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Abstract: This article describes a mathematical modeling method of an ecological biology system; this method uses 

computers. Hypotheses about the leading mechanisms of fluctuations for tundra animals population’s number are formulated. 

An analysis of difference and differential equations and their manifestations in the community model “vegetation – lemmings 

– arctic foxes” and in an individual-oriented model of a lemming population are performed. This method uses research results 

including a full set of operations, namely from a substantiation of an object choice, a selection and processing of a biological 

information to the construction of a set of interconnected models. The given approach is used in the analysis of animal 

fluctuations by means of the tundra community models “vegetation – lemmings – arctic foxes”, “vegetation – reindeer”, and 

the individual-oriented model of the lemming population. 
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1. Introduction 

The mathematical modeling method of an ecological 

biology system specifically features: basic universal 

equations for analysis of the natural ecological biology 

system are absent (the analogues of equations in physics); 

theoretical (mathematical) methods are lack and it is 

necessary to evaluate them by experimental researches; 

some functional characteristics of ecological objects are 

absent, they are estimated with a help of experts; many 

biological research results are uncertain.  

General assumptions are not connected with detailed 

representations of biological characteristics. They are 

connected with the model choice. Besides, they are based 

on mathematical equations. The information filling the 

model is realized according to its structure. But is this 

choice successful?  

A model inevitably simplifies the situation. Only the 

results of computational experiments with a full formed 

model may show the success of this choice.  

An effective tool is necessary for creating the model in a 

lack of quantitative data, at conditions of constant readiness 

to review the model assumptions and its structure. First of 

all, the success of modeling depends on the efficiency of an 

interdisciplinary dialog. 

The appearance of J. Forrester’s system dynamics (see 

[1]) have made such interdisciplinary toolbox available; it 

has been based on the method of simulation models 

creating in a dialog with experts. This approach lets one 

take into account virtually all proposals of the experts in 

either quantitative or qualitative form. Тhe relative 

simplicity of the resulting models lets perform a 

comparative analysis for different sets of original 

assumptions, data, and hypotheses. 

However a large simulation model is not amenable to a 

parametric analysis.  

The construction of many variants for the model and 

their analysis leads to the formation of mathematics, i.e., 
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the “designer” representations of the object. This 

contributes to the joint selection of the model structure. A 

biological information lets accept various intuitive ideas for 

a consideration.  

The main stimulus for the development of modeling 

technology is enclosed in resolving the contradiction 

between the possibility of a detailed description and a 

desire to avoid the threat of a “model’s immensity”. 

The aim of this paper is to formulate the following. The 

simulation model ideally built (from biology and 

mathematics point of view) is a tool for the preliminary 

study of the object. A basic (detailed) simulation model 

should be a component for a set of interrelated models 

including simplified models.  

The simplified models have less variables. Moreover, 

they allow a detailed analytic study, allow to estimate the 

object “as a whole”, configure the initial simulation model 

for the necessary sub-models, and make the hypotheses 

about the leading mechanisms of the phenomenon under 

study.  

To solve the aforementioned problems the method of 

complex studies (COST) is proposed. This method includes 

the entire sequence of operations: collection, filtering, 

analysis, and processing of an input (biological) 

information; the justification and the construction of 

simulation models, and the analysis of their properties; the 

formulation of a simulation system, i.e., a set of interrelated 

models on different itemized levels; the set includes the 

simplified models admitting the analytic (portrait) study; 

the formulation of hypotheses on the leading mechanisms 

for the phenomenon under consideration. 

Pattern-oriented modeling is a general strategy for 

complex systems modeling. Many structures observed at 

different scales and hierarchical levels are used for model’s 

optimization and calibration, in addition, for testing and 

choice of key processes for sub-models (see [2]). This 

approach is the closest to our COST method.  

One can create the simplified (analytic) models with a 

joint analysis of the ecologo-biological information and the 

results of computational experiments based on reductions 

of basic simulation models. Why is the existence of the 

simplified model useful? How to use it? Given paper 

discusses this.  

The complex research approach has been suggested in 

order to model the tundra community. Basing on expert 

estimates of relationships researchers have created the 

“vegetation – lemmings – arctic foxes” (VLF) simulation 

model such that it takes into account seasonal changes in 

parameters. 

To understand better the mechanisms forming the 

dynamics of tundra animal populations the researchers have 

justified the use of one-dimensional difference equation as 

the simplified model relating the lemming population size 

(the leading unit in the VLF model) in two consecutive 

years. 

This simplified model plays a special role in studying the 

population’s number fluctuations for tundra animals. This 

has led us to search a closer connection between difference 

equation and the original simulation model VFL. Basing on 

the joint analysis of the ecologo-biological information and 

the results of the computational experiments we have been 

able to formulate and solve an inverse simulation problem 

(see [3]). This problem introduces the additional 

assumptions such that they let us get the formulas relating 

the original community model’s parameters and the 

parameters of the difference equation. The VFL model is 

described briefly in the second section. The model’s full 

description is performed in the paper [3]. 

The properties of the difference equation are considered 

in the third section. Nontrivial conclusions about these 

properties are made. 

The simplified models and our previous modeling 

experience have led us to another level of description 

namely individual-oriented models (see [4, 5]).  

The modeling results don’t depend on a specific 

parameterization, but they depend on the model’s type. This 

is the important achievement of our researches.  

The forth section describes the individual-oriented model 

of lemmings. The fifth section discusses the model 

“vegetation – reindeer”. 

2. The Model “Vegetation – Lemmings – 

Arctic Foxes” 

In many ways despite the lack of study the tundra is an 

attractive object for the modeling. It is a relatively simple 

ecosystem with few species, the trophic relations are 

strained. It is very difficult for animals to survive there. To 

create a meaningful mathematical model we need some 

striking phenomenon. Our model will recreate this 

phenomenon. 

The most popular “predator-prey” model was created to 

account for the fluctuations of the animal population’s 

number. The main advantage of this object is the existence 

of the pronounced regular fluctuations. In particular the 

number of the arctic foxes and the number of lemmings are 

subjected to the fluctuations. The lemmings are the primary 

prey of the arctic foxes. The regular fluctuations give us the 

reliable testing effect in studying the population’s dynamics. 

Regular peaks in the lemming populations were noted 

approximately once per three-four years (see [6]). The 

peaks were fixed once per three years on Taimyr peninsula. 

At the construction of the model the following principles 

have been used: minimality, i.e., we use the simplest 

possible mathematical structure to simulate the 

phenomenon; systemness, i.e., we take into account the 

diversity of the relations within and outside the objects 

under study; compatibility, i.e., we use the assumptions 

such that they do not contradict available ecological data. 

A biophysical analysis for the structure of the 

above-ground pasture part of the tundra biocoenosis has 

indicated the possibility to consider the VLF community 

separately. The biophysical analysis is described in detail in 
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the papers [5, 7]. 

Simulation object selecting and a choice of the structure 

for its mathematical description are a compromise between 

mathematical and ecological requirements. 

To describe a model a mathematical structure “ecological 

constructor” is proposed. This structure makes the model 

modification relatively simple. The implementation of this 

idea is based on a combination of J. Forrester’s system 

dynamics and the hypothesis of V. Volterra-Kostitsyn, i.e., 

the possibility of using the ordinary differential equations 

to describe the objects of ecological systems (see [5, 7, 8]).  

The dynamics of the tundra community biomass is 

described by the non-autonomous system: 
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where F, L, V are the biomass (number) dynamics of the 

arctic foxes, the lemmings and the vegetation (their food), 

respectively, γ is the vector of system parameters. For each 

trophic level X we have fX = RX -MX -DX, where RX is a 

growth, MX is a natural extinction, DX is an alienation 

(hunting). 

The biomass dynamics for each trophic level X is defined 

by three additive components. They are a reproduction rate, 

the alienation and the natural extinction. Each component is 

formed as a product of a constant and the respective 

function including the function estimated by experts. 

 
Figure 1. The results of the simulation experiment with the VLF model, 

the registered on Wrangel island (see [3]) trends of the hoof lemming are 

marked with the circles. 

This approach corresponds to the level of our knowledge 

in the biophysics of ecological processes, the variety of 

assumptions, and lets us take into account different 

ecological hypotheses in different modifications of the 

model. We have created a large number of versions of this 

model. At first, we have used the idea of strong trophic 

interactions for the “predator–prey” kind literally. Then 

using the threshold dependence hypothesis (the rate of the 

lemming’s biomass growth depends on the vegetation 

biomass (see [7])) and other hypotheses we have switched.  

Basing on the expert data we collected we have 

constructed the first version of the model. It is a union of 

Forrester’s and V. Volterra’s approaches, also Volterra’s 

“meeting hypotheses” have been emphasized (see [7]). This 

appears to be the main reason for the success of our 

modeling. This model was deconstructed when one of the 

species died, and soon afterwards the entire system died too. 

The failures in the implementation have led us to search for 

alternative approaches and methods of a simplified 

description. The studies of zero isoclinic lines in the 

“vegetation–lemmings” system have led to the idea of 

using an analogy with a neural cell. This implies that we 

introduce in the second version of the model the threshold 

dependence of the lemming’s biomass growth on the food 

availability. When a certain critical vegetation biomass is 

reached the lemming population’s explosion happens and 

soon afterwards the food supply becomes depleted. We 

have controlled a rate of vegetation regeneration. It follows 

that this has let us control the model tuning. Thus we have 

proved a kind of the theorem of existence about the 

possibility of the reconstruction for the necessary dynamic 

modes with a model from the chosen class. Our usage of 

the “threshold model” has made possible to find in a 

computational experiment the relations between the 

parameters of the corresponding expert estimates and an 

average interval between the population peaks. 

 
Figure 2. The phase portrait of the simplified subsystem "vegetation – 

lemmings". 
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The second version of the model has turned out to be 

unsatisfactory. Hence we have attempted to restructure the 

modeling process. There have been two ways of 

restructuring. Extending (deepening) of the biophysical 

knowledge about the biological properties of the 

biocenoses was the first way. Searching for efficient 

mathematical ways to express these properties was the 

second way. Having analyzed the results of computational 

experiments and ecological information we have 

understood the great importance of intrapopulation 

dynamics for the lemmings. The lemming population 

number’s fluctuations affect all animals in the tundra 

community. We have introduced a new type of nonlinearity, 

namely the Allee principle (see [7]) such that it brings into 

the model the lemming density that is optimal for the 

reproduction. A large number of other modifying 

assumptions has been related to the increasing stability 

(trajectory “boundedness”) of the model. Testing these 

assumptions we have used two biophysical criteria 

independently of expert estimates and axioms of classical 

models. Keeping the trajectories in the positive square was 

the first criterion. Reproducing of corresponding dynamic 

modes was the second one. The description for this version 

of the “vegetation—lemmings—arctic foxes” model is 

given in the papers [5, 7]. 

In computational experiments we have obtained three- 

and four-year cycles in lemming and arctic fox population’s 

sizes fluctuations that are characteristic for tundra. Fig. 1 

shows the results of one simulation experiment with the 

VLF model. The population dynamics of arctic lemming 

registered on Wrangel island (see [3]) is denoted by circles; 

Fig. 2 shows the phase portrait of the 

“vegetation–lemmings” subsystem constructed with 

numerical computations on the entire model for each 

season. Here the bold line represents one of the actually 

realized trajectories; thin lines designate phase curves in 

various seasons: dashed line, in winter (when lemmings do 

not reproduce); dot-and-dash line, in the nival reproduction 

period; solid, in summer (vegetation V is along the 

horizontal axis, lemmings L are along the vertical axis). As 

Fig. 2 clearly shows, during winter and spring the 

trajectories are attracted to the origin at the same time in 

summer the attractor is in the region of high lemming and 

vegetation density. Due to seasonal switching of the 

trajectories, fluctuations appear in the model. 

There are a lot of modern papers relating a chaos and the 

dynamics of rodent’s number, for example, see the paper 

[9].  

The desire of deeper understanding the mechanisms of 

the population dynamics for tundra animals has led us to 

the closing stages of the COST method. The simplified 

model of a lemming population has been constructed (see 

[10]). Using a chaos phenomenon it determines the nature 

of the fluctuations. This model has a form of 

one-dimensional difference equation relating the number of 

the lemmings in two neighboring years. We have searched 

relationships between the simplified model and the initial 

simulation model. We have formulated and solved the 

inverse simulation problem, i.e., we have introduced the 

additional assumptions such that they give the formulas 

relating the parameters of original community model and 

the parameters of difference equation (see [3]).  

To solve this problem the following simplifications have 

been realized. First of all, the arctic foxes have been 

excluded from the model as their influence on the 

lemming’s population dynamics is negligible. Then we 

have realized a piece linearization such that it uses 

nonlinear relationships. The example of such linearization 

is shown in Fig. 3, where g
2

L is a trophic lemmings function 

that formalizes the decline in the forages value in their 

deficit. This function is characterized with two constants 

(the first one is used in summer, the second one is used in 

spring). Thus the original system is reduced to a set of 

systems for two independent linear ordinary differential 

equations with constant coefficients (see [3]). 

 

Figure 3. The successive stages of the trophic lemmings function’s 

approximation. 

The result is the difference equation that relates the 

number of lemmings in two adjacent years (see [5]). For 

the normalized variable 
maxLL=L /

~  it has the following 

form 
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Here P is a growth of the lemmings biomass during the 

favorable year; the value B
~  is determined from the 

conditions of a starvation in the late winter; d is a 

normalized lemmings biomass in an optimal biotope (the 

notion of an optimal biotope was introduced in the paper [7] 

as a habitat with optimal conditions; in the optimal biotope 
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a certain number of animals survives under any conditions); 

the coefficient r characterizes the change in the lemmings 

biomass when there is not enough food in spring.  

 
Figure 4. The graphical representation of the difference equation derived 

from the results of numerical experiments with the VLF model. 

For comparison Fig. 4 shows a plot of the difference 

equation derived from the results of numerical experiments 

with the original VLF model, where Ln designates a current 

year, Ln+1 is a next year, the value 1/P determines the 

decrease of food below the critical level. 

We have combined the models of different classes. The 

simplifications are not accurate as they are the source of 

linearization of expert functions but, nevertheless, allow a 

joint analysis of the models. 

3. The Difference Equation 

The simplified models in the form of difference (discrete) 

equations eliminate a nonlinearity in the species interaction 

for the VLF model. This fact has led us to fix the 

periodicity caused by the features of a seasonal model 

behavior.  

The analysis of the difference equation can justify the 

following hypothesis: the leading role in the fluctuations 

formation belongs to two dimensionless parameters. The 

first one is the growth of the lemmings biomass P. The 

second one is the proportion of survivors d for the 

lemmings at the most adverse conditions. The conclusions 

obtained are in good agreement with one of the common 

hypothesizes: a combination of different factors forms the 

population fluctuation. In this case, these combinations are 

shown and their quantitative influence on the population 

dynamics is provided.  

The computational experiments have been carried out 

with the changing parameter d from 1 to 0 in (2) (see Fig. 

5). We see the zones of stable cycles (white vertical 

sections) and the transition zones with more complex 

modes (black vertical sections). The stable zones are 

followed by the transition zones. The period of the stable 

zones changes in the sequence of natural numbers (1, 2, 3, 

4, ...) from left to right.  

The presence of the transition zones corresponds to a 

registered dynamics of real populations. When the clear 

three-year cycle is absent (at warmer regions compared to 

Taimyr) there are the two- and five-year intervals between 

the population peaks (see [6, 11, 12]). 

The resulting difference equation can be a simple tool to 

predict the possible number of lemmings and foxes. 

However to assess the effects of anthropogenic influence 

we must use the full simulation model. 

 

Figure 5. The results of the computational experiments on model (2): the 

dependence of trajectories on 1 – d. On the abscissa axis, the value 1 – d is 

marked. The vertical section of the graph at a chosen value of d consists of 

trajectory points. 

4. Individual-Oriented Models 

The simplified models in the form of the difference 

equations allow using the individual-oriented models to 

describe the population of lemmings (see [4, 13]). The use 

of the individual-oriented models has led to a new level of 

working out in detail, i.e., we have taken into account 

ecological and physiological characteristics of individuals, 

especially their interaction (social mechanisms), the impact 

of their behavior on the environment (including the spatial 

features of the area), seasonal factors. The dynamics of the 

individual is determined by a set of behavioral rules such 

that they describe the individual interacting with the 

environment and / or other individuals. 

A detailed description of the properties for 

individual-oriented models is given in the previous 

publications (see [4, 5]). We present highlights. 

The model year is divided into two periods: the breeding 

season (from February 1 to August 31) and the period of 

hibernation. The lemmings are described by their age, sex, 

viability potential, and stage of sexual development. The 

population changes are related to the animals movement. 

After coming out of a hole the animal moves in a random 

direction. Encounters are possible when the lemming meets 
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another one, the viability potential diminishing. Sometimes 

this potential reaches zero and the animal dies. The death 

also occurs when the maximum age is reached. When the 

animals of different sexes meet during the breeding period 

there is a certain probability of being pregnant for a female.  

After some time descendants appear. They are at the 

parent hole about two weeks. The stage of sexual maturity 

occurs when the animals reach a certain age and find their 

own hole (the more detailed model is described in the 

papers [13, 14]).  

The computational experiments with individual-oriented 

models have allowed to produce the population fluctuations 

including the three-year period (see Fig. 6). 

The graphic representation of the difference equation 

derived from the results of the computational experiments 

(the points on the graph) for the individual-oriented models 

is qualitatively close to the form of the difference equation 

obtained for the VLF model [5]. 

 

Figure 6. A typical three-year cycle (the thick line designates the number of 

the total population, the bold dash-and-dot line designates the number of 

individuals with increased resistance to encounters, the thin line designates 

an increased prolificacy) 

The study of the individual-oriented models has been 

continued. The influence of the genotype of animals has 

been investigated. The population has been divided into the 

groups with different characteristics such as the increased 

prolificacy, the resistance to external conditions, etc.  

Three versions of the model have been examined. The 

first version uses a random uniform distribution for 

different genotypes of the individuals. If the parents have a 

different genotype the child gets only one parent’s features. 

The situation of a genotype implementation has been 

considered in the second version. The first genotype has 

been introduced at initial distribution, the second one has 

been involved later. Further, the model parameters have 

been determined according to the results of computer 

simulation. The choice of parameters makes a simultaneous 

genotypes coexistence possible. As well as the range of 

parameters has been defined such that one genotype has 

been replaced by another there.  

In the third case the descendants receive the averaged 

properties of both parents. In this case, after a while the 

population becomes genetically homogeneous. Also, the 

effect of food and dominant species has been studied.  

We have succeeded in finding the parameters for stable 

three- and four-year cycles. Fig. 6 shows the typical 

three-year cycle. In our case, we see both genotypes survive. 

5. "Vegetation – Reindeer" Community 
Modeling  

We have extended the methodology of complex 

researches to other environmental objects. For this purpose 

we have chosen the reindeer population considered in the 

paper [15]. The reindeer population’s dynamics was 

registered in Murmansk region (Lapland Reserve) during 

the period of 1929-1995 years [15]. 

Basing on the relationship between the population and 

feed resources the discrete mathematical model of 

non-exploited group of reindeers is considered in the paper 

[15]. This model takes into account the age structure of the 

animals. 

Solving numerically the non-autonomous system of two 

ordinary differential equations of the first order built on the 

basis of complex studies method we have reproduced the 

similar dynamic modes without the age structure. 

The data analysis (see Fig. 7) showed that the dynamics 

is cyclical with the oscillation period of 35-40 years, the 

raises of reindeer number continuing 25-30 years. The 

population decreasing continues 10 years. The model [15] 

reproduces the dynamic conditions similar to the registered 

ones. 

The similarity of the cyclical fluctuations in the 

"vegetation – lemmings – arctic foxes" model has led us to 

apply the complex research method. During the formation 

of the model we have also used three principles: minimality, 

systemness, compatibility. In addition, the hypothesis of 

critical levels of vegetation has been involved [16]. 

In the framework of these principles "vegetation– 

reindeer" community has been allocated. In this case, it has 

been possible to use mathematical construction (2.1). 

 

Figure 7. Experimental data. The registered reindeer dynamics in 

Murmansk region (Lapland Reserve) during 1929-1995 years [15]. The 

gap during 1942-1947 years is related to World War II when the deer meat 

was stacked for food. 
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5.1. Description of the Simulation Model  

In the original simulation model there are three modes: 

enough food (the increasing population), not enough food 

(the birth rate is equal to zero), the food is not available 

(high mortality, the reduction of population). In this model 

there is one expert function (fdv) (see Fig. 8) formalizing 

the assumption of the critical vegetation levels [16]. Basing 

on the analysis of the numerical experiments with the 

simulation model we have introduced the additional 

assumptions simplifying the simulation model to the model 

that can be analytically studied. The analytical solution of 

the system of differential equations has a simple form when 

food is not available, but if there is a sufficient food supply 

the solution is expressed in terms of the Bessel functions 

[17]. The analytical solution can be a tool for configuring 

the simulation model’s parameters. 

The area of 100 sq.km. has been chosen for the modeling. 

The maximum number of the population in the given area 

is 120 animals. The maximum biomass of lichens is 10 

centner/ha. The reindeer population’s growth leads to the 

decrease in the biomass of lichens to 3 centner/ha. Then the 

growth is replaced by the population decrease. Thus the 

average biomass of the lichens 3 centner/ha is critical for 

this population, the food being not enough. The fecundity 

of the individuals drops to zero below 2.4 centner/ha of 

forage available and the mortality significantly increases. In 

accordance with the hypothesis of the critical vegetation 

levels [16], the diminishing of lichens reserves can not be 

complete and their recovery begins before the reindeer 

population reaches a minimum.  

The initial simulation model has the form 


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               (5.1) 

where V designates the the lichens biomass (tons/100 

square km), R designates the reindeers number, the items of 

the system of the equations are calculated using the 

following formulas. 

The vegetation growth V
V

V
aRV ⋅








−⋅=

max

1 1 . The 

natural death of vegetation VaMV ⋅= 2
. The vegetation 

alienation (grazing) RbDV ⋅= 1
 if the food is enough, if 

there is not enough food )(VfdvVDV ⋅= . The increase of 

the reindeer population kpbrDR VR ⋅=  if the food is 

enough and ( α≥V ); 0=RR  if the food is not enough and 

( α<V ). Тhe reindeer death 
2bRM R ⋅=  if the food is 

enough and ( 8.0⋅≥ αV ); 
3bRM R ⋅=  if the food is not 

available and ( 8.0⋅< αV ). 

 

Figure 8. Function fdv. Decrease in value of food (V) during its deficit 

[16]. 

Consider the coefficients of system (5.1): maxV  designates 

the maximum of the lichens biomass, a1 designates the 

coefficient of the vegetation growth, a2 designates the 

coefficient of the vegetation extinction, b1 designates the 

coefficient of the rate of the lichens consumption (tons per 

animal per year), b2 designates the coefficient of the reindeer 

mortality if there is enough food, b3 designates the 

coefficient of the reindeer mortality if there is not enough 

food, kpbr designates the coefficient of the lichens biomass 

transferring to the reindeer biomass ( the coefficient of 

conversion), fdv(V) designates the function formalizing the 

decline in the value of food during its deficit. Fig. 9 

demonstrates the results of the computational experiments. 

5.2. Description of the Analytical Model of the Community 

There are 3 modes in the simulation model. There is 

enough food during the first mode, the population increase is 

observed. There is not enough food during the second mode, 

the birth rate is zero. The food is not available during the 

third mode, the high mortality and the population decrease 

are observed. In addition, there is one expert function fdv. 

This model is found to be simplified as follows. We 

suppose the model to work in two modes. There is enough 

food and α≥V during the first mode, the population 

increase is observed. The food is not available and α<V  

during the second mode, the population decrease is fixed. 

The function fdv in the second mode is replaced with a 

constant с2. 

The system of equations for the analytical model is 

similar to system (5.1). The simplified version of the model 

differs by the following summands. The vegetation 

alienation 
2cVDV ⋅=  during the first mode. The reindeer 

death 
2bRM R ⋅=  ( α≥V ) during the first mode but 

3bRM R ⋅=  ( α<V ) during the second mode. 

5.3. Analytical Solution 

The food is not available. 
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There is enough food. 
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*
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*

2C , C1, C2 are arbitrary constants, they are 

derived from initial conditions; νJ and νY  are the Bessel 

functions (see [17]). 

 

Figure 9. The results of the computational experiments with 

"vegetation-reindeer" model. 

6. Conclusion 

Simulation modeling in an ecologo–biological field is 

the art of using computer technology in an interdisciplinary 

process of creating mathematical models under incomplete 

and always distorted data of various nature about the 

properties of the object under study (see [8]). It is the art of 

compromise between ecological and mathematical 

requirements. 

The search for such successful combinations is based on 

the idea of the “ecological constructor”, i.e., the algorithmic 

structure of the model that lets one relatively easily modify 

it. The implementation of this idea is based on Forrester’s 

system dynamics and the Volterra–Kosticyn hypothesis on 

the possibility to use systems of ordinary differential 

equations to describe ecological objects (see [5]). 

However purely simulation techniques are hard pressed 

to get a satisfactory description of the mechanisms of the 

phenomenon under study. A combination of analytic and 

simulation approaches considering the sets of interrelated 

models presents an attractive option. The search for ways to 

implement such combinations has led to the creation of the 

complex studies method. 

The simplified models admitting parametric studies have 

completely changed the possibilities and potential of the 

modeling. This is both a tool for tuning the original 

simulation model in corresponding dynamic modes and a 

way to generate the hypotheses regarding the leading 

mechanisms of the phenomenon under consideration. 

Our complex approach shows how we can use the 

computer not only to produce the corollaries of known facts 

or to input a huge number of parameters but also to 

simplify the model and generate the hypotheses regarding 

the mechanisms of the phenomenon under study. Using this 

approach to model tundra populations and communities we 

have implemented the idea of simulation technology’s 

efficiency to justify simplified equations admitting the 

parametric studies. We have created a special class of 

models such that it takes into account both seasonality (see 

[14]) and difference equations (see [10]). Our previous 

modeling experience has let us move to another level of 

description namely individual-oriented modeling (see [4, 

13]). The development of adequate mathematical models 

for various biological processes is necessary to form the 

framework of theoretical biology. Besides, under increasing 

global anthropogenic influences the model approach is 

virtually the only way to preserve an integral concept of 

biosphere objects being destroyed. 
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