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Abstract: The three dimensional structure of Aedes aegypti chorion peroxidase was computed by homology modeling. The 

ModWeb server provided the most accurate model with QMEAN score of 0.642. The protein model consists of 36.1% 

alpha-helices and 1% beta-strand. Ligand binding sites in Aedes aegypti chorion peroxidase were identified using SiteComp 

server. In silico docking of a subset of ZINC natural products database was focused on the predicted binding site. Three 

ligands were found to be potential inhibitors of Ae. aegypti chorion peroxidase. 
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1. Introduction

Dengue fever and dengue hemorrhagic fever (DF/DHF) 

are mosquito borne diseases of public health concerns in 

tropical and subtropical parts of the world [1], affecting 

millions of people annually [2]. The Philippines ranks 

second in incurring the dengue disease burden among 

countries in Southeast Asia [3]. In fact in 2010, the total 

number of cases and deaths attributed to dengue was highest 

in the Philippines [4]. The main insect vector of the disease 

is the mosquito, Aedes aegypti [5]. Currently, controlling 

this vector with insecticidal spraying remains an important 

option to minimize the incidence of dengue fever [6]. 

Natural products with mosquitocidal activity can be found 

from plants and microorganisms. The traditional approach 

to natural products discovery is through tedious screening 

of microbial and plant extracts followed by 

bioassay-guided identification and structure elucidation. 

However, the availability of public domain databases of 

protein sequences and experimentally determined structures 

of plant and microbial secondary metabolites together with 

advanced computational power offer cost-effective 

bioinformatics approach for discovery of new 

mosquitocidal compounds. 

The chorion of Aedes aegypti eggs undergoes a hardening 

process following oviposition and individual chorion 

proteins become insoluble thereafter. The enzyme, chorion 

peroxidase is primarily responsible for the irreversible 

insolubilization of the chorion proteins after oviposition [7]. 

Ae. aegypti chorion peroxidase has not been investigated as 

potential target for development of natural products such as 

mosquitocides. The development of ovicidal compounds 

targeting chorion peroxidase would complement existing 

larvicidal and adulticidal compounds for control of Ae. 

aegypti. The objectives of this study are to construct a 

homology model of Aedes aegyti chorion peroxidase 

enzyme and to identify by computational method, potential 

inhibitors of chorion peroxidase. 

2. Methodology 

2.1. Homology Modeling 

Homology modeling was carried out to predict the three 

dimensional (3D) structure of Ae. aegypti chorion peroxidase. 

The amino acid sequence of Ae. aegypti chorion peroxidase 

was downloaded from the NCBI website and uploaded 

separately to the Phyre2 [8], ModWeb [9], CPH [10] and 

RaptorX [11] homology modeling servers. Structure 

refinement of the predicted models was carried out using 

ModRefiner [12]. Quality of the predicted protein structures 

was evaluated by using online version of QMEAN and 

RAMPAGE. The binding sites in the protein was predicted 

with the SiteComp server [13].  The binding site predicted by 

the SiteComp server was validated with POOL [14] and 

DISCERN [15] protein functional site prediction servers. 
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2.2. In Silico Screening 

Pharmacophore search in the ZINC compound database 

[16] for candidate inhibitors of Ae. aegypti chorion peroxidase 

(AaCP) was carried out using the on-line server, 

ZINCPharmer [17]. A well-defined pharmacophore model 

includes both hydrophobic volumes and hydrogen bond 

vectors. Heme bound to bovine lactoperoxidase (PDB I.D. 

3q9k) was uploaded to the server to generate pharmacophoric 

features for screening the subset of natural products in the 

ZINC compound database. The software Autodock Vina [18] 

as implemented in PyRx (http://pyrx.sorceforge.net) was used 

to predict the binding pose and binding affinity of each ligand. 

Virtual screening was conducted with rigid receptor 

conformation. Docking of ligands was focused on the active 

site (size: x=25, y=25, z=25; center: 9.645, 2.54, 25.155). 

Computation was performed with a MacIntosh computer with 

quadcore Intel Core i5 CPU running at 2.7 GHz. Ligand with 

the most favorable binding energy (i.e. increasingly negative 

value) was considered a potential inhibitor of chorion 

peroxidase activity. 

3. Results and Discussion 

3.1. Model Quality Evaluation 

Homology models of proteins have been previously used 

for discovery of ligands [19]. In this study, four homology 

modeling servers were utilized to predict the 3-D structure 

of Ae. aegypti chorion peroxidase. Each of the four servers 

automatically assigned a protein template for the uploaded 

amino acid sequence of Ae. aegypti chorion peroxidase. 

Homology modeling builds a three dimensional structure of 

the target protein (with no experimentally determined 3D 

structure) based on sequence identity to known protein 

structures [20, 21]. Therefore, sequence identity is good 

determinant for the quality of the model. In general, 

sequence of at least one related structure must have more 

than 30% identity [22]. As a general rule, those models with 

sequence identities between 25% to 50% can be used to 

assess target ‘druggability” [23]. The most reliable model 

was obtained from the ModWeb server (Table 1). The server 

used bovine lactoperoxidase (PDB ID 3q9k) as template 

with 33% sequence identity with Ae. aegypti chorion 

peroxidase. The two other servers that produced good 

models were CPH and Phyre2. The low QMEAN score 

produced by the I-Tasser model might be due to low 

sequence identity with the template protein although model 

quality is not always directly related to the identity between 

template and target sequence [24]. In a previous benchmark 

study, it was demonstrated that Modeller performed better 

than other modeling programs [25]. 

Mod Web server is a Web interface to ModPipe [26] 

which in turn uses the Modeller program to calculate 

homology models of query protein sequences. MODELLER 

takes target-template alignment file as input and without 

user intervention it generates a 3D model. Initial step of 

model building is, identification of spatial restraints for 

example, distances and dihedral angles lying on the target 

sequence followed by alignment with template sequence. 

Interaction of many features of protein structure is analyzed 

statistically and used to derive spatial restraints on the target 

sequence [27]. The ModWeb model (Fig. 1) contained 

36.1% alpha-helices, and 1% beta-strand. The 

stereochemical quality of the ModWeb-generated model was 

highest among the three models taking into consideration 

both the QMEAN score and percent sequence identity with 

the template protein (Table 1). The main chain conformation 

for 93.4% of all residues in the ModWeb model were within 

the most favoured regions, 5.2% in allowed regions and 

1.4% in outlier regions as determined by Ramachandran plot 

analysis (Fig. 2).  

Table 1. Comparison of homology modeling server performance in 

prediction of Aedes aegypti chorion peroxidase three-dimentional structure. 

Server Template % Identity QMEAN Score 
Phyre2 2gjm 31.0 0.497 

RaptorX 2o86 30.0 0.574 

ModWeb 3q9k 33.0 0.642 

CPH 2eha 30.9 0.604 

 

Figure 1. ModWeb-predicted three dimensional structure of Aedes aegypti 

chorion peroxidase. Model structure was obtained from template 3q9kA. 

Modeled region was from residue 210 to 785.  Length of target sequence is 

790 residues. Predicted ligand binding site is shown as red sphere clusters. 

Each molecular interaction field (MIF) cluster represents a binding site. 

MIFs describe the spatial variation of the interaction energy between target 

molecule (i.e., chorion peroxidase) and a probe (i.e., methyl carbon) [11].  

3.2. Binding Site Identification 

In silico analysis identified putative ligand binding (red 

sphere cluster) and decoy sites (orange and yellow clusters) 

in Ae. aegypti chorion peroxidase (Fig. 1). The putative 

ligand binding site corresponds to the heme binding site in 

3q9k. The binding site in the ModWeb model is not 

identified in the other 3D structures generated by the other 

servers. The ligand binding site (total energy= -1404.83) 

contained 26 amino acid residues (Table 2). The two decoy 

sites were smaller in volume as compared to the putative 

ligand binding site. Statistically significant size difference 

exists between true ligand binding site and other sites on a 

particular protein surface [28]. The predicted binding site is 
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validated by the results of the POOL server analysis (Table 

2). Fifteen (Gly300, Gln301, Ser304, His305, Thr308, 

Leu309, Arg447, Arg535, Pro536, Ala544, His547, Arg548, 

His551, Leu629, Arg633) out of 26 residues predicted by the 

SiteComp server were also identified as binding sites by the 

POOL server.  

Table 2. Results of POOL server analysis of the predicted Aedes aegypti 

chorion peroxidase binding site. 

Rank POOL Score Residue number 

1 0.001666223979555 ARG:548 

2 0.001088240067475 HIS:547 

3 0.000595350051299 HIS:305 

4 0.000279450032394 ARG:633 

5 0.000153869987116 ASP:306 

6 0.000151200016262 HIS:551 

7 0.000132696004584 ASP:390 

8 0.000107250001747 ASP:445 

9 0.000085085004685 ASP:383 

10 0.000083226004790 TYR:709 

11 0.000058916004491 TYR:706 

12 0.000058464003814 LYS:617 

13 0.000054432006436 GLN:301 

14 0.000053550003940 ARG:447 

15 0.000051216004067 ARG:640 

16 0.000049028003559 HIS:387 

17 0.000038880003558 SER:304 

18 0.000030096001865 TYR:501 

19 0.000023760001568 THR:308 

20 0.000018040000214 ARG:337 

21 0.000017640000806 ARG:535 

22 0.000017009999283 LEU:309 

23 0.000016743999367 LYS:710 

24 0.000013524000678 TYR:716 

25 0.000013200000467 ALA:544 

26 0.000011424001059 TYR:496 

27 0.000010710001334 HIS:458 

28 0.000008189999789 TYR:254 

29 0.000007919999916 ASN:630 

30 0.000007776000530 PHE:302 

31 0.000007392000498 TYR:549 

32 0.000006480000593 PRO:536 

33 0.000006480000593 ARG:311 

34 0.000006210000720 ARG:248 

35 0.000005039999905 GLY:300 

36 0.000004752000223 MET:537 

37 0.000004576000720 TYR:395 

38 0.000004049999916 LEU:629 

Among the top ten amino acid residues listed in Table 2, five residues  are 

also included in the top ten list of the DISCERN server.  The five residues 

with corresponding DISCERN scores are as follows: Arg633=5.82, 

Arg548=4.70, His551=4.62, Asp306=4.25, and Asp445=4.21.  

 

Figure 2. Ramachandran plot of ModWeb-predicted three dimensional 

structure of Aedes aegypti chorion peroxidase. Outlier residues are 

indicated as magenta and orange dots. 

3.3. In Silico Screening 

In silico screening is an alternative or complement to high 

throughput screening and permits screening of compounds 

which are not physically available in the laboratory. A 

preliminary pharmacophore filtering of a subset of ZINC 

natural products database yielded 243 compounds (data not 

shown). A summary of results of in silico docking of these 

pre-filtered compounds to Ae. aegypti chorion peroxidase 

are shown in Table 3. Three compounds with molecular 

weight ranging from 489.568 g/mol to 542.995 g/mol were 

predicted to have tight binding to Ae. aegypti chorion 

peroxidase as follows: ZINC 02158845 ( -11.9 kcal/mol), 

ZINC 70701039 (-11.2 kcal/mol), and ZINC 12902647 

(-11.1 kcal/mol) (Table 3). The amino acid residues 

interacting with the top scoring compound ZINC 02158845 

are shown in Fig. 3. One residue, glutamine 450 is hydrogen 

bonded to O4 in ZINC 02158845. Nineteen residues (Ser304, 

His338, Phe339, Trp436, Arg447, Asn449, Pro536, Ala544, 

His547, Arg548, His551, Phe576, Asn577, Leu615, Phe616, 

Lys617, Glu618, Leu629, Arg633) in the binding site were 

in hydrophobic contact with the ligand. The interaction 

between these hydrophobic region of the binding site with 

the ligand are often observed to provide the driving force for 

binding [29]. The presence of proline in the binding site is 

unusual because this amino acid residue is generally 

unreactive and does not adopt many protein main-chain 

conformations [30]. Chorion peroxidase has not been 

utilized as target for development of mosquitocidal 

compounds. Enzyme inhibition and ovicidal assays will be 

required to validate the predicted ovicidal activity of these 

three compounds. 
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Table 3. Result of binding site analysis of Aedes aegypti chorion 
peroxidase. 

Rank 
Total 
Energy 

Volume 
(Å) 

Amino acid residues in the 
binding site 

1 -1404.83 124 G300, Q301, S304, 

   H305, T308, L309, 

   H358, F339, R447, 

   Q450, L451, R535, 

   P536, A544, H547, 

   R548, G550, H551, 

   V554, I572, F576, 

   L611, L615, L626, 

   L629, R633 

2 -1319.59 103 E255, W259,A260, 

   P261, R262, H264, 

   S265, V266, N269, 

   L270, L271, P272, 

   S273, A274, I277, 

   F333, R337, F342, 

   P343, E345, I631, 

   Q632, R635, Y671, 

   D676, D678 

3 -1281.28 99 N293, L295, L561, 

   M592, F593, F595, 

   N596, I745, Q759, 

   E760, A761, Q764, 

   D768, N769, P771 

 

Figure 3. 2-D representation of amino acid residues in Aedes aegypti 

chorion peroxidase binding site interacting with ZINC 02158845. 

Hydrogen bonding is indicated by green dashed line between atoms 

involved.  Hydrophobic contacts are represented by an arc with spokes 

radiating toward the ligand atoms they contact.  Diagram was constructed 

using LigPlot V1.4.5 [31].

Table 3. Chemical properties of predicted Aedes aegypti chorion peroxidase inhibitors from subset of ZINC natural products database. 

Ligand ID Molecular Weight (g/mol) Molecular Formula Chemical Structure 

ZINC 02158845 542.995 C31H26ClNO6 

 

ZINC 70700093 541.536 C30H26N2O8 

 

ZINC 12902647 489.568 C29H31NO6 

 

 

4. Conclusion 

Homology modeling is a very useful tool for predicting 

with good accuracy the 3D structure of Ae. aegypti chorion 

peroxidase. Experimental validation of the predicted 

anti-chorion peroxidase activity of the candidate ligands 

should be conducted. 

 
 

References 

[1] J. Ponlawat, G. Scott, and L.C. Harrington, “Insecticide 
susceptibility of Aedes aegypti and Aedes albopictus across 
Thailand,” J. Med. Entomol. Vol. 42, pp.821–825, 2005.  



42 Edwin P. Alcantara:  In Silico Identification of Potential Inhibitors of Dengue Mosquito, Aedes Aegypti Chorion Peroxidase 

 

[2] M. Jacobs, “Dengue: emergence as a global public health 
problem and prospects for control,” Trans R Soc Trop Med 
Hyg. Vol. 94, pp. 7–8, 2000. 

[3] D.S. Shepard, E.A. Undurraga, and Y.A. Halasa, “Economic 
and disease burden of dengue in Southeast Asia,” PLoS Negl. 
Trop. Dis. Vol. 7, pp. e2055. 2013. 

[4] Y. Arima and T. Matsui, “Epidemiologic update of dengue in 
the Western Pacific Region, 2010,” West. Pacif. Surveil. Res. 
Jour. Vol. 2, pp. 4-8, 2011. 

[5] M.S. Chang, E.M. Christophel, D. Gopinath, R. Abdur R, 
“Challenges and future  perspective for dengue vector 
control in the Western Pacific Region”, West. Pacif. Surveil. 
Res. Jour. Vol. 2, pp. 9-16, 2011. 

[6] H. Khan, W. Akram, K. Shehzad, and E. Shaalan, “First 
report of field evolved resistance to agrochemicals in dengue 
mosquito, Aedes albopictus (Diptera: Culicidae), from 
Pakistan,” Parasites & Vectors Vol. 4, pp. 146-157, 2011. 

[7] J.S. Li and J. Li, “Major chorion proteins and their 
crosslinking during chorion hardening in Aedes aegypti 
mosquitoes,” Ins. Biochem. Mol. Biol. Vol. 36, pp. 954-964, 
2006. 

[8] L.A. Kelly and M.J.E. Sternberg, “Protein structure 
prediction on the web: a case study using the Phyre server,” 
Nat. Prot. Vol. 4, pp. 363-371, 2009. 

[9] N. Eswar, B. John, N. Mirkovic, A. Fiser, V. Ilyin, et al., 
“Tools for comparative protein structure modeling and 
analysis,”  Nuc. Acids Res. Vol. 31, pp. 3375-3380, 2003. 

[10] M. Nielsen, C. Lundegaard, O. Lund, T.N. Petersen, 
“CPHmodels-3.0- Remote homology modeling using 
structure guided sequence profiles,” Nuc. Acids Res. Vol. 38, 
doi:10.1093/nar/gkq535, 2010. 

[11] M. Kallberg, H. Wang, S. Wang, J. Peng, Z. Wang, et al., 
“Template-based protein structure modeling using the 
RaptorX web server,” Nat. Prot. Vol. 7, pp. 1511-1522, 2012. 

[12] D. Xu and Y. Zhang, “Improving the physical realism and 
structural accuracy of protein models by a two-step 
atomic-level energy minimization,” Biophy. J. Vol. 101, pp. 
2525-2534, 2011. 

[13] Y. Lin, “SiteComp: a server for ligand binding site analysis in 
protein structures,” Bioinformatics Vol. 15, pp. 1172-73, 
2012. 

[14] S. Somarowthu and M. Ondrechen, “POOL server: machine 
learning application for functional site prediction in 
proteins,” Bioinfor. Vol. 28, pp. 2078-2079, 2012. 

[15] S. Sankararaman, F. Sha, J.F. Kirsch, M.I. Jordan, K. 
Sjolander, “Active site prediction using evolutionary and 
structural information,” Bioinfor. Vol. 26, pp. 617-624, 2010. 

[16] J.J. Irwin,and B.K. Shoichet, “ZINC- a free database of 
commercially available compounds for virtual screening,” J. 
Chem. Inf. Model, Vol. 45, pp. 177–182, 2005.  

[17] D. Koes D and C.J. Camacho, “ZINCPharmer: 
pharmacophore search of the ZINC database,” Nuc. Acids 
Res. Vol. 40, pp. W409-W414, 2012. 

[18] O. Trott and A.J. Olson, “AutoDock Vina: improving the 
speed and accuracy of docking with a new scoring function, 
efficient optimization and multithreading,” Jour. Comp. 
Chem. Vol. 31, pp. 455-461, 2010. 

[19] M. Jacobson and A. Sali, “Comparative protein structure 
modeling and its applications to drug discovery,” Annu. Rep. 
Med. Chem., Vol. 39, pp. 259–276, 2004. 

[20] A. Sali, “100,000 protein structures for the biologist,” Nat. 
Struct. Biol. Vol. 5, pp. 1029-1032, 1998. 

[21] D. Vitkup, E. Melamud, J. Moult, and C. Sander, 
“Completeness in structural genomics,” Nat. Struct. Biol. Vol. 
8, pp. 559-566. 2001. 

[22] S. Roberto and S. Andrej, “Comparative protein structure 
modeling: Introduction and practical examples with 
MODELLER,” In: Protein Structure Prediction: Methods and 
Protocols. Ed: Webster, D. M., 97- 129. Humana Press. 2000. 

[23] B. Wallner and A. Elofsson. “All are not equal: A benchmark 

of different homology modeling programs,” Prot. Sci., vol. 

14, pp. 1315-1327, February 2005. 

[24] S. Bilal, S.B. Ali, S. Fazai, and A. Mir. “Generation of a 3D 

model for human cereblon using comparative modeling,” 

Jour. Bioinf. Seq. Anal. Vol. 5, pp. 10-15, 2013. 

[25] C.N. Cavasotto and S.S. Phatak, “Homology modeling in 
drug discovery: current trends and applications,” Drug 
Disc.Today. Vol 14, pp. 676-683, 2009. 

[26] U. Pieper, N. Eswar, B. Webb, E. Eramian, L. Kelly, et al., 
“MODBASE, a database of annotated comparative protein 
structure models, and associated resources,” Nucleic Acids 
Res. Vol. 37, D347-D354. 2009. 

[27] A. Sali and T.L. Blundell, “Comparative protein modeling by 
satisfaction of spatial restraints,” Jour. Mol. Biol. Vol. 234, pp. 
779-815. 

[28] P.J. Hajduk, J.R. Huth, and S.W. Fesik. “Druggability 
indices for protein targets derived from NMR-based 
screening data,” J. Med. Chem. Vol. 48, pp. 
2518-2525,2005. 

[29] M.D. Kelly, R.L. Mancera, “A new method for estimating 
the importance of hydrophobic groups in the binding site of 
a protein,” Jour. Med. Chem. Vol. 48. pp. 1069-1078. 

[30] M.J. Betts, R.B. Russell, “Amino acid properties and 
consequences of substitutions. In Bioinformatics for 
Geneticists (M.R. Barnes, I.C. Gray, eds). Wiley, 2003. 

[31] A.C. Wallace, Laskowski R.A., and Thornton J.M. “LIG 
PLOT: a program to generate schematic diagrams of 
protein-ligand interactions,” Protein Eng. Vol. 8, pp. 
127-134, 1996. 

 


