 

Set 1 41 0.77 0.38 0.70 0.41 

Set 2 63 0.78 0.36 0.76 0.38 

Set 3 64 0.78 0.36 0.77 0.37 

Set 4 68 0.77 0.37 0.80 0.34 

Set 5 90 0.79 0.35 0.70 0.42 

5-fold validation 

Total set  0.75 0.39 

aMAE – mean absolute error 
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All QSAR models were first developed based on the 

training sets only and their accuracy was estimated using 

the Leave-One-Out (LOO) cross-validation [28]. The Q
2
 

coefficients for the training sets were 0.77 - 0.79. The 

compounds in the external test sets were predicted with the 

accuracy, Q
2
 = 0.70-0.80. The total accuracy Q

2
 calculated 

using the 5-fold validation was about 0.75, MAE = 0.39. 

The model is stable and predictive both internally, as can 

be verified by the statistical parameters (high value of 

cross-validation parameters Q
2
 and low MAE), and 

externally (similar high value of Q
2
); the small values of 

MAE and standard deviation errors (not shown in table). 

The quality of the results is given graphically in Fig. 1, 

showing the good correlation between observed and 

predicted values for the total data set (validation set 1-5) 

using 5-fold validation method. After analyzing the 

prediction results for all compounds of dataset, we found 

that most compounds (namely 1728 out of 1878) are well 

predicted with smaller residues lower than 1 log unit. Only 

9 chemicals have residuals between the experimental and 

predicted log(1/MIC) higher than 2 log units. Slightly 

worse predictions for some compounds from the test set 1 

and 5 (Table 1, Fig 1) can be explained by the fact that a 

number of compounds of these sets are more dissimilar 

from the molecules of training sets. 

 

Figure 1. Plots of experimental versus predicted values for the total QSAR 

model data set; MIC is the minimal inhibitory concentration. 

3.2. The Influence of the Applicability Domain 

The AD defines the area of the descriptor space in which 

QSAR models can more accurately predict the target 

properties. If a compound is “too dissimilar” (beyond the 

defined distance cutoff value) to all compounds of the 

modeling set in the descriptor space then we assume that we 

cannot predict its activity reliably. The AD for models 

derived was calculated from the distribution of similarities 

between each compound and its k nearest neighbors in the 

training sets. The similarities were defined as Dice index 

between a molecule i and a training set. They were 

computed as the average DI to the k nearest neighbors of this 

molecule in the training set [30]. The average DI were 

calculated using k=10, which was an optimal number of 

nearest neighbors for the models. 

We have investigated the effect of varying the threshold 

value of the AD on the interplay between chemical space 

coverage and prediction accuracy. Without applying the AD for 

the data set, the best overall accuracy was 0.75 (see Table 2). 

Table 2. Influence of Dice index cutoff on total model quality. 

Step Dice index 
Number of 

molecules 

Statistical coefficients 

Q2 MAEa 

1 - 1878 0.75 0.39 

2 0.5 1860 0.75 0.38 

3 0.6 1835 0.75 0.38 

4 0.7 1762 0.76 0.37 

5 0.8 1608 0.78 0.36 

6 0.9 1064 0.81 0.33 

aMAE – mean absolute error 

It was found that for total data set, the Q
2
 increases (MAE 

decreases) when DI cutoff increases from 0.6 to 0.9 (Table 

2). However, it is generally hard to assign a standard AD 

threshold that should be used in all cases. The increased 

accuracy came at the expense of reducing the number of 

compounds for which the prediction could be made. For 

example, if DI cutoff equals 0.9, less than 60% of all 

compounds were within the AD for the total data set. 

Typically, we tend to use a conservative DI cutoff of 0.6 to 

ensure high prediction accuracy for all (eligible) compounds 

in the external sets. Thus, results of this study illustrate that 

the prediction accuracy was not increased significantly by 

increasing the AD, i.e., DI cutoff, up to values as high as 0.9, 

which allowed making accurate predictions for more than 

half of the compounds in both data sets. 

3.3. Prediction Activity of New Compounds 

In the present study, we generated virtual set of drug-like 

molecules in order to screen potential inhibitors against 

Candida albicans. The 2D structures of new compounds 

were built using MarvinSketch template libraries [15] and 

consisted of azole analogues. Finally, the activity of all 

virtual compounds was predicted using the proposed QSAR 

models. The compounds that were most similar to the 

training set (DI similarity cutoff of 0.6) and predicted as 

being the most active were selected for biological testing 

(see Table 3). 

Table 3. Predicted activity of the azole study derivatives, against C. 

albicans. 

Number M1a M2 M3 M4 M5 Meanb 

1 4.63 4.05 4.72 4.31 5.00 4.54±0.33 

2 3.71 4.04 3.82 3.38 4.41 3.87±0.34 
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Number M1a M2 M3 M4 M5 Meanb 

3 3.82 4.11 4.05 3.66 4.35 3.99±0.24 

4 3.80 5.05 4.47 3.86 5.29 4.50±0.60 

5 4.22 5.37 4.30 4.37 5.63 4.78±0.59 

6 4.68 3.63 4.39 3.88 5.02 4.32±0.51 

7 4.73 3.70 4.22 3.77 4.77 4.24±0.45 

8 4.30 3.99 4.52 3.75 4.89 4.29±0.40 

9 3.83 4.79 4.16 4.33 4.29 4.28±0.31 

10 4.69 3.85 4.10 3.81 4.16 4.12±0.31 

11 4.60 3.94 3.99 3.77 4.06 4.07±0.28 

aM1- QSAR model number 1; bMean value of log(1/MIC) 

Compounds 1, 4 and 5 were predicted to be the most 

active. The activity value of compound 5 was predicted to be 

the highest at log (1/MIC) = 4.78±0.59, followed by 

compounds 1 and 4 with forecasted activities of log (1/MIC) 

= 4.54±0.33 and 4.5±0.6, respectively. The average Dice 

Index values ranged between 0.61-0.69 for these compounds. 

The results of the biological screening of the proposed azole 

derivatives confirmed the QSAR predictions for compounds 

1, 4 and 5 (see section Biology, Table 5). 

4. Chemistry 

Compounds 1-11 were synthesized starting from available 

N-(2,3,3,3-tetrachloroethyl) carboxylic acid amides (see 

Table 4) [31]. For preparation 4-cyanoxazoles this reagent 

was treated with potassium cyanide and then with excess of 

aliphatic amine as described in [32]. 

Table 4. Chemical structures of compounds 1-11. 

Number Molecular weight Chemical structure Chemical name 

1 292,36 

O

N

S

CH
3

CN

 

2-Phenyl-5-tolylsulfanyl-4-cyano-1.3-oxazole 

2 327,34 
O

O

N

N

CN

COOH
 

1-(2-Benzyloxy-4-cyano-1,3-oxazol-5-yl)piperidine-4

-carboxylic acid 

3 251,24 

O

O

N

N

CNCH
3

COOH
 

1-(4-Cyano-2-methoxy-1,3-oxazol-5-yl)piperidine-4-

carboxylic acid 

4 412,41 
O

N

N

CN

COOH

NH

O

COOH

 

1-{2-[2-(2-Carboxy-benzoylamino)ethyl]-4-cyano-1,

3-oxazol-5-yl}piperidine-4- carboxylic acid 

5 222,25 O

N

N

O

CNNH
2

 

2-(2-Aminoethyl)-5-(morpholin-4-yl)-1,3-оxazole-4-

carbonitrile 

6 360,35 O

N

N

CH
3

P

O

O

O C
2
H

5

C
2
H

5

O

O
CH

3

 

Methyl N-[4-(diethoxy-phosphoryl)-2- 

methyl-1,3-oxazol-5-yl]isonipecotinate 

7 364,34 

P

O

O

O
N
H

CH
3

O
O N

COOH

C
2
H

5

C
2
H

5

 

1-[2-Acetylamino-2-(diethoxyphoshoryl)acetyl]-piper

idin-4-ylcarboxylic acid 
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Number Molecular weight Chemical structure Chemical name 

8 384,33 

P

O

OH

OH
N
H

O
O N

COOH

CH
3

 

1-{2-(Dihydroxyphosphoryl)-2-[(4-methylphenyl)-for

mamido]acetyl}piperidin-4-ylcarboxylic acid 

9 400,35 

O

CH
3

P

O

OH

OH

NH

NN

SN
H

O

O
C

2
H

5

 

(5-Ethyloxycarbonylamino-1,3,4-thiadiazol-2-yl)-[(4-

methylbenzoyl)-amino]methyl-phosphonic acid 

10 463,81 
O

N

S

P

O

O

O

Cl

O
O

CH
3

C
2
H

5

Na

 

Sodium monoethyl 2-(4-methylphenyl)-5- 

[(4-chlorophenyl)sulphonyl]-1,3-oxazol-4-ylphospho

nate 

11 437,32 

O

N

S

P

O

ONa

ONa

CH
3

O
O

CH
3

 

Disodium-2-(4-methylphenyl)-5- 

[(4-methylphenyl)-sulphonyl]-1,3-oxazol-4-ylphosph

onate 

 
4-(Diethoxyphosphoryl) oxazoles were obtained via 

treatment N-tetrachlorethylamides with ethylphosphite and 

then with excess of aliphatic amine [33]. Compound 1 was 

synthesised in reaction of 2-acylamino-3,3- 

dichloroacrylonitriles with thiophenol, followed by 

refluxion with Argentum carbonate [34]. Other compounds 

2-11 was synthesised from 4-cyanoxazoles and 

4-(diethoxyphosphoryl)oxazoles by known methods 

described in literature [35]. 

5. Biology 

We investigated the activity of new 11 azole derivatives 

shown in Table 4. Fluconazole, a known effective antimycotic 

drug, was used as positive control. The fungistatic activity of 

each compound was assessed using C. albicans standard strain 

ATCC 10231 М 885 and its clinical isolate by the use of an 

established standard Kirby-Bauer disk diffusion method [36]. 

Seaboard’s agar (JSC «Research center of pharmacotherapy» 

Saint-Petersburg) was prepared according to the 

manufacturer’s instructions, then dispended into glass bottles 

and autoclaved at 121°C and 15 psi for 15 min. The microbial 

culture was evenly poured onto the surface of agar plates into a 

volume of 0.2 ml of sterile saline solution to produce end 

concentrations of 1·10
5
, 1·10

6
, and 1·10

7 
colony forming units 

(CFU) in 1 ml. A sterile 6 mm paper disc was placed on each 

agar plate and the test compound then inoculated onto the disk 

in a volume of 20 µl. The plates were then incubated at 37 °C 

for 24 h. All compounds were tested in triplicate at a 

concentration of 1.3·10
-7

 M. The standard disks (JSC 

«Research center of pharmacotherapy» Saint-Petersburg) of 

reference-preparation contained 40 µg fluconazole, 

corresponding to 1.3·10
-7

M. 

The activities of all compounds are shown in Table 5. 

Table 5. Growth inhibition of C. albicans strain ATCC 10231 М 885 by a set 

of azole derivatives. The diameters of inhibition zones are given in 

millimeters. 

Number 

Microbial loading, CFU in 1 ml 

1 105 1 106 1 107 

standarda isolateb standard isolate standard isolate 

1 23 10 17 9 14 9 

2 15 na 11 na na na 

3 13 na na na na na 

4 20 9 16 8 13 na 

5 22 10 20 9 17 na 

6 17 na 13 na 9 na 

7 15 na 12 na 9 na 

8 14 na 11 na 8 na 

9 16 na 11 na 8 na 

10 21 10 15 na 11 na 

11 22 8 19 na 14 na 

Fluconazole 21 na 22 na 20 na 

aC. albicans standard strain ATCC 10231 М 885; bC. albicans strain 

isolated from biomaterial; cna, not active. 

The data presented in Table 5 show that compounds 1, 4, 5, 

10 and 11 exhibit high fungistatic activity against C. 

albicans strain ATCC 10231 M 885, that is in good 

agreement with the QSAR predictions. Zones of inhibition 

formed by these compounds under conditions of high 

microbial loading (1·10
5
 CFU in 1 ml) exceeded those 

obtained using Fluconazole. The increase of microbial 

loading (1·10
6
 and 1·10

7
 CFU in 1 ml) led to gradual 

decrease of antimycotic activity of all compounds in 

comparison with the fluconazole. It should be noted that the 

compounds 1, 4, 5, 10 and 11 also showed activity against 

clinical isolate strain of C. albicans received from a 

biological material and resistant to fluconazole. 
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6. Conclusion 

In summary, global ASNN model was built to study the 

quantitative structure-activity relationship for a series of 

selective Candida albicans inhibitors. DRAGON software 

was used to calculate the molecular descriptors. The 

proposed QSAR model have good stability, robustness and 

predictive power when verified by internal validation 

(cross-validation by LOO) and also external validation. An 

application of pruning methods was able to select subsets of 

most relevant input descriptors determining the molecular 

inhibitory activity. Integrating the Artificial Neural Network 

method with pruning algorithms and n-fold validation 

approach it was possible to build models with high 

predictive ability. To have “external” chemicals not used in 

the model development, the original data set is split into 

training and prediction sets randomly in order to avoid the 

bias of structural similarity. Experimental results also 

indicated that a DI similarity value ≥ 0.60 could be used to 

estimate the reliability of the predictions. This means that 

the QSAR models presented can be reliably used to predict 

the C. albicans inhibitor activity of new azole derivatives. 

Our results demonstrate that proposed azole derivatives 

show significant activity against C. albicans. Compounds 1, 

4, 5, 10 and 11 appeared to have potential for the treatment 

of candidiasis. The proposed QSAR models can be applied 

as tools for finding new potential C. albicans inhibitors. 
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