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Abstract: Understanding Gene Regulatory Network (GRN) is considered to be the fundamental approach to many biological 

questions, and the input dataset performs a crucial role in investigating and visualizing the gene regulatory network [5, 14, 17, 23, 

34, 37, 40, 41, 44, 45]. Several software tools [2, 5, 7, 10, 11, 14, 21, 22, 25, 31-33, 37, 38, 40, 41, 44] have recently been 

developed for GRN inference, where some are designed for a particular dataset, an organism or a particular diseased cell. The 

questions that prompted this review are; what is (are) the kind of omic data needed to construct a GRN? Is there any peculiar 

property attached to a GRN of a particular data? And, could there be an integration of data from various omic experiments in 

form of a knowledge base? The input dataset for GRN are transcriptome information which is analyzed comprehensively 

including the two major technologies (sources) that produce them. We consider four omic datasets and two of their sources for 

the purpose of this review. The biological data source technologies are hybridization-based, and sequence-based. Dataset from 

microarray and ChIP-Chip experiments are hybridization-based while RNA-seq and ChIP-seq are sequence-based. Software 

tools published on Omic Tool website (http://omictools.com/gene-regulatory-networks-c435-p1.html) are analyzed for this 

review. However, the major disparity is whether the dataset is ChIP-X (ChIP-Chip and ChIP-seq) or expression (Microarray and 

RNA-seq) dataset not whether the source is from hybridization-based or sequence-based. Moreover, ChIP-X dataset gives more 

opportunity to investigate more biological problems. The importance of gene regulatory network suggests a GRN software 

template, which contains all the additional data from ChIP-X experiment and a knowledge base of biological prior knowledge, 

including integration of data from different omic datasets as a single knowledge base. 

Keywords: In-Silico, Hybridization, Transcriptome, Microarray, ChIP-X, Epigenetics, Hybridization-Based,  

Next Generation Sequencing (NGS) 

 

1. Introduction 

Investigating gene regulatory network is an approach in 

bioinformatics to study the interactions of genetic materials 

(genes, proteins, enzymes, ligands etc), and also with the 

cellular components. Gene regulatory networks inference is a 

quickly evolving field, with new developments and algorithms 

being published almost daily. Modeling GRN with 

computational techniques involves development of a virtual 

biological cell that represents the dynamism of interactions 

and reactions among cellular components. 

Development and functioning of organisms’ cells emerge 

from interactions in genetic regulatory networks [16] and the 

regulation of gene expression is achieved through the 

interactions between DNA, RNA, proteins, and small 

molecules. This regulatory system can be described by the 

structure of network called genetic regulatory network (GRN) 

[35]. Several mathematical and computational models have 

been developed to analyze the gene regulatory networks and 

metabolic networks of different cells in different disease traits 
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especially [4, 6, 9, 12, 15, 16, 35, 43, 44,]. 

Various mathematical and computational approaches have 

been used to infer gene regulatory network, and this has 

resulted into development of different In-Silico tools for the 

reconstruction and visualization of gene regulatory networks 

[10, 15, 20, 26, 35, 43, 45].Classifications of these 

computational techniques have been reviewed in several 

articles based on different criteria. In [16], general review of 

existing models was performed based on a number of 

dimensions. The approaches were compared on whether the 

models were discrete or continuous, static or dynamic, 

deterministic or stochastic, and qualitative or quantitative. [36] 

classified the computational models of gene regulatory 

networks into four classes, (i) logical models, (ii) continuous 

models, (iii) single molecule models and (iv) hybrid models. 

In yet another review by [27], network inference algorithms 

were categorized based on their major properties and they are: 

(i) the underlying method, (ii) the result, (iii) the directionality 

of interactions, (iv) the consideration of dynamics (v) the 

integration of prior knowledge (PK) (vi) non-linearity or 

linearity, (vii) the explicit consideration of stimulation, (vii) 

the consideration of stochastics and application of 

probabilities, (viii) the network size, (ix) the number of 

required data and (x) the availability as a software tool. 

Some of the tools for the purpose of investigating and 

visualizing gene regulatory networks were presented in [24] 

which include LegumeGRN, geWorkbench, GENeVis, 

Cytoscape, NetBioV, FastMEDUSA etc. The weaknesses and 

strengths of these tools were discussed based on the study 

performed on their features. In this paper, we perform a 

comprehensive analysis of GRN software tools based on their 

various input datasets. We are able to analyze various kinds of 

input datasets to visualize gene regulatory networks, and 

investigate peculiar properties evolving from a GRN by using 

a particular datasets gotten from a particular source. We also 

analyze tools that are using additional parameters apart from 

the major dataset, and the added features of the GRN as a 

result of these additional parameters. 

The paper is arranged as follow: section 2 describes the 

various input datasets to visualize GRN. The GRN 

visualization and inference tools are analyzed in details in 

section 3 to reveal the build-up of each tool around a particular 

dataset. Section 4 presents the conclusion while suggestions 

are outlined in the last section. 

2. Grn Input Data 

The analysis of large datasets of information derived from 

various biological experiments plays a vital role in functional 

genomics, and a good inference of gene regulatory network is 

one of these analyses. The availability of high-throughput 

technologies that allow measuring simultaneously expression 

of thousands of genes, have given rise to different kinds of 

genomic datasets used to visualize GRN [22], and majority of 

GRN software tools were built around a particular dataset. 

These datasets used for the in-silico inference and 

visualization of gene regulatory networks are transcriptome 

information, and the transcripts are acquired and quantified 

through two major technologies; (i) hybridization array and (ii) 

sequence-based approaches. Transcriptome gives the 

complete set of transcripts in a cell and their quantity to 

analyze the functional constituent of the cell [39]. The 

transcriptome information produced by these technologies are 

as follow; 

a) mRNA  

Messenger RNA is the major RNA molecule produced from 

the transcription stage of gene expression, that is, conversion 

of DNA to RNA molecules. It carries genetic information from 

DNA to the ribosome, which specifies the amino acid 

sequence of the corresponding protein. mRNAs are arranged 

into codons consisting of three bases each, and each codon 

encodes for a specific amino acid, except the stop codons, 

which terminate protein synthesis. mRNA is a sequence of 

nucleotides [28]. 

b) microRNA (miRNA) 

It is a conserved class of small noncoding RNAs, whose 

function is RNA silencing and post-transcriptional regulation 

of gene expression [30]. MicroRNAs (miRNAs) are about 

22nt long that are processed by Dicer from precursors with a 

characteristic hairpin secondary structure [3].  

c) tRNA  

This RNA molecules called a transfer RNA is typically 76 

to 90 nucleotides in length, and serves as the carrier of amino 

acids to the ribosomes, so that the ribosomes can put this 

amino acid on the protein that is being synthesized as an 

elongating chain of amino acid residues, using the information 

on the mRNA to determine which amino acid should be put on 

next. Each type of amino acid has its own type of tRNA, 

which performs the binding and transporting the amino acid to 

the growing end of a polypeptide chain if the next code word 

on mRNA calls for it [28].  

d) rRNA 

The ribosomal RNA is an important part of ribosome in the 

cell. It contains about 60% of ribosome complexes whereby 

the rest 40% is protein molecules. A Ribosome is divided into 

a large and small subunit, each of which contains its own 

rRNA molecule or molecules [28]. The nucleotide sequence of 

rRNA is highly complex depending on whether it is eukaryotic 

rRNA or prokaryotic rRNA, large subunit or small subunit. 

The basic function of ribosomes is translation of mRNA into 

protein by linking amino acids together. The small subunit of 

rRNA reads the order of amino acids while linking of the 

amino acids together is the function of the rRNA in the large 

subunit of the ribosome. 

e) other non-coding RNAs 

These include snoRNAs, microRNAs, siRNAs, snRNAs, 

exRNAs, piRNAs and the long ncRNAs 

These datasets are the major input dataset to infer and 

visualize GRNs in various literatures [10, 11, 13, 14, 19, 21, 

22, 25, 26, 29, 31, 34, 37, 38, 40, 41], which are generally 

known as gene expression data. One common attribute of 

these datasets is their constituent, which is nucleotide bases 

but they are of different lengths and different functions they 

perform. So, it is crucial to know in advance the structure and 
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function(s) of a particular data before using such in inferring 

and visualizing GRN. In addition with these major datasets are 

other datasets that act as additional input parameters in 

inferring GRNs like Transcriptional Start Sites (TSSs), 

Transcriptional Factors (TFs), promoter elements and binding 

signals. The use and combination of these datasets are 

analyzed in the following section, including the influence of 

the input dataset on the outcome. A number of organisms and 

disease traits like cancer and cardiovascular diseases have 

been profiled and are available in different public databases 

like Gene Expression Omnibus (GEO) repository.  

A particular input dataset for in-silico investigation of 

regulatory networks has a source, and the sources have been 

categorized into two, the hybridization-based and the 

sequence-based technologies [29]. The primary aim of these 

two technologies is to get the transcriptome information of 

different genes at the same time. Hybridization-Based 

Technology is a technique for identifying, among a sample of 

many different DNA fragments, the fragment(s) containing a 

particular nucleotide sequence. This is achieved by combining 

two complementary single-stranded DNA molecules and 

allowing them to form a single double-stranded molecule 

through base pairing. The hybridization-based techniques 

widely used for GRN analysis and visualization are DNA 

microarray and ChIP (Chromatin immunoprecipitation) 

Microarrays (ChIP-chip). Whereas, sequence-based 

technologies that are widely used for GRN analysis and 

visualization are RNA-seq and ChIP-seq (Chromatin 

Immunoprecipitation Sequencing). These are parts of Next 

Generation Sequencing techniques. Table 1 shows the 

properties of these techniques [17, 34, 18]. Having full 

understanding of any dataset is paramount in inferring gene 

regulatory network and if necessary, integrating multiple 

datasets from distinct sources is challenging [40]. 

Table 1. Some of Transcriptome Profiling Techniques. 

 
Hybridization-Based Sequence-Based 

 
Features DNA Microarray ChIP-Microarray (ChIP-chip) RNA-seq ChIP-seq 

Transcriptome Profiling Yes Yes Yes Yes 

DNA-Protein Interaction No Yes No Yes 

Sensitivity Low Low High High 

Specificity Low Low High High 

Range of expression Low Low High High 

Signal-to-Noise Ratio High High Low Low 

Cost Less Expensive Less Expensive Costly (Cost coming down) Costly (Cost coming down) 

Discovery-based experiments No No Yes Yes 

Histone Modification Analysis 

(Epigenetics) 
No Yes No Yes 

DNA methylation Analysis 

(Epigenetics) 
No Yes No Yes 

Functional Analysis of 

Transcription Factor 
Not Feasible Possible Not Feasible Possible 

Transcription Factor Binding 

Sites (TFBS) Mapping 
Not Feasible Possible Not Feasible Possible 

 

3. Grn Visualization Tools 

We are able to perform a comprehensive analysis of 

several software tools for investigating and visualizing gene 

regulatory network, which are obtained from publicly 

available biological tools on Omic Tool website 

(http://omictools.com/gene-regulatory-networks-c435-p1.ht

ml). Their various properties in relation to their input dataset 

are reported in several literatures [1, 2, 5, 7, 8, 10, 11, 13, 14, 

19-22, 25, 26, 29, 31, 34, 37, 38, 40, 41]. We present the 

summarized analysis of the tools in Table 2, taking 

cognizance of the input dataset among other properties. 

a) ARACNE (Algorithm for the Reconstruction of 

Accurate Cellular Network) 

ARACNE is a powerful network inference tool designed to 

scale up to the complexity of regulatory networks in 

mammalian cells. It uses microarray dataset from human B 

cells, both a realistic and synthetic datasets. The microarray 

dataset makes it possible to measure statistical interactions 

and dependencies using mutual information, which does not 

require discretization of the expression level [29]. However, 

ARACNE is unable to infer edge directionality because it does 

not use temporal data. 

b) ARTIVA (Auto Regressive TIme VArying Model) 

ARTIVA uses time course gene expression data to perform a 

gene-gene analysis, and to infer the topology of the network 

and how it changes over time using two microarray datasets. 

The data related to the developmental stages of Drosophila 

Melanogaster and Benomyl data are the major input data into 

the software, but including the gene ontology information to 

perform the knock-out procedure and functional annotations 

and transcription factor binding information to access the 

biological relevance of the result [26]. 

ARTIVA provides powerful and evolving mechanism in 

inferring gene regulatory network because the nature of 

incoming input is investigated, works with a continuous 

datasets and no threshold is needed to define up and down 

regulated groups of genes. It is thereby concluded that 

ARTIVA will be able to incorporate data originating from 

different sources like ChIP-Chip or ChIP-seq experiment. 

c) AtmiRNET  



84 Taiwo Adigun et al.:  Input Dataset Survey of In-Silico Tools for Inference and  

Visualization of Gene Regulatory Networks (GRN) 

AtmiRNET is another software tool for biological network 

inference to explore mechanisms of transcriptional regulation 

and microRNA functions in Arabidopsis Thaliana. The gene 

regulatory networks gives users an intuitive insight into the 

pivotal roles of Arabidopsis miRNAs through the crosstalk 

between miRNA transcriptional regulation (upstream) and 

miRNA mediate (downstream) gene circuit [5]. 

The data input include miRNA of Arabidopsis, core 

promoter element and high confidence transcription factors. It 

was observed that the plant miRNAs are primarily encoded in 

intergenic regions and that they have their own promoters 

unlike animals’ miRNAs. 

d) CMGRN 

Constructing Multilevel Gene Regulatory Networks 

(CMGRN) performs several instigative biological functions 

and gene regulatory network inference. It uses ChIP-seq 

count, binding data, gene expression profile, miRNA and 

targets as input dataset and according to [14], the use of 

ChIP-seq data allows high-fidelity mapping of different 

regulators; binding data to identify regulatory modules and 

reconstruct GRN; gene count to infer the causal relationship 

between Transcription Factors (TFs) epigenetic modification; 

gene expression data and miRNA/regulatory signal of TFs 

are used to construct the GRN by multi-level factors. 

In summary, CMGRN generates hierarchical regulatory 

network structures controlled by the interacting factors at 

transcriptional, post-transcriptional and epigenetic layers. 

e) ChIP-Array 

It is a web server biological network visualization tool that 

integrates ChIP-X (ChIP-Chip, ChIP-seq, etc) and gene 

expression data from human, mouse, yeast fruit-fly and 

Arabidopsis to analyze both the ChIP-X and expression data 

together. It requires binding locations from ChIP-X data, 

differential expression data from gene expression profile and 

other parameters to construct GRN [34]. The direct and 

indirect target genes are detected, which is regulated by a 

Transcriptional Factor (TF) of interest. 

This ultimately aids the characterization of function(s) of 

the TF. 

f) ChIP-Array2 

ChIP-Array2 is an enhanced version of ChIP-Array, which 

accommodates additional type of omics data from rat and 

worm to investigate a more comprehensive gene regulatory 

network involving diverse regulatory components. 

ChIP-Array2 can be used to detect the direct and indirect 

target genes separately; this is as a result of independence of 

both ChIP-X and expression data. It can run without either 

ChIP-X or expression data, direct target genes are detected 

with only expression data while indirect target genes are 

detected with only ChIP-X data [37]. 

Table 2. Dataset Summary of GRN Inference Tools. 

Tool 
Expression Data 

(Microarry, RNA-seq) 

Regulatory Data 

(ChIP-X) 

Combined Expression 

data and ChIP-X data 
Applied Genome 

ARACNE Yes No No Human B cells 

ARTIVA Yes No No Drosophila Melanogaster and Benomyl 

AtmiRNET Yes No No Arabidopsis 

biRte Yes No No E.Coli, Pancreas and Ovarian Cancer 

C3NET Yes No No E.coli 

CASCADE Yes No No 
Lymphocytes B-cells and Murine Lymphocytes 

T-cells 

CGC-2SPR Yes No No Yeast Metabolic Cycle(YMC) 

ChIP-Array Yes Yes Yes Human, Mouse, Yeast, Fruit-Fly and Arabidopsis 

ChIP-Array2 Yes Yes Yes 
Human, Mouse, Rat, Yeast, Fruit-Fly, Worm and 

Arabidopsis 

CL Yes No No Cancer 

CLR Yes No No E.coli 

CMGRN Yes Yes Yes - 

CompareSVM Yes No No - 

CoREGNET Yes Yes Yes - 

DDGni Yes No No Yeast and Caenorhabditis Elegan 

ESCAPE Yes Yes Yes mouse Embryonic Stem Cells(mESCs) 

GENIE3 Yes No No - 

INFERELATOR Yes No No - 

INFERENCE Yes No No Hematopoietic Stem Cells 

SNAPSHOT 
    

iRegulon Yes Yes Yes Human, Mouse and Drosophila 

Jump3 Yes No No - 

LOREGIC Yes Yes Yes Human Leukemia 

ModEnt Yes No No - 

netClass Yes No No - 

Netmes Yes No No - 
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g) iRegulon 

This is another powerful network inference tool designed to 

identify master regulators and detect target genes in human, 

mouse and drosophila genes. It is used for motif discovery, 

which provides access to many cancer-related TF-target 

subnetworks/regulon [21]. 

The input datasets are TF binding data (from ENCODE 

ChIP-seq), co-expressed genes downstream of a TF 

perturbations, miRNA and genes involved in the same 

signaling pathway. 

Other important gene regulatory network software tools are 

PANDA, PathWave, PTHGRN, ROBNCA, SIRENE, 

SMARTS, TFmiR and TIGRESS. 

Finally, we observed that large percentage of the tools if not 

all has additional input parameters like TSSs, TFs, 

protein-protein interaction, functional annotations, binding 

information and other gene ontologies information to unravel 

the interaction and relationship complexity of GRN. 

4. Conclusion 

Analysis of input dataset especially based on the technology 

of source data provides insight for future researchers on the 

kind of data to use for a specific investigation. We have been 

able to dissect GRN input dataset and discovered that the 

datasets can be expression data or regulatory data (ChIP-X) 

aside the technology of the source of the data. Though, Next 

Generation Sequencing (NGS) allows the elucidation and 

demarcation of complex transcriptional regulatory networks 

[18], the major disparity is whether the dataset is ChIP-X or 

expression dataset not whether the source is from 

hybridization-based or sequence-based.  

Gene expression dataset is from microarray or RNAseq 

while ChIP-X dataset is either from ChIP-Chip or ChIP-seq 

experiment. We observed from this analysis that there is no 

one universal method suitable for inference of GRN for all 

biological conditions [10], the suitability of inference method 

depends on the kind of datasets employed and the important 

features of each dataset can suggest other hypothesis in 

investigating organism or diseased cells. 

Notwithstanding the presence of expression data in all the 

tools analyzed above, the ChIP-X dataset has been observed to 

help elucidate the genetic, epigenetic and environmental states 

of a cell and help in a great extent to determine the phenotype 

of the cell. In fact, [41] submitted that, no true causal 

relationships can be represented with any pure expression 

driven method, and that the problem can be solved by using 

ChIP-Seq binding data. Also, [13] observed that with ChIP-X 

dataset, visualizing GRN and modeling of metabolic and 

signal networks can be combined to model the global 

operation of cells with unprecedented completeness and 

accuracy. Besides, with ChIP-X dataset, relevant subnetworks 

that underlie observed genetic interactions can be 

reconstructed [21], and cooperations among other regulatory 

elements can be studied such as splicing factors, long 

non-coding RNAs, etc. [38]. 

Finally, the resulting networks of inference tools with more 

input parameters are more accurate than those produced using 

individual dataset, and E.coli dataset is believed to be the 

benchmark of biological dataset [19]. 

5. Suggestions 

Taking this comprehensive analysis into consideration, and 

looking at importance of gene regulatory networks as the 

fundamental solution to majority of biological questions, the 

following suggestion should be taken care of. 

a) A concerted effort should be made in designing a GRN 

software template that will contain all the additional 

data from ChIP-X experiment, which makes it different 

from expression data. This will make expression 

dataset to be useful to carry out further investigations 

like histone modification analysis, DNA methylation 

analysis, functional analysis of transcription factors and 

Transcription Factor Binding Sites (TFBS) mapping. 

b) A knowledge base of prior knowledge should be built, and 

it should be available to every GRN inference developer. 

It is observed that all the tools require information like 

gene ontology, functional annotation, protein-protein 

interaction information, binding information etc. to 

successfully reconstruct the GRN. It can also help to 

achieve above suggestion by integrating data from 

different omic datasets as a single knowledge base. 

c) Both the expression and ChIP-X datasets of E.coli 

should be obtained and made available to be used as the 

simulated dataset for all GRN inference tools because 

majority of the authors in the papers reviewed used 

E.coli data successively. 
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